Text S1: Supplementary Note

Double genomic control correction in the meta-analysis

Sex-specific standard errors and P-values were genomic control (GC) corrected computing the
study-specific lambda factor and a second GC correction was performed on the meta-analyzed
result{50]. While all genome-wide available SNPs were used for GC correcting the in-silico
studies, for metabochip studies, we only used a subset of 4,427 SNPs for GC correction: Most
of the SNPs had been selected for the metabochip due to metabolic trait associations that would
result in overestimated lambda factors, but these 4,427 SNPs selected for QT-interval
association onto the metabochip were deemed to be least associated with anthropometric traits
The lambda factors for GWAS have been reported previously[49,51,52] and the lambda factors
for in-silico follow up studies ranged from 0.99 to 1.15 and for metabochip follow up studies from

0.89 to 1.13 except for one large study lambda=1.25.

Power considerations for the discovery

We evaluated the power of the two genome-wide screening approaches (the sex-specific scan
and the sex-difference scan) to select sex-sensitive SNPs into follow-up[53]. For this, we
assumed a certain genetic effect in women and varied the effect in men from OED to CED
(Figure S4A). We found that the sex-specific scan had higher power for SSE signals (no effect
in men) compared to the sex-difference scan, while the sex-difference scan had higher power
for OED signals. It can also be seen that the overall scan (man and women combined) as
currently usually applied in GWAS had good power for CED signals, but less for SSE and none
for OED.

Specifically, to provide an example for the WHRadjBMI and height analyses in the
discovery (34,629 men, 42,969 women for WHRadjBMI; 60,587 men, 73,137 women for height),
the power of the sex-specific scan to select, at 5% FDR (corresponding to a P-value of 2x10 in
our data), an SSE signal (i) such as the LYPLAL1 SNP (byomen = 0.064, bmen = 0, MAF = 0.28,
R2yomen= 0.00167, R%,.,=0) was 99%, (ii) for a signal such as the PPARG SNP (byomen = 0.034,
bmen = 0, MAF=0.42, R?,omen = 0.00057, R?o, = 0), the power was 81%, (iii) for a medium-sized
height signal in one sex and none in the other (e.g. rs572169 from GHSR, byomen =0.030, byen =
0, MAF = 0.31, R2%yomen= 0.00039, R%*,.n = 0, from Lango et al.), the power was 78%. We had
80% power to detect sex-specific signals for height with an R? of 0.000485 in women and 0 in
men. The power via the sex-difference scan to select an OED signal at o. = 2x10° with effect
sizes that were (i) half of the LYPLAL1 effect (signed R2,omen = + 0.000835 and signed RZpe, = -
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0.000835) was 99%, (ii) for effect sizes half of the PPARG effect (sighed R?,omen = +0.000285
and signed R?%,., =-0.000285), the power was 66%, (iii) for effect sizes half of a medium height
signal (e.g. rs572169, signed R?,omen = + 0.000195, signed R?%*yen = - 0.000195), the power was
79%. Note that the power to select such signals using the sex-specific scan was 98%
(LYPLAL1), 21% (PPARG) or 32% (height gene GHSR), respectively.

Power considerations in the follow-up

When comparing the power of the sex-difference test of the 348 SNPs in the follow-up without
and with a prior filter for a main effect (P-value of association combined in men and women <
0.01), it can be seen that there is a higher power with the prior filter for CED or SSE signals.
This is due to the fact that the main effect filter utilizes the knowledge that the effect is not OED.
For example, the power to detect a signal such as PPARG was 79% without the filter and 87%
with the filter (see Figure S4B).

Specifically for the example of WHRadjBMI and height analyses (47,896 men, 60,936
women for WHRadjBMI; 62,395 men, 74,657 women for height), the power to establish sex-
difference in our follow-up at 5% FDR (corresponding to a sex-difference P-value of 4.2x10% in
our data) was (i) 99% for a women-only signal such as the LYPLAL1, (ii) 87% for a women-only
signal such as PPARG, (iii) 78% for a women-only signal such as the height signal specified in
the previous chapter. We had 80% power to establish a sex-difference with R?,omen=0.0045,
R2men=0 for WHRadjBMI or R?,,men= 0.00035, R?,.,=0 for height.

Literature search and bio-informatic analyses regarding function of genes and variants at
the seven loci

To explore any potentially functional elements underlying the regions of association
(ranging from 7kbp to 2337kbp in size), we searched the UCSC and Ensembl genome browsers
and found: (i) two of the seven regions (GRB14/COBLL1 and HSD17B4) had one or more
protein coding genes overlapping the region of the association signal (COBLL1 at
GRB14/COBLL1; DMXL1, DTWD2, FAM170A, HSD17B4, PRR16, and TNFAIP8 at HSD17B4),
making these seven protein-coding genes potential candidates to explain the observed
association. (ii) Four of the seven regions (GRB14/COBLL1, LYPLAL1/SLC30A10, ADAMTS9,
and HSD17B4) had a total of seven annotated non-coding transcripts including a snoRNA
(SNORA70F at GRB14/COBLL1), a processed pseudogene (ZC3H11B at
LYPLAL1/SLC30A10), a lincRNA (ADAMTS9-AS2 at ADAMTS9), and several microRNAs
(MIR548AN at ADAMTS9; MIR1244-1, MIR1244-2, and MIR1244-3 at HSD17B4) overlapping
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the region of association signal. (iii) In the remaining three loci (VEGFA, PPARG, and MAP3K1)
we did not find any known coding genes or non-coding transcripts overlapping the regions of
association. However, all three of these regions were relatively near to the protein-coding region
of the genes (3.7kb downstream of VEGFA, 13kb downstream of PPARG, and 116kb upstream
of MAP3K1) and thus could potentially be involved with cis-regulatory elements that have not
yet been reported and/or annotated.

More details by locus as derived by searching several catalogues (copy number tagging
SNPs, NHGRI GWAS), functional annotation data bases (SIFT, SNPinfo), as well as PubMed
and OMIM, are given below:
1. GRB14 / COBLL1 (2924.3, selected for WHRadjBMI), lead marker rs6717858, with
association signal extending across ~49kb of chromosome 2, ranging from 165216-165265kb. Two
genes (COBLL1 and SNORAYOF) overlap this signal region, as does a previously reported SNP
association with WHRadjBMI in tight LD with our lead marker (rs10195252: ~26.5kb, ~0.001cM,
r’=0.94, D'=1.0)[51]. Heid et al.[49] also presented eQTL data which suggested that growth factor
receptor-bound protein 14 (GRB14) expression was associated with rs10195252 genotype and not
COBLL1[51]. Our region lies ~30-79kb upstream of GRB14, which is a member of a family of SH2-
containing adaptors. The GRB14 protein binds directly to the insulin receptor[54,55], and likely has
an inhibitory effect on receptor tyrosine kinase signaling as well as on insulin receptor signaling,
thereby regulating growth and metabolism. Grb14-deficient mice exhibit enhanced body weight,
mainly explained by increased lean mass on normal diet, improved glucose homeostasis despite
lower circulating insulin levels, and enhanced insulin signaling in liver and skeletal muscle[56].
Grb14 expression is increased in adipose tissue of insulin-resistant animal models and type 2
diabetic human patients[57], suggesting that Grb74 may modulate insulin sensitivity. The WHR
signal appears to be distinct from a GRB174 locus previously reported as associated with both
smoking initiation and current smoking (rs4423615: ~101kb, ~0.19cM, r?<0.001, D’=0.01 with lead
marker)[58]. Cordon-bleu protein-like 1 (COBLL1) may be involved in neural tube formation[59], is
expressed at higher levels in tumors associated with good prognosis in mesothelioma after
surgery[60], and its knockdown led to increased apoptosis in both normal and tumor cells[61]. Our
bio/informatical analyses did not identify any potentially functional entity.
2. LYPLAL1/SLC30A10 (1941, WHRadjBMI), lead marker rs2820443, with association signal
extending across ~62kb of chromosome 1, ranging from 217793-217855kb. One gene (ZC3H11B)
overlaps this signal region, as does a previously reported SNP associated with WHRadjBMI
(rs4846567: ~2.8kb, ~0.0002cM, r? = 0.96, D’ = 1.0 with lead marker)[51]. Zinc finger CCCH-type

containing 11B (ZC3H11B) is a pseudogene with no known function. Another previously reported
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SNP association with WHRadjBMI lies ~82-144kb from our association region (rs2605100: ~109kb,
~0.04cM, r* = 0.68, D’ = 0.84 with lead marker)[62]. Excluding ZC3H11B, our signal region is
nearest to SLC30A10 (~299-361kb downstream) and LYPLAL1 (~340-402kb downstream). Solute
carrier family 30, member 10 (SLC30A10) belongs to a family of membrane transporters involved in
intracellular zinc homeostasis and is expressed in brain and liver[63]. LYPLAL1 encodes
lysophospholipase-like 1 protein, which is thought to act as a triglyceride lipase and is reported to
be up-regulated in subcutaneous adipose tissue of obese subjects[64]. Intergenic variants near
LYPLAL1 have also been associated with fatty liver disease (rs12137855: ~305kb, ~0.22cM, r? =
0.1, D’ = 0.40 with lead marker)[65].

Our bio-informatical analyses found several SNPs moderately correlated with our lead SNP
that are putative transcription factor binding sites (rs7538503: ? = 0.78, rs2605101: r* = 0.72,
rs2605098: r* = 0.66, rs2605100: r* = 0.62).
3. VEGFA (6p21.1, WHRadjBMI), lead marker rs1358980, with association signal extending
across ~7kb of chromosome 6, ranging from 43872-43865kb. No genes overlap this signal region,
but it does include a SNP previously associated with WHRadjBMI (rs6905288: ~5.6kb, ~0.01cM, r?
= 0.5, D’ = 0.91 with lead marker)[49]. The associated region is located 3.7-10.7kb downstream of
vascular endothelial growth factor A (VEGFA). Multiple variants and mutations in VEGFA are risk
factors for diabetic retinopathy[66-68], and variants in VEGFA have been nominally associated with
Type 2 Diabetes (T2D)[69]. VEGFA is proposed as a key mediator of adipogenesis and
angiogenesis[70], is highly expressed in adipose tissue, and has increased expression during
adipocyte differentiation[71-74]. VEGFA serum concentrations are elevated in overweight and
obese patients compared with lean subjects[75] and decrease after weight loss following bariatric
surgery, behaving similarly to other hormones related to adipose mass, such as leptin and
insulin[76]. Variants near VEGFA have also been associated with kidney function (rs881858: ~42kb,
0.2cM, r? = 0.01, D’ = 0.18 with lead marker)[77] and advanced age related macular degeneration
(rs4711751: ~64kb, 0.2cM, r? = 0.04, D’ = 0.21 with lead marker in 1000G data)[78] although both
appear likely to be distinct from our signal.

Our bio/informatical analyses did not identify any potentially functional entity.
4. ADAMTS9 (3p14.1, WHRadjBMI), lead marker rs2371767, with association signal extending
across ~31kb of chromosome 3, ranging from 64704-64673kb. Two genes (ADAMTS9-AS2 and
MIR548AN) overlap this signal region, as do three previously reported SNP associations, one with
WHRadjBMI (rs6795735: ~12.9kb, ~0.004cM, r*=0.311, D'=1.0 with lead marker) [51], and two with
T2D (rs4607103: ~6.4kb, ~0.001cM, r’=0.90, D'=1.0; and rs4411878: ~14.6kb, ~0.005¢cM, r*=0.85,
D'=0.95)[69,79]. The T2D association is possibly mediated through decreased insulin sensitivity of
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peripheral tissues[80]. MIR548AN is a microRNA which primarily maps to the X chromosome but
also maps with 96.4% identity (full length transcript with 3 base mismatches) within our signal
region. The function of MIR548AN is not known. ADAMTS9-AS2 is a long non-coding RNA which is
an antisense for ADAMTS9. Our region is located ~25-56kb upstream of ADAMTS9. ADAMTSY is a
member of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, a
group of genes encoding metalloproteases that lack transmembrane domains and are secreted into
the extracellular matrix[81]. Members of the ADAMTS family have been implicated in control of
organ shape during development and inhibition of angiogenesis[82].

Our bio/informatical analyses did not identify any pontially functional entity.

5. HSD17B4 (5923.1), lead marker rs10478424, with association signal extending across
~2337kb of chromosome 5, ranging from 117911-120249kb. Nine genes (DMXL1, DTWD?2,
FAM170A, HSD17B4, MIR1244-1, MIR1244-2, MIR1244-3, PRR16, and TNFAIPS8) overlap this
signal region. The lead marker, rs10478424, is located in an intronic region of hydroxysteroid (17-
beta) dehydrogenase 4 (HSD17B4). The protein encoded by HSD17B4 is a bifunctional enzyme
that is involved in the peroxisomal beta-oxidation pathway for fatty acids. Mutations in this gene are
known to cause DBP deficiency, an autosomal-recessive disorder of peroxisomal fatty acid beta-
oxidation that is generally fatal within the first two years of life[83,84]. Expression levels of
HSD17B4 have been associated with prostate cancer severity[85], and it is also a significant
independent predictor of poor patient outcome[86].

Our bio-informatical analyses found that our lead marker is in a predicted transcription factor
binding site (TFBS) and could therefore potentially influence regulation of transcription of an
alternative putative protein-coding splice variant of HSD17B4. Interestingly, one of the transcription
factors predicted to bind at this site is PPARG, which itself is located near one of the other
association regions reported here. In addition, several proxies in moderate LD with the lead marker
disrupt predicted microRNA bindings sites (rs1045241: r? = 0.53, rs1045242: r* = 0.53, rs11064: r* =
0.53) and are also possible candidates for functional explanations of the association signal at this
locus. It should also be noted that there was one CNV tagging SNP (rs1948325) in that region that
showed nominal significance in women (P=0.054, P=0.281) consistent with the women-only
association signal of WHRadjBMI, but this would not hold significance when accounting for the
multiple testing conducted in the CNV tagging SNP analysis (6016 SNPs tested).

6. PPARG (3p25.1, WHRadjBMI), lead marker rs4684854, with association signal extending
across ~10kb of chromosome 3, ranging from 12463-12473kb. No known genes overlap this region.
However, it does lie approximately 13kb downstream of the well known type 2 diabetes

susceptibility gene, peroxisome proliferator-activated receptor gamma (PPARG), although the T2D
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associated SNP appears to be distinct from our locus (rs1801282: ~96kb, ~0.11cM, r’=0.04,
D'=0.61 with lead marker)[26,87,88]. The protein product encoded by PPARG is PPAR-gamma
which is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in
the pathology of numerous diseases including obesity[89-92], diabetes[93,94], atherosclerosis[95]
and cancer[93,96-98]. Interestingly, previous studies of the Pro12Ala polymorphism in the PPAR
gene have demonstrated genotype—by-sex interaction with BMI[99], fatty acid concentrations during
the first 24h after birth were related to PPARG expression in female but not in male lambs[100], and
female 12Ala mutation carriers had greater risk of developing abdominal obesity than female non-
carriers while male 12Ala mutation carriers had no significant increase in risk[101].
Our bio/informatical analyses did not identify any potentially functional entity.

7. MAP3K1 (5q11.2, WCadjBMI), lead marker rs11743303, with association signal extending
across ~198kb of chromosome 5, ranging from 55832-56030kb. No known genes overlap this
region, but it does overlap with another SNP (rs6867983: ~5.8kb, 0.02cM, r’=0.71, D'=1.0 with lead
marker) reported as a suggestive association with triglyceride level[102]. The associated region
also lies ~116-314kb upstream of mitogen-activated protein kinase kinase kinase 1 (MAP3K1), a
serine/threonine kinase that occupies a pivotal role in a network of phosphorylating enzymes
integrating cellular responses to a number of mitogenic and metabolic stimuli, including insulin (MIM
176730) and many growth factors[82]. Mutations in MAP3K71 are associated with gonadal
dysgenesis[103], and a SNP within MAP3K1 (rs889312: ~172kb, 0.44cM, r’=0.005, D'=0.10 with
lead marker) has been reported to be associated with breast cancer[104,105], possibly as a gene-
gene interaction with BRCAZ2[106]. It is also ~384-582kb upstream of ankyrin repeat domain 55
(ANKRD55), which harbors SNPs reported to be associated with longevity (rs415407: ~445kb,
1.1cM, r’=0.005, D'=0.12 with lead marker)[107], Rheumatoid Arthritis (rs6859219: ~421kb, 0.93cM,
r’=0.008, D'=0.10 with lead marker)[108], and Celiac Disease (rs1020388: ~300kb, 0.71cM,
r’=0.003, D'=0.11 with lead marker)[109].

Our bio/informatical analyses did not identify any pontially functional entity.

Human tissue eQTL

Subcutaneous adipose tissue and whole blood from deCode: As described previously[110], 603
(252 males, 351 females) individuals with adipose tissue and 747 (312 males, 435 females)
individuals with whole blood samples were genotyped with the Illumina 317K or 370K platform
and HapMap imputation performed. Gene expression profiles were conducted using RNA from
the adipose and blood samples using a custom-made human array with 23,720 unique

oligonucleotide probes. Cis associations were tested separately by gender by regressing the
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mean logarithm (log10) expression ratio (MLR) on the number of effect alleles adjusting for age
(and the differential cell count for the blood analyses) and accounting for familial relatedness.
Only cis associations with a P-value < 1x107 corresponding to an FDR < 5% in either sex are
reported.

Subcutaneous adipose tissue and whole blood from MolOBB: Seventy-three individuals were
recruited to donate subcutaneous adipose tissue from the abdominal wall and gluteus [In press
Plos Genetics]. Total RNA was extracted from the fat tissue using TRIreagent and hybridized
onto the Affymetrix Human Genome U133 Plus 2.0 gene-expression microarrays (hgu133plus2
arrays), containing 17,726 non-overlapping probes. Subjects were genotyped with the Illlumina
317K Beadchip chip array and imputation conducted using IMPUTE. After quality control filters
were applied to the expression and genotype data, 52 individuals (31 male, 21 female) with
abdominal adipose tissue, 62 subjects with gluteal fat (35 male, 27 female), and 65 subjects
with whole blood (36 male, 29 female) remained for eQTL analysis. Cis associations within
500kb of each gene were evaluated by regressing expression level on genotype and adjusting
for plate effects. Two models were tested: 1) assuming the same slope in each gender (e.g.,
gender-homogeneity effects) and 2) assuming a different slope for each gender (e.g., gender-
specific effects). Only those associations with an FDR < 1% in either sex are presented.
Lymphoblastoid cell lines from a childhood asthma study. As described previously [111],
peripheral blood lymphocytes were transformed into lymphoblastoid cell lines for 206 families of
European descent (214 male, 181 female). Using extracted RNA, gene expression was
assessed with the Affymetrix HG-U133 Plus 2.0 chip. Genotyping was conducted using the
lllumina Human1M Beadchip and Illlumina HumanHap300K Beadchip, and imputation performed
using data from Phase Il HapMap CEU population. SNPs were tested for cis associations
(defined as genes within 1 Mb), adjusting for non-genetic effects in the gene expression value.
Only cis associations that reached a P<6.8x10®° (FDR of 1%) in either sex were included in the
table.

Lymphoblastoid cell lines from the International HapMap Project: As described previously[112],
transcription profiling was done on Epstein-Barr virus-transformed lymphoblastoid cell lines from
the original 379 individuals in the four HapMap populations (CEU: 54 females, 55 males; CHB:
42 females, 38 males; JPT: 40 females, 42 males; YRI: 53 females, 55 males) using the
lllumina human whole-genome expression (WG-6 version 1) arrays, which contain 47,294
probes. The genotype data from HapMap 3 was used to evaluate the associations with

expression. Cis associations within a 2 Mb window centered on the gene were tested using
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Spearman rank correlation[112], stratified by sex and population. A threshold of P < 1.0 x 10°

was used to determine nominal significance, but no associations reached this level.

Mouse expression

There were three experiments on mouse expression in Regensburg, Oxford and Houston. The
genes explored via PCR in Regensburg are given in Table S13A, the genes explored via
lllumina array in Oxford and Houston in Table S13B. Details of the three experiments are given
below:

Mouse experiment at the Regensburg center:

At the Regensburg University, mice (7 female and 7 male animals) were purchased from
Charles River Laboratories (Sulzfeld, Germany) at an age of 7 weeks. Body weight of the
female mice was 16.7 + 0.7 g and of the male mice 20.3 + 1.4 g (p = 0.001). After 3 weeks of
acclimatisation, animals were killed and respective organs were immediately removed. Total
RNA was isolated with TRIzol reagent from GIBCO (Carlsbad, CA), oligonucleotides used for
amplification using LightCycler technology were synthesized by Metabion (Planegg-Martinsried,
Germany) and are listed in the table. Real-time RT-PCR was performed as recently
described[113], and the specificity of the PCRs was confirmed by sequencing of the amplified
DNA fragments (Geneart, Regensburg,Germany). For quantification of the results, RNA was
reverse transcribed, and cDNA was serially diluted and used to create a standard curve for each
of the genes analyzed. The second-derivative maximum method was used for quantification
with the LightCycler software. Values were normalized to 18s rRNA expression and are given as
arbitrary units.

Mouse experiment at the Oxford center:

Animals: Original Northport Heterogeneous Stock (HS) mice were obtained from Robert
Hitzemann of the Oregon Health Sciences Unit (Portland, Oregon). At the time the animals
arrived, they had descended from 50 generations of pseudorandom breeding that commenced
with eight founder strains: A/J, AKR/J, BALBc/J, CBA/J, C3H/Hed, C57BL/6J, DBA/2J, and
LP/J[114]. The animals were bred for phenotyping in a colony established at the University of
Oxford. They were housed at a maximum of six per cage (median of four) and maintained on a
12:12 light:dark cycle with ad libitum access to food and water.

Gene Expression Assays: From a pool of over 1940 HS mice (1000 males), the most unrelated
animals (based on genome-wide genotyping of 13.5k SNPs using lllumina’s BeadArray

platform[115]) were assayed for gene expression in several tissues, including the liver (n = 273
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with 139 males). As detailed by Huang and colleagues[116], the tissues were frozen in liquid
nitrogen and homogenised. RNA was extracted from the tissue and mRNA was amplified.
Labelled mRNA was hybridised to the lllumina Mouse WG-6 v1 BeadArray platform, which
contains 47.4k unique RNA probe sequences.

Gene Expression Data Preprocessing: To extract data from the images produced by the
BeadArray platform, the images were imported into the Gene Expression module (V 1.6.0) of
the lllumina GenomeStudio (V 2010.1) without invoking any data adjustment procedures. The
data were exported to R[117] using the Bioconductor package lumi[118], where one outlying
liver array and five hippocampus arrays, as visualised in cluster dendrograms, were removed
from further analysis. Subsequently, lumi was employed to subtract background noise from the
arrays, and apply variance stabilising transformation and robust spline normalisation. Only
probes identified by Barbosa-Morais and co-workers[119] as “good” or “perfect” matches to the
genome, and only probes expressed in at least 5% of animals at a 0.95 detection level (as per
GenomeStudio), were retained, leaving 13718 liver and 15737 hippocampus probes.
Annotations aligning the probes with physical locations of the mouse genome were also
obtained from Barbosa-Morais and colleagues. ComBat was used to remove batch effects[120].
Mapping human genes to mouse genes: We first mapped human gene names to Ensembl gene
IDs using the DAVID gene ID conversion tool[116] (http://david.abcc.ncifcrf.gov/). We manually
replaced three genes which have alternate names (ATAD4 with PRR15L, FBXL10 with KDM2B,
and MIRHG1 with MIR17HG) and could not convert NIACR2. Then we looked for mouse
orthologs using the BioMart webservice (http://www.biomart.org/), keeping only genes with one
to one orthologs. We found mouse orthologs for 134 out of 156 human genes at 18 loci.

Testing for Sex-Specific Gene Expression: All probes corresponding to the list of mouse genes
of interest were fit into a linear model.

Mouse experiment at the Houston center:

Animals: The study was performed using 21 male, 21 female C57/BL6 mice fed from day 21
(after weaning) or 12 weeks on an HF diet (4.7 Kcal g—1 and 45% calories from fat; Research
Diets, Inc., New Brunswick, NJ, US. Mice were single caged and maintained at a controlled
temperature (22 °C) and a 12 h light—dark cycle (light on from 0800 to 2000 h). Daily food intake
and body weight were monitored. All procedures were approved by the animal care and use
committee of the University of Cincinnati.

Tissue collection: After 12 weeks of exposure to the diet, animals were killed during the first 2 h
of the beginning of the light cycle after a 12-h fast. All females were killed in the proestrus phase
of their estrus cycle. Two different WAT depots, FGWAT and IWATF, were rapidly dissected
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and the orientation of the fat pad was maintained. Half of the fat pad was rapidly frozen for
microarray analysis, and the other half of the fat pad was rapidly frozen for validation of target
genes. Samples were rapidly frozen in liquid nitrogen and stored at 70 °C for RNA analysis.
RNA isolation: GWAT/IWAT were homogenized in 800 ml Trizol reagent (Invitrogen, Carlsbad,
CA, USA), and total cellular RNA was isolated according to the specifications of the
manufacturer. Total RNA was further purified using the RNeasy Mini kit (Qiagen, Valencia, CA,
USA). The quality and concentration of the RNA was determined by measuring the absorbance
at 260 and 280 nm, and RNA integrity was confirmed by bioanalysis (Agilent 2100 Bioanalyzer;
Agilent Technologies,Santa Clara, CA, USA).

Microarray analysis: For the microarray analysis, seven independent pooled samples were
analyzed from GWAT and IWAT fat pads. Each sample comprised a pool of tissue from three
animals (for pooled samples, reverse transcription was performed on each sample individually
and equal amounts of complementary DNA (cDNA) were pooled); thus, samples were obtained
from a total of 21 mice. GWAT/IWAT adipose RNA pools were generated from the following
groups of mice: males and females. To identify genes that were differentially expressed in the
two WAT fat pads, comparisons were made between normalized signal intensity from the
control group (males) and experimental groups (female) from each experiment. Each total RNA
sample was processed according to protocols recommended by the manufacturers. In brief,
total RNA is reverse-transcribed with an oligo-dT primer and double-stranded cDNA is
generated. The cDNA serves as a template for the in vitro transcription reaction that produces
amplified amounts of biotin-labeled antisense mRNA. This biotinylated RNA is referred to as
labeled cRNA. After fragmentation, the cRNA is hybridized onto oligonucleotide microarrays
(Mouse Genome 430 2.0; 40 000 mouse probe sets). A GeneChip Operating System absolute
expression analysis was performed for each Gene-Chip genome array hybridization. After the
initial analysis, the absolute analysis was re-run using global scaling to an average target
intensity of 350. The scaling allows for the direct comparison of hybridization values from the
different targets analyzed in this project (and with any additional GeneChip sample assays using

the same array type).
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