De genetische achtergrond van individuele verschillen in rookgedrag

Inhoud

1. Inleiding E 3300-3

2. Hoe groot zijn de individuele verschillen in rook-	
gedrag?	E 3300-4

3. Erfelijkheid van roken en tweelingenonderzoe-	
ken	E 3300-9

3.1 Methodologie: het tweelingmodel E 3300-9
3.2 Genetische invloed op roken E 3300-10
3.3 Beginnen met roken (initiatie) E 3300-11
$\begin{array}{ll}\text { 3.4 Het aantal gerookte sigaretten en stoppen met } \\ \text { roken } & \text { E 3300-12 }\end{array}$
4. Welke genen zijn mogelijk betrokken bij nicotine-
afhankelijkheid?
$\begin{array}{lll}\text { 4.1 Lokalisatie van gebieden in het genoom die be- } \\ \text { trokken zijn bij nicotineafhankelijkheid } & \text { E 3300-15 }\end{array}$
$\begin{array}{lll}\text { 4.2 Kandidaatgenen voor variatie in rookgedrag en } & \\ \text { nicotineafhankelijkheid } & \text { E 3300-15 }\end{array}$
4.2.1 Een gen betrokken bij nicotinemetabolisme E 3300-15
$\begin{array}{lll}\text { 4.2.2 } & \text { Genen betrokken bij het dopaminebeloningssys- } \\ \text { teem } & \text { E 3300-16 }\end{array}$
4.2.3 Genen voor nicotine-acetylcholinereceptoren E 3300-17
5. Nabeschouwing E 3300-18 Literatuur E 3300-20

E 3300-2 DE GENETISCHE ACHTERGROND VAN VERSCHILLEN IN ROOKGEDRAG

De genetische achtergrond van individuelle verschillen in rookgedrag

J.M. VINK', D.I. BOOMSMA ${ }^{2}$, M. WILLEMSEN ${ }^{3}$

1. Inleiding

Sommige individuen zijn gevoeliger voor de verslavende werking van nicotine dan anderen. Hoe ontstaan dergelijke verschillen in gevoeligheid? Verklaringen op verschillende niveaus zijn mogelijk en kunnen worden onderzocht: opvoeding door ouders, invloed van vrienden en erfelijke aanleg. In dit hoofdstuk wordt onderzocht in welke mate genetische factoren een rol spelen bij individuele verschillen in rookgedrag en afhankelijkheid van nicotine.
In het eerste deel worden onderzoeken beschreven waarbij wordt gekeken of familiale invloeden de individuele verschillen in rookgedrag kunnen verklaren. Zo is bijvoorbeeld onderzocht of jongeren met rokende familieleden zelf ook meer risico lopen om te gaan roken. Vooral rokende broers en zussen blijken het risico om zelf te gaan roken te verhogen. Met behulp van tweelingenonderzoek kan onderzocht worden of de invloed van familie veroorzaakt wordt door gedeelde omgevingsfactoren (broers en zussen krijgen dezelfde opvoeding, gaan naar dezelfde school, wonen in dezelfde buurt, enz.) of door genetische factoren. Uit deze tweelingenonderzoeken blijkt dat genetische factoren van invloed zijn op verschillende aspecten van rookgedrag zoals: beginnen met

1 Drs. Jacqueline M. Vink is onderzoeker in opleiding (OiO) bij de afdeling Biologische Psychologie van de Vrije Universiteit Amsterdam. Het promotieonderzoek gaat over de genetische achtergrond van individuele verschillen in initiatie en handhaving van het rookgedrag.

Prof. Dr. Dorret I. Boomsma is hoogleraar bij de afdeling Biologische Psychologie van de Vrije Universiteit Amsterdam.

3 Dr. Marc Willemsen in onderzoeker bij de Stichting Volksgezondheid en Roken (STIVORO) in Den Haag.
roken, hoeveelheid sigaretten en wel of niet kunnen stoppen met roken. Indien blijkt dat genetische factoren een rol spelen bij éen of meer aspecten van rookgedrag kan vervolgens worden gezocht naar genen die mogelijk betrokken zijn bij nicotineverslaving.

2. Hoe groot zijn de individuele verschillen in rookgedrag?

In Nederland rookt ongeveer 34% van de bevolking van 15 jaar en ouder (oktober, 2000). Van de bevolking ouder dan 15 jaar heeft 16% gerookt. Van de jongeren onder de 15 jaar rookt gemiddeld 10% en van de jongeren tussen de 15 en de 19 jaar rookt gemiddeld 46% (Stivoro, 2000). Uit onderzoek van het Trimbos-instituut is gebleken dat 55% van de middelbare scholieren wel eens heeft gerookt en dat ruim een kwart van deze scholieren nog steeds rookt; 14% elke dag en 13% af en toe (Zwart de, e.a., 1999).
Het Nederlands Tweelingen Register (NTR) is in 1991 gestart met een longitudinaal onderzoek naar gezondheid en leefgewoonten. Hierbij wordt om de 2 jaar informatie verzameld over onder andere: gezondheid, persoonlijkheid, alcoholgebruik en rookgedrag. Er zijn 5 metingen geweest, in: 1991, 1993, 1995, 1997 en 2000. Op sommige 'tijdstippen' werden tweelingen en hun ouders gevraagd mee te werken, op andere tijdstippen werden ook broers en zussen (en in 2000 partners van tweelingen) benaderd om mee te werken aan het onderzoek. Hierdoor is de verdeling van de leeftijdsgroepen per tijdstip verschillend. Verder doen er op elk 'tijdstip' zowel families mee die al eerder hebben deelgenomen als families die nog niet eerder hebben meegedaan.

Figuur 1 Rokers (vrouwen).

Figuur 2 Rokers (mannen).

Figuur 3 Ooit gerookt (vrouwen).

Figuur 4 Ooit gerookt (mannen).

Figuur $1 \mathrm{t} / \mathrm{m} 4$ Op elk tijdstip (1993, 1995, 1997 en 2000) zijn leeftijdsgroepen gemaakt. In de figuren 1 en 2 zijn de percentages weergegeven van mensen die zeggen ooit gerookt te hebben. Voor elk 'tijdstip' worden de percentages weergegeven per leeftijdsgroep. Bij de eerste meting in 1991 deden 1967 tweelingparen mee samen met hun ouders (1.947 vaders en 1.683 moeders). Bij de tweede meting, in 1993, deden 3.884
tweelingen (individuen, gemiddelde leeftijd 17 jaar), 1785 vaders en 1923 moeders (gemiddelde leeftijd 46 resp. 48 mee). Een deel van de families had ook in 1991 meegedaan, de rest van de groep bestond uit 'nieuwe' families. In 1995 deden, behalve 3.408 tweelingen (gemiddelde leeftijd 19 jaar) en 3.267 ouders, ook 1.500 broers en zussen mee (gemiddelde leeftijd 22 jaar, SD 5). In 1997 werden alleen tweelingen ($\mathrm{n}=3.141$) en broers/zussen ($n=1.444$, gemiddelde leeftijd 27) benaderd. Bij de vijfde meting (in 2000) hebben niet alleen tweelingen ($n=3.834$, gemiddelde leeftijd 29) en broers/ zussen ($n=1.182$, gemiddelde leeftijd 31) de vragenlijst ingevuld maar ook partners van de tweelingen ($n=560$, gemiddelde leeftijd 28).

De figuren 1 en 2 geven een overzicht van de huidige rookstatus (wel /niet roker) van de deelnemers. In sommige leeftijdsgroepen is het percentage rokers iets afgenomen in de loop der jaren. In 1993 rookte bijvoorbeeld 35% van de 19-20-jarige mannen, in 2000 is dat percentage gedaald naar 24%. De percentages zijn niet weergegeven wanneer een groep uit minder dan 100 mensen bestond.
In figuur 3 en 4 wordt weergegeven hoeveel procent van de deelnemers zegt ooit gerookt te hebben. De percentages voor mannen zijn hoger dan die voor vrouwen. Opvallend is dat er in de hogere leeftijdsgroepen nog een flinke toename is in het percentage mensen dat ooit heeft gerookt. Uit de data blijkt dat er vooral in de hogere leeftijdsgroepen verschillen zijn tussen mannen en vrouwen. Hierbij speelt het culturele klimaat een grote rol want in de jaren vijftig was het voor mannen heel normaal om te roken, maar voor vrouwen niet. Toch zijn er in alle leeftijdsgroepen individuele verschillen in rookstatus. Waardoor worden deze individuele verschillen veroorzaakt?
Een Engelse onderzoekgroep analyseerde de risico's om met roken te beginnen bij 12-jarige kinderen. Uit dit onderzoek bleek dat vooral een rokende broer of zus een groot risico vormt om met roken te beginnen; het relatieve risico (RR) is voor jongens 2,06 en voor meisjes 1,75 . Het hebben van rokende ouders was een minder groot risico ($\mathrm{RR}=1,13$ voor jongens en 1,31 voor meisjes). Hierbij moet opgemerkt worden dat vooral een rokende moeder het risico om zelf te gaan roken verhoogde. (Swan \& Murray, 1990). Deze resultaten werden bevestigd door Osler en collega's die bij Deense jongeren een odds ratio van 1,95 vonden bij een rokende moeder (Osler, e.a., 1995). Verder rapporteerden Patton e.a. dat Australische kinderen met dagelijks rokende ouders een verhoogd risico hebben om te gaan roken (hazard ratio $=1,3 \mathrm{bij} 14-15$-jarige kinderen), (Patton, e.a., 1998).

Nederlandse jongeren (van $14-16$ jaar) met één of meerdere rokende broers/zussen hebben een ruim 4 keer zo grote kans om zelf roker te zijn vergeleken met jongeren die niet-rokende broers en zussen hebben, blijkt uit de data van het Nederlands Tweelingen Register. Het relatieve risico (RR) is berekend en weergegeven voor de oudste (eerstgeborene) van de tweeling (tabel 1), de relatieve risico's voor de jongste van de tweeling zijn hetzelfde en om die reden niet weergegeven. Ookjongeren van 17 jaar of ouder hebben meer kans om zelf te roken als ze een rokende broer of zus hebben (RR 1,53 voor jongens en RR 2,03 voor meisjes).

Tabel 1 Relatieve risico om roker te zijn en relatieve risico beginnen met roken. Data komen uit longitudinaal onderzoek van het NTR; deze data zijn verzameld tijdens de derde meting (1995). In de leeftijdsgroep $14-16$ jaar deden 180 jongens en 212 meisjes mee, samen met hun ouders (364 vaders en 387 moeders) en hun broers en zussen ($n=$ 319, gemiddelde leeftijd 18, 1 jaar). Verder deden 587 jongens en 719 meisjes van 17 jaar of ouder mee aan het onderzoek, samen met hun ouders (1.189 vaders en 1.277 moeders) en hun broers en zussen ($\mathrm{n}=1.145$ gemiddelde leeftijd 22,6).
relatieve risico om roker te zijn

leeftijd 14-16 jaar	jongens gemiddelde leefiijd 15,2 (SD 0,75)	meisjes gemiddelde leeftijd 15,2 $(S D 0,75)$
	RR 95\% BI	RR 95\% BI
```1 of meer rokende broer(s)/zus(sen) rokende vader rokende moeder```	$\begin{array}{ll} 4,26 & 1,71-10,58 \\ 1,78 & 0,77-4,11 \\ 2,28 & 1,74-2,99 \end{array}$	$\begin{array}{ll} 4,76 & 2,02-11,24 \\ 1,52 & 0,67-3,41 \\ 2,92 & 1,38-6,14 \end{array}$
leeftijd 17 jaar en ouder	jongens   gemiddelde leeftijd 20,5   (SD 2,55)	meisjes   gemiddelde leeftijd 20,6   (SD 2,45)
	RR 95\% BI	RR 95\% BI
1 of meer rokende broer(s)/zus(sen)	1,53 1,16-2,01	2,03 1,46-2,82
rokende vader	1,51 1,16-1,97	1,49 1,10-2,01
rokende moeder	1,25 0,96-1,63	1,53 1,15-2,04

relatieve risico om met roken te beginnen (ooit gerookt)

leeftijd 14-16 jaar	jongens   gemiddelde leeftijd 15,2 $(S D 0,75)$	meisjes   gemiddelde leeftijd 15,2   (SD 0,75)
	RR 95\% BI	RR 95\% BI
1 of meer rokende broer(s)/zus(sen) rokende vader rokende moeder	$\begin{array}{ll} 1,45 & 0,85-2,46 \\ 1,03 & 0,61-1,75 \\ 1,07 & 0,64-1,78 \end{array}$	$\begin{array}{ll} 2,31 & 1,30-4,11 \\ 1,75 & 1,04-2,94 \\ 1,73 & 1,07-2,80 \end{array}$
leeftijd 17 en ouder	jongens   gemiddelde leeftijd 20,5   (SD 2,55)	meisjes   gemiddelde leeflijd 20,6   (SD 2,45)
	RR 95\% BI	RR 95\% BI
1 of meer rokende broer(s)/zus(sen)	1,51 1,24-1,84	1,64 1,32-2,04
rokende vader	1,37 1,13-1,65	1,21 0,99-1,48
rokende moeder	1,14 0,95-1,37	1,30 1,07-1,57

Jongeren met een rokende vader hebben in beide leeftijdsgroepen een ongeveer 1,5 keer zo grote kans om zelf roker te zijn. Bij 14-16-jarigen vormt een rokende moeder een groter risico om zelf te gaan roken dan een rokende vader. Beginnen met roken wordt bij 14-16-jarige jongens niet-significant beïnvloed door rokende broers, zussen of ouders, bij meisjes van dezelfde leeftijd echter wel.
Net als de buitenlandse onderzoeken laat het Nederlandse familieonderzoek zien dat er een verband is tussen rokende familieleden en de kans om zelf te gaan roken. Echter, de meeste gezins- en familieleden delen zowel hun omgeving als (een deel) van hun erfelijke aanleg. Om toch te kunnen onderzoeken of een bepaalde eigenschap wordt beïnvloed door genetische factoren of gedeelde omgevingsfactoren wordt gebruikgemaakt van het tweelingdesign.

## 3. Erfelijkheid van roken en tweelingenonderzoeken

### 3.1 Methodologie: het tweelingmodel

De individuele verschillen tussen mensen kunnen mede veroorzaakt worden door genetische verschillen. Hoeveel van de variatie, in bijvoorbeeld rookgedrag, wordt verklaard door erfelijke factoren kan geschat worden met tweelingenonderzoek. Eeneiige, of monozygote (MZ) tweelingen zijn genetisch identiek. Ze ontstaan als een bevruchte eicel zich in tweeën splitst. Dit leidt tot twee (of in zeldzame gevallen) meerdere individuen met hetzelfde genotype. Twee-eiige, of dizygote (DZ) tweelingen ontstaan als meerdere eicellen gelijktijdig worden bevrucht. DZ-tweelingen zijn genetisch net zo verwant als 'gewone' broers en zusters en delen gemiddeld $50 \%$ van hun genetisch materiaal. Een grotere overeenkomst bij MZdan DZ-tweelingen voor een bepaalde eigenschap is een eerste indicatie dat individuele verschillen in dat gedrag mede worden bepaald door erfelijke aanleg (heritability, $\mathrm{h}^{2}$ ). De overeenkomsten tussen de tweelingen worden vaak uitgedrukt in een correlatie. Echter, bij dichotome eigenschappen zoals wel of niet roken, wordt de gelijkenis vaak uitgedrukt in de concordantie: proportie tweelingparen die allebei roken.
Tweelingenonderzoeken bieden de mogelijkheid om genetische invloeden te scheiden van omgevingsinvloeden. De invloeden uit de omgeving worden onderverdeeld in omgevingsinvloeden die gedeeld worden door kinderen uit eenzelfde gezin (gedeelde omgevingsinvloeden, $\mathrm{c}^{2}$ ) en omgevingsinvloeden die uniek zijn voor het individu ( $\mathrm{e}^{2}$ ). Met behulp van de verschillen tussen MZ- en DZ-tweelingen kan de erfelijkheid worden geschat (heritability, $\mathrm{h}^{2}$ ). De 'heritability' is dat deel van de variantie dat verklaard wordt door genetische variantie (zie fig. 5).


Figuur 5 Het tweelingmodel $\mathrm{E}=$ unieke omgeving; $\mathrm{H}=$ genetische invloed; $\mathrm{C}=$ gedeelde omgeving; e, $h, c$ geven de relatieve invloed weer van $\mathrm{E}, \mathrm{H}$ en C op de fenotypen van tweeling 1 en tweeling 2.

Als de bestudeerde tweelingen (zowel MZ als DZ) niet op elkaar lijken, speelt bij de eigenschap noch erfelijke aanleg noch hun gemeenschappelijke omgeving een rol. De variatie wordt dan bepaald door unieke omgevingsinvloeden zoals vrienden, unieke aspecten in de relatie met de ouders, vrije tijdsbesteding, enzovoort. Als MZ- en DZ-tweelingen evenveel op elkaar lijken, wordt de bestudeerde eigenschap waarschijnlijk beïnvloed door de gedeelde omgeving (zoals het gezin, de buurt, de school, enz.) en niet door hun genetische verwantschap. Wanneer de gelijkenis tussen MZ-tweelingen ongeveer 2 keer zo groot is als tussen DZ-tweelingen dan is dat een sterke aanwijzingen dat genetische factoren van invloed zijn, en indien de gelijkenis minder dan 2 keer zo groot is, duidt dat op genetische factoren én gemeenschappelijke omgevingsinvloeden (Plomin, e.a., 1980).

### 3.2 Genetische invloed op roken

Uit veel onderzoeken blijkt dat individuele verschillen in rookgedrag (zoals wel/niet roken of variatie in het aantal sigaretten dat gerookt wordt) voor een deel bepaald worden door genetische verschillen. Deze invloed kan een rol spelen bij wel of niet beginnen met roken, het aantal sigaretten dat iemand rookt en of iemand makkelijk met roken kan stoppen.
Kendler e.a. (2000) deden onderzoek naar regelmatig tabaksgebruik bij tweelingparen geboren tussen 1890 en 1958. De steekproef bestond uit apart opgevoede tweelingen en deze groep werd gematched met samen opgegroeide tweelingen op een aantal variabelen zoals: geslacht, leeftijd, geboorteland en rookstatus. Uit de analyse bleek dat bij mannen zowel genetische als gedeelde omgevingsfactoren van invloed zijn op de individuele variatie in tabaksgebruik (resp. $61 \%$ voor genetische factoren en $20 \%$ voor gedeelde omgeving). Bij vrouwen geboren vóór 1925 was het aantal rokers zeer laag. In dit geboortecohort werden alleen maar omgevingsinvloeden gevonden. Dit zou verklaard kunnen worden door het feit dat het vroeger niet gebruikelijk was voor vrouwen om te roken. Pas toen dat meer geaccepteerd werd, kon de erfelijke aanleg tot uiting komen en gingen sommige vrouwen (mede door hun erfelijke aanleg) wel roken en anderen niet. In latere cohorten nam het aantal rokende vrouwen toe, en voor vrouwen geboren na 1940 was de genetische invloed op de variatie in tabaksgebruik hetzelfde als bij de mannen (63\%) (Kendler, e.a., 2000). Andere tweelingenonderzoeken vinden
vergelijkbare percentages (Heath, \& Madden, 1995; Hughes, 1986; Pomerleau, 1995; Swan, 1999). Bij een onderzoek met Zweedse en Finse tweelingen werden significante genetische en familie-effecten gevonden voor het roken van sigaretten, maar deze effecten waren onafhankelijk van het land (Finland of Zweden) en sekse (Kaprio, e.a., 1982). Het feit of iemand wel of niet rookt is dus voor een belangrijk deel erfelijk. Rookgedrag is echter zeer complex en kan verdeeld worden in verschillende fasen: beginnen met roken, de hoeveelheid die men rookt en of men op een gegeven moment succesvol kan stoppen met roken. Deze fasen worden hieronder apart besproken.

### 3.3. Beginnen met roken (initiatie)

'Beginnen met roken' wordt in tweelingenonderzoeken meestal gemeten door te vragen of men ooit gerookt heeft. Uit verschillende tweelingenonderzoeken blijkt dat beginnen met roken sterker bepaald is door omgevingsfactoren dan door erfelijke factoren, hoewel die duidelijk wel een belangrijke rol spelen. Onderzoek van het Nederlands Tweelingen Register toonde aan dat 31-39\% van de variatie in wel of niet beginnen met roken wordt bepaald door genetische factoren terwijl $54-59 \%$ van de variatie verklaard kan worden door gedeelde omgevingsfactoren (Boomsma, e.a., 1994; Koopmans, e.a., 1999).
In 1993 analyseerde Heath en collega's de data van drie grote tweelingenonderzoeken, en zij vonden significante verschillen in genetische en omgevingsfactoren tussen mannen en vrouwen, en tussen Australische en Amerikaanse tweelingen. In de Amerikaanse onderzoeksgroepen was de genetische invloed op het risico om een roker te worden $60 \%$ bij mannen en $51 \%$ bij vrouwen. De gedeelde omgevingsinvloed voor beginnen met roken was $23 \%$ bij mannen en $28 \%$ bij vrouwen. Bij de Australische onderzoeksgroep was de genetische invloed op beginnen met roken lager bij mannen ( $33 \%$ ) en hoger bij vrouwen ( $67 \%$ ). De invloed van een gedeelde omgeving was $39 \%$ bij mannen en $15 \%$ bij vrouwen (Heath, e.a., 1993). Een verschil tussen culturen werd niet gevonden in een analyse van Australische, Finse en Zweedse tweelingen naar de genetische invloed op het risico om met roken te beginnen (Madden, e.a., 1999).

Heath en collega's analyseerden in 1999 de data van 3.810 volwassen Australische tweelingparen. Aan de tweelingen werd gevraagd of ze ooit een roker waren geweest en als ze deze vraag met 'ja' beantwoordden,
werd ook gevraagd op welke leeftijd ze waren begonnen met roken. De tweelingen werden opgesplitst in een jong cohort ( $\leqq 30$ jaar) en een ouder cohort ( $>30$ jaar). Bij de vrouwelijke tweelingen en de jonge mannelijke tweelingen werd beginnen met roken vooral beïnvloed door genetische factoren (48-74\%), terwijl bij de oudere mannelijke tweelingen vooral gedeelde omgevingsinvloeden een rol speelden (53\%) (Heath, e.a., 1999). Heath en Madden beschreven een heranalyse van 7 tweelingenonderzoeken en vonden dat gemiddeld $57 \%$ van de variatie in beginnen met roken wordt veroorzaakt door genetische invloed en $17 \%$ door een gedeelde omgevingsinvloed (Heath, \& Madden, 1995).
Een aantal onderzoeken beschrijft genetische verschillen tussen mannen en vrouwen voor beginnen met roken (Heath, e.a., 1999). Han (1999) rapporteert dat bij mannen 59\% van de variatie in beginnen met roken verklaard kan worden door genetische factoren en bij vrouwen $11 \%$. Ondanks dit vrij grote verschil tussen mannen en vrouwen wordt erbij vermeld dat het sekseverschil niet statistisch significant is (Han, e.a., 1999). Bij Nederlandse tweelingen worden ook geen sekseverschillen gevonden voor de invloed van genetische en omgevingsfactoren op de individuele variatie in beginnen met roken (Boomsma, e.a., 1994; Koopmans, e.a., 1999).
De verschillen (in 'heritability') lijken onder andere afhankelijk van het moment waarop de proefpersonen worden onderzocht; in sommige onderzoeken wordt aan oudere mensen gevraagd wanneer ze voor het eerst met sigaretten hebben geëxperimenteerd en in andere onderzoeken wordt aan jongeren gevraagd of ze ooit hebben gerookt. In het eerste geval lijkt erfelijkheid voor beginnen met roken hoger en de invloed van gedeelde omgevingsfactoren lager.

### 3.4. Het aantal gerookte sigaretten en stoppen met roken

Er zijn rokers die in staat zijn om dagelijks in beperkte mate te roken zonder verslaafd te raken. Deze mensen roken vaak niet meer dan 5 sigaretten per dag. In de literatuur worden deze rokers aangeduid als 'chipper'. Dit betreft ongeveer $10 \%$ van alle volwassen rokers (Schiffman, 1995). Ook bij de groep mensen die meer dan 5 sigaretten per dag rookt, is er grote individuele variatie in het aantal gerookte sigaretten. De hoeveelheid dagelijks gerookte sigaretten geeft een indicatie van de mate van nicotineverslaving. Een andere manier om nicotineverslaving te 'meten' is met behulp van de Fagerström Tolerance Questionnaire
(FTQ) of de vernieuwde versie: de Fagerström Test for Nicotine Dependence (FTND). De scores van beide lijsten zijn gecorreleerd met biochemische metingen zoals plasmanicotine, cotinineniveaus in plasma en urine en uitgeademde CO (Heatherton, e.a., 1991). Een recent onderzoek onder vrouwelijke tweelingparen vond dat erfelijke factoren $72 \%$ van de variatie in scores op de FTQ-test bepalen (Kendler \& Prescott, 1999).

Heath en Madden (1995) rapporteerden dat genetische factoren zowel de fenotypes beginnen met roken als regelmatig roken beïnvloeden maar dat gedeelde omgevingsfactoren alleen van invloed zijn op beginnen met roken (Heath \& Madden, 1995). In een Nederlands onderzoek is onderzocht of beginnen met roken en hoeveelheid gerookte sigaretten beïnvloed worden door dezelfde onderliggende factoren of door verschillende. De resultaten hiervan wezen uit dat er verschillende gecorreleerde dimensies zijn die beginnen met roken en hoeveelheid gerookte sigaretten beïnvloeden. Er werden geen verschillen gevonden tussen mannen en vrouwen. De variatie in beginnen met roken werd beïnvloed door zowel genetische (39\%) als gedeelde omgevingsfactoren (54\%). Wanneer eenmaal met roken is begonnen, wordt de variatie in de hoeveelheid gerookte sigaretten grotendeels beïnvloed door genetische factoren ( $86 \%$ ), (Koopmans, e.a., 1999). Deze resultaten zijn in overeenstemming met de resultaten van Kendler e.a. (1999). Zij onderzochten of het zowel bij beginnen met roken als bij nicotineafhankelijkheid om dezelfde factoren gaat. Uit de analyse bleek dat er een redelijk hoge correlatie bestaat tussen de genetische factoren die van invloed zijn op beginnen met roken en de genetische factoren die van invloed zijn op nicotineafhankelijkheid. Een andere set factoren (waarschijnlijk voor een deel genetische) beinvloed alleen nicotineafhankelijkheid (Kendler, e.a., 1999).

Verschillende onderzoeken rapporteren dat de mogelijkheid om wel of niet met roken te stoppen voor een groot deel erfelijk bepaald is: 53-70\% van de variatie wordt verklaard door genetische factoren. Heath en Madden deden een heranalyse op 3 tweelingenonderzoeken met data over stoppen met roken, hieruit bleek dat gemiddeld $69 \%$ van de variatie in stoppen met roken beïnvloed wordt door genetische factoren.(Bergen \& Caporaso, 1999; Heath \& Madden, 1995). Ook een groot tweelingenonderzoek bij Viëtnamveteranen wees uit dat erfelijke factoren een grote rol spelen bij stoppen met roken ('heritability' = 70\%) (True, e.a., 1997).

## 4. Welke genen zijn mogelijk betrokken bij nicotineafhankelijkheid?

Met behulp van tweelingenonderzoek is het mogelijk om aan te tonen dat diverse aspecten van rookgedrag worden beïnvloed door genetische factoren. De volgende vraag is dan welke genetische factoren betrokken zijn bij individuele verschillen in rookgedrag.
De genetische informatie ligt opgeslagen in het DNA. Een DNA-molecuul bestaat uit 2 strengen in de vorm van een dubbele helix. Elke streng is opgebouwd uit fosfaten en suikers. De strengen worden bij elkaar gehouden door basenparen, er zijn 4 basen: Guanine, Adenine, Thymine en Cytosine. De volgorde van deze basen bepaalt de genetische code. Een belangrijke bron voor het ontstaan van genetische variatie is mutatie. Een mutatie is een verandering in de volgorde van het DNA. Een mutatie kan bijvoorbeeld resulteren in de verandering van éen base maar ook in de verdwijning of toevoeging van een aantal basen. Niet alle mutaties zullen een merkbare invloed hebben. Verschillende variaties van een bepaald stuk DNA worden 'polymorfismen' genoemd.
Recente ontwikkelingen in de moleculaire genetica, waardoor het menselijke genoom bijna volledig in kaart is gebracht, zorgen ervoor dat er een eerste stap kan worden gezet naar de identificatie en lokalisatie van genen die betrokken zijn bij nicotineafhankelijkheid.
Ten eerste kan het totale genoom onderzochtworden (zie par. 4.1), want verspreid over het genoom liggen vele DNA-markers. Dit zijn stukjes niet-coderend polymorf DNA waarvoor kan worden nagegaan of ze vaak samen met een bepaalde eigenschap (bijv. nicotineafhankelijkheid) overerven. Als bij broers en zusters het delen van dezelfde DNA-markers gepaard gaat met een grote overeenkomst in nicotineafhankelijkheid dan is het waarschijnlijk dat de DNA-marker in de buurt ligt van een gen dat betrokken is bij afhankelijkheid van nicotine. Na lokalisatie van bepaalde gebieden op het DNA is de volgende stap identificatie.
Een andere benadering is die met behulp van kandidaatgenen (zie par. 4.2). Van verschillende genen zijn de functies al bekend en bestaan er vermoedens dat ze betrokken zijn bij nicotineafhankelijkheid. Van sommige genen zijn functionele varianten bekend, bij andere kandidaatgenen worden polymorfismen (kleine variaties in de genetische code) waarvan de functie niet bekend is als DNA-markers gebruikt. Als wordt vermoedt dat een gen betrokken is bij bijvoorbeeld nicotineafhankelijkheid en als er verschillende polymorfismen van een kandidaatgen bekend zijn, kan binnen families worden gekeken of ouders bepaalde
polymorfismen vaker doorgeven aan de kinderen mèt een bepaalde eigenschap dan aan kinderen zònder die eigenschap. Mogelijke kandidaatgenen voor roken zijn onder andere genen die betrokken zijn bij nicotinemetabolisme of het dopaminesysteem.
We veronderstellen dat continue verdeelde eigenschappen, zoals nicotineafhankelijkheid, door meerdere genen beïnvloed worden - ze zijn polygenetisch - waarbij elk van die genen op zich maar een gering effect zal hebben. De verschillende genen zullen in interactie met omgevingsfactoren iemands kans om te roken beïnvloeden. Bij de verschillende aspecten van roken zijn ook nog eens verschillende genen betrokken zijn zoals gevonden is door Koopmans (Koopmans, e.a., 1999) en Kendler (Kendler, e.a., 1999).

### 4.1 Lokalisatie van gebieden in het genoom die betrokken zijn bij nicotineafhankelijkheid

Straub en collega's hebben de eerste genoomscan gedaan waarbij werd gezocht naar gebieden in het genoom die betrokken zijn bij nicotineverslaving. Met behulp van de Fagerström-vragenlijst (FTQ) werd nicotineafhankelijkheid gemeten bij 2 verschillende samples: families uit Nieuw Zeeland (130 families, 343 individuen) en families uit Virginia ( 91 families, 264 individuen). De genoomscan leverde een aantal gebieden op waar verder onderzoek naar gedaan moet worden, namelijk regio's op chromosoom: 2, 4, 10, 16, 17 en 18 (Straub, e.a., 1999). De resultaten waren overigens niet significant volgens de standaardcriteria, maar de gevonden regio's waren positiever dan verwacht zou worden wanneer er géén kandidaat genen in dit gebied zouden liggen. Met dit onderzoek zijn alleen regio's gelokaliseerd die mogelijk betrokken zijn bij nicotineverslaving (lokalisatie). Binnen deze regio's moet vervolgens verder gezocht worden naar specifieke genen die betrokken zijn bij nicotineafhankelijkheid.

### 4.2. Kandidaatgenen voor variatie in rookgedrag en nicotineafhankelijkheid

4.2.1. Een gen betrokken bij nicotinemetabolisme

Een voorbeeld van een kandidaatgen is het Cytochrome P450 2A6-gen (CYP2A6). Het cytochrome P450 2A6 enzym katalyseert de omzetting van nicotine in cotinine. Het gen ligt op de lange arm van chromosoom

19 en er zijn verschillende variaties beschreven. De twee belangrijkste zijn een substitutie (variatie *2) en een genconversie (variatie *3). Pianezza e.a. (1998) suggereren dat individuen met minstens één van deze varianten beschermd zijn tegen tabaksverslaving. De controlegroep bestond uit individuen die wel blootgesteld zijn geweest aan tabak maar nooit afhankelijk zijn geworden. Ongeveer $20 \%$ van de individuen in deze groep bleek één of twee kopieën van de variant te hebben, in de tabaksafhankelijke groep was dit percentage 'slechts' $12 \%$ (Pianezza, e.a., 1998). Deze resultaten werden echter niet bevestigd door een recent onderzoek van London e.a. (1999) want zij vonden percentages van $24,2 \%$ in de controle groep en $22 \%$ in de groep mensen die minstens 100 sigaretten hadden gerookt (London, e.a., 1999). Zolang de resultaten van Pianezza niet bevestigd worden door andere onderzoeken is het onzeker of een mutatie van het CYP2A6-gen daadwerkelijk beschermt tegen nicotineverslaving (Oscarson, 2001; Straub, e.a., 1999).

### 4.2.2. Genen betrokken bij het dopaminebeloningssysteem

De effecten van verslavende stoffen worden, in ieder geval voor een deel, gemedieerd door neurotransmissie in het dopaminebeloningssysteem in de hersenen (dopamine reward pathway). Nicotine stimuleert, na binding op receptoren in het mesalymbisch gebied, de afgifte van dopamine. Een toename van dopamine wordt als belonend ervaren. Onderzoek heeft zich vooral gericht op variaties in het D2 dopaminereceptorgen (DRD2) en variaties in het dopaminetransporter-gen (SLC6A3). Genetische variatie in deze genen beïnvloeden mogelijk de concentraties van en respons op dopamine. Om dit te onderzoeken werd DNA verzameld van 289 rokers (minstens 5 sigaretten per dag, het afgelopen jaar) en van 233 nooit-rokers ( $<100$ sigaretten in hun hele leven). Het DRD2-genotype werd geclassificeerd door de aan- of afwezigheid van het A1-allel, en het SLC6A3-genotype werd geclassificeerd door de aan- of afwezigheid van allel-9. Met behulp van logistische regressie (waarbij gecorrigeerd werd voor potentiële confounders zoals ras, opleiding en leeftijd) werd een significant effect gevonden voor SLC6A3 en een significante gen-gen interactie (DRD2 x SLC6A3-interactie). Rokers hadden minder vaak het SLC6A3-9 genotype. En onder de rokers werden associaties gevonden tussen het SLC6A3-9-genotype en de leeftijd waarop men voor het eerst ging roken. Ten slotte bleek dat rokers met dit genotype significant langere stopperiodes hadden gehad (Lerman, e.a., 1999). Waarschijnlijk hebben mensen met het SLC6A3-allel-9-genotype
een verhoogde dopamine-activiteit, waardoor ze minder behoefte hebben aan externe stoffen zoals nicotine. Dit werd gedeeltelijk bevestigd door een onderzoek waaruit bleek dat dragers van het allel-9-genotype anderhalf keer zoveel kans hebben om ex-roker te zijn dan niet-dragers. In dit onderzoek werd geen significant verschil gevonden tussen rokers en niet-rokers (Sabol, e.a., 1999).
Comings en collega's toonden aan dat rokers die erin slagen om te stoppen vaker het A1-allel van het DRD2-gen hebben dan rokers die er niet in slagen om te stoppen (Comings, e.a., 1996). In een Britse populatie werd echter geen verband gevonden tussen het A1-subtype en wel of niet roken (Singleton, e.a., 1998).
De verschillende onderzoeken geven geen eenduidige aanwijzingen of het dopaminereceptor-gen daadwerkelijk betrokken is bij nicotineafhankelijkheid. Het dopaminetransportergen lijkt daarentegen wel betrokken te zijn bij de erfelijke invloed op rookgedrag maar verklaart slechts $2 \%$ van de variatie in rookgedrag (Sabol, e.a., 1999). Het gen is dus één van de vele factoren (zowel genetische als omgevingsfactoren) die rookgedrag beïnvloeden.

### 4.2.3. Genen voor nicotine-acetylcholinereceptoren

De effecten van nicotine worden veroorzaakt door activatie van centrale nicotine-cholinereceptoren (nAchRs). Er zijn verschillende subunits geïdentificeerd. Silverman e.a. onderzochten of het nicotine-cholinere-ceptor-32-subunit-gen (CHRNB2) geassocieerd is met roken. Vier polymorfismen (single nucleotide polymorphisms: SNP's) werden getest in 3 samples: niet-rokers, rokers met lage nicotineafhankelijkheid en rokers met hoge nicotineafhankelijkheid. Geen van de 4 polymorfismen was geassocieerd met 'beginnen met roken' of met 'nicotineafhankelijkheid' (Silverman, e.a., 2000). De meeste genen bestaan uit exonen (stukken die coderende informatie bevatten) en intronen (stukken die niet-coderend zijn). De polymorfismen die door Silverman en collega's zijn gevonden liggen in niet-coderende gebieden. Toen de onderzoekers op zoek gingen naar polymorfismen was nog niet de hele sequentie van het CHRNB2-gen bekend. Ze hebben dus slechts een deel van het gen kunnen onderzoeken, en het is heel goed mogelijk dat er nog polymorfismen liggen in de gebieden die niet onderzocht zijn. De polymorfismen die tot nu toe zijn gevonden, liggen in niet-coderende gebieden, mogelijk zijn er andere polymorfismen van dit gen (bijvoorbeeld polymorfismen in exonen) wel geassocieerd met roken. Onder-
zoek met knock-out muizen (muizen die het gen voor de 32 -subunit missen) heeft aangetoond dat er een significant verband is tussen deze 32 -subunit en nicotineverslaving. De muizen die het gen voor de 12 subunit missen dienen zichzelf geen nicotine meer toe, terwijl de controlegroep dat wel doet (Epping-Jordan, e.a., 1999; Picciotto, e.a., 2000).

## 5. Nabeschouwing

In dit hoofdstuk is een overzicht gegeven van de recente literatuur over genetische factoren die van invloed zijn op individuele verschillen in rookgedrag. Uit de data van het Nederlands Tweelingen Register blijkt dat rokende ouders, broers of zussen het risico om zelf roker te zijn en om met roken te beginnen verhogen. Met relatieve risico's kan geen onderscheid gemaakt worden tussen genetische factoren en omgevingsfactoren: dat het hebben van een rokende broer of zus leidt tot een groter risico om zelf ook te gaan roken kan veroorzaakt worden doordat broers en zussen voor een deel dezelfde genen hebben maar kan ook komen doordat jongeren het gedrag van (oudere) broers en zussen imiteren (omgevingsinvloeden). Echter, dat het relatieve risico om zelf roker te zijn hoger is dan het relatieve risico om met roken te beginnen lijkt in overeenstemming met de resultaten van tweelingenonderzoek: beginnen met roken wordt zowel beïnvloed door omgevingsfactoren als door genetische factoren, maar het aantal sigaretten dat iemand gemiddeld gaat roken en of iemand wel of niet stopt met roken is voor een groot deel erfelijk bepaald. Of iemand wel of niet gemakkelijk erin slaagt, is grotendeels erfelijk bepaald
De verschillende onderzoeken leveren soms verschillende resultaten op wat verklaard zou kunnen worden doordat de onderzoeken in verschillende landen en bij verschillende geboortecohorten zijn uitgevoerd. Mogelijk kan door cultuurverschillen de genetische aanleg om te gaan roken in sommige landen meer tot expressie komen dan in andere landen. Landen verschillen momenteel nog sterk in de mate waarin de overheid het roken in de samenleving reguleert, bijvoorbeeld door reclamebeperkingen, rookverboden, hoge of lage accijnzen en verkoopbeperkingen (Willemsen \& Zwart de, 1999). Heath en collega's vonden verschillen tussen Australische en Amerikaanse tweelingen, maar bediscussiëren zelf dat er pas gesproken kan worden van een cultuurverschil als deze resultaten bevestigd worden door ander onderzoek (Heath, e.a.,
1993). In een andere studie van dezelfde onderzoeksgroep werden Australische, Finse en Zweedse tweelingen vergeleken en werden geen significante cultuurverschillen gevonden (Madden, e.a., 1999). Ook sekseverschillen kunnen soms verklaard worden door culturele invloeden: een voorbeeld hiervan is het rookgedrag in de jaren vijftig in Nederland: zo'n $90 \%$ van de mannen rookte (bron: Stivoro) terwijl 'slechts' $29 \%$ van de vrouwen rookte. Dat het percentage rokende vrouwen lager is dan het percentage rokende mannen kan vooral worden verklaard door het feit dat het niet gebruikelijk was dat vrouwen rookten. Ten slotte kunnen ook een andere onderzoeksopzet en vraagstelling de soms verschillende resultaten verklaren.
Met tweelingenonderzoek is duidelijk geworden dat erfelijke aanleg van invloed is op de verschillende aspecten van rookgedrag. De volgende stap is de identificatie van genen die hiervoor verantwoordelijk zijn. In dit hoofdstuk is een aantal kandidaatgenen besproken die mogelijk betrokken zijn bij individuele verschillen in rookgedrag. Uit verschillende onderzoeken is gebleken dat er ook een verband bestaat tussen roken en bepaalde persoonlijkheidstrekken zoals 'sensation seeking' en 'neuroticisme'. Genetische invloeden op roken zouden mogelijk gemedieerd kunnen worden via de genetische invloeden op andere erfelijke eigenschappen die met roken zijn geassocieerd. Hierdoor zijn genen die betrokken zijn bij deze persoonlijkheidstrekken ook interessant om te onderzoeken in relatie tot rookgedrag (aangehaald in Hu, e.a., 2000; Koopmans, e.a., 1999).
Verschillen in genetische aanleg kunnen verschillen in reactiviteit op nicotine veroorzaken waardoor sommige mensen stoppen na het experimenteren met één sigaret en anderen zware rokers worden. Ten slotte is bekend dat nicotineverslaving vaak samen gaat met andere verslavingen. Het verband tussen roken en alcoholgebruik en tussen roken en koffiedrinken is door verschillende onderzoekers aangetoond en wordt beschreven in een review van Istvan en Matarazzo (1984). Mogelijk is er een onderliggende genetische factor die invloed heeft op de verschillende verslavingen. In een recente uitgave van Nature (over het genoom) staat een artikel over verslaving en het humane genoom project. Volgens de auteurs zal het in kaart brengen van het genoom helpen om de biologische kanten van verslaving beter te begrijpen (Nestler \& Landsman, 2001). Waarschijnlijk zullen er steeds meer genetische factoren gevonden worden die allemaal een kleine bijdrage leveren aan de individuele verschillen in rookgedrag. De ontdekking van specifieke genetische
determinanten van nicotineafhankelijkheid biedt mogelijkheden om groepen rokers te onderscheiden die een verhoogd risico lopen op nicotineverslaving. Deze inzichten zullen in de toekomst leiden tot veranderingen in de voorlichting en preventie van roken, vooral de voorlichting en hulpverlening aan mensen die willen stoppen met roken. Door subgroepen van rokers te identificeren kan per subgroep gezocht worden naar het meest effectieve hulpmiddel om met roken te stoppen.

## Literatuur

Bergen, A.W. \& Caporaso, N. (1999). Cigarette smoking. Journal of the National Cancer Insitute, 91(16), 1365-1375.

Boomsma, D.I., Koopmans, J.R., van Doornen, L.J.P. \& Orlebeke, J.F. (1994). Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents. Addiction, 89, 237-244.
Comings, D.E., Ferry, L., Bradshaw-Robinson, S., Burchette, R., Chiu, C. \& Muhleman, D. (1996). The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenelics, 6(1), 73-9.
Epping-Jordan, M.P., Picciotto, M.R., Changeux, J.P. \& Merlo Pich, E. (1999). Asessment of nicotinic acetylcholine receptor subunit contributions to nicotine self-administration in mutant mice. Psychopharmacology, 147, 25-26.
Han, C., McGue, M.K. \& Iacono, W.G. (1999). Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: univariate and multivariate behavioral genetic analyses. Addiction, 94(7), 981-993.
Heath, A.C., Cates, R., Martin, N.G., Meyer, J., Hewitt, J.K., Neale, M.C. \& Eaves, J.C. (1993). Genetic contribution to risk of smoking initiation: Comparisons across birth cohorts and across cultures. Journal of Substance Abuse, 5, 221-246.
Heath, A.C., Kirk, K.M., Meyer, J.M. \& Martin, N.G. (1999). Genetic and social determinants of initiation and age at onset of smoking in Australian twins. Behavioral Genetics, 29(6), 395407.
Heath, A.C. \& Madden, P.A.F. (1995). Genetic influence on smoking behavior (chapter three). In Turner, C.a.H., Plenum Press (Ed.), Behavior genetic approaches in behavioral medicine (pp. 45-66). New York: Plenum press.
Heatherton, T.F., Kozlowski, L.T. \& Frecker, R.C., Fagerstrom, K.O. (1991). The Fagerstrom test for nicotine dependence: a revision of the fagerstrom tolerance questionnaire. British Journal of Addiction, 86, 1119-1127.
Hu, S., Brody, C.L., Fisher, C., Gunzerath, L., Nelson, M.L., Sabol, S.Z., Sirota, L.A., Marcus, S.E., Greenberg, B.D., Murphy, D.L. \& Hamer, D.H. (2000). Interaction between the
serotonin transporter gene and neuroticism in cigarette smoking behavior. Molecular Psychialry, 5, 181-188.
Hughes, J.R. (1986). Genetics of smoking: A brief review. Behavior Therapy, 17, 335-345.
Istvan, J. \& Matarazzo, J.D. (1984). Tobacco, alcohol and caffeine use: a review of their interrelationships. Psychological Bulletin, 95, 301-326.

Kaprio, J., Hammar, N., Koskenvuo, M., Floderus-Myrhed, B., Langinvainio, H. \& Sarna, S. (1982). Cigarette smoking and alcohol use in Finland and Sweden: A cross-national twin study. Internalional Journal of Epidemiology, 11, 378-386.
Kendler, K.S., Neale, M.C., Sullivan, P.F., Gardner, C.O. \& Prescott, C.A. (1999). A popula-tion-based twin study in women of smoking initiation and nicotine dependence. Psychological Review, in press.
Kendler, K.S. \& Prescott, C.A. (1999). Caffeine intake, tolerance, and withdrawal in women: a population-based twin study. American Journal of Psychiatry, 156(2), 223-8.
Kendler, K.S., Thornton, L.M. \& Pedersen, N.L. (2000). Tobacco consumption in Swedish Twins reared apart and reared together. Arch Gen Psychiatry, 57, 886-892.
Koopmans, J.R., Slutske, W.S., Heath, A.C., Neale, M.C. \& Boomsma, D.I. (1999). The genetics of smoking initiation and quantity smoked in dutch adolescent and young adult twins. Behavior genetics, 29(6), 383-393.

Lerman, C., Caporaso, N.E., Audrain, J., Main, D., Bowman, E.D., Lockshim, B., Boyd, N.R. \& Shields, P.G. (1999). Evidence suggesting the role of specific genetic factors in cigarette smoking. Heallh psychology, $18(1), 1420$.
London, S.J., Idle, J.R., Daly, A.K. \& Coetzee, G.A. (1999). Genetic variation of CYP2A6, smoking and risk of cancer. The Lancet, 353(March 13), 898-899.
Madden, P.A.F., Heath, A.C., Pedersen, N.L., Kaprio, J., Koskenvuo, M.J. \& Martin, N.G. (1999). The genetics of smoking persistence in men and women: a multicultural study. Behavior genetics, 29(6), 423-431.

Nestler, E.J. \& Landsman, D. (2001). Learning about addiction form the genome. Nalure, 409, 834-844.

Oscarson, M. (2001). Genetic polymorphism in the cytochorme p450 2A6 (CYP2A6) gene: implications for interindividual differences in nicotine metabolism. Drug metabolism and disposition, 29(2), 91-95.
Osler, M., Clausen, J., Ibsen, K.K. \& Jensen, G. (1995). Maternal smoking during childhood and increased risk of smokinig in young adulthood. International J of Epidemiology, 24(4), 710-714.

Patton, G.C., Carlin, J.B., Coffey, C., Wolfe, R., Hibbert, M. \& Bowes, G. (1998). The course of early smoking: a population-based cohort study over three years. Addiction, 93(8), 1251-1260.

Pianezza, M.L., Sellers, E.M. \& Tyndale, R.F. (1998). Nicotine metabolism defect reduces smoking. Nature, 393, 750.

Picciotto, M.R., Caldarone, B.J., King, S.L. \& Zachariou, V. (2000). Nicotinic receptors in the brain: links betwen molecular biology and behavior. Neuropsychopharmacolog), 22, 451-465.

Plomin, R., Defries, J.C. \& McClearn, G.E. (1980). Behavioral genetics. (second edition ed.). New york: W.H. Freeman and company.

Pomerleau. (1995). Individual differences in sensitivity to nicotine: Implications for genetic research on nicotine dependence. Behavior Genetics, 25(2), 161-177.
Sabol, S.Z., Nelson, M.L.F., C., Gunzerath, L., Brody, C.L., Hu, S., Sirota, L.A., Greenberg, B.D., Lucas, F.R., Benjamin, J., Mutphy, D.L., Marcus, S.E. \& Hamer, D.H. (1999). A genetic association for cigarette smoking behavior. Health psychology, 18(1), 7-13.
Schiffman, S. (1995). Nicotine withdrawal in chippers and regular smokers: subjective and cognitive effects. Health Psychology, 14, 301-309.
Silverman, M.A., Neale, M.C., Sullivan, P.F., Harris-Kerr, Wormley, B., Sadek, H., Ma, Y., Kendler, K.S. \& Straub, R.E. (2000). Haplotypes of four novel single nucleotide polymorphisms in the nicotine acetylcholine receptor 32 -subunit (CHRNB2) gene show no association with smoking initiation or nicotine dependence. American Journal of Medical genetics (Neuropsychiatric genetics), 96, 646-653.
Singleton, A., Thomson, J., Morris, C., Court, J., Lloyd, S. \& Cholerton, S. (1998). Lack of association between the dopamine D2 receptor gene allele DRD2*A1 and cigarette smoking in a United Kingdom population. Pharmacogenetics, 8(2), 125-8.
Stivoro. (2000). Jaarverslag 1999. Den Haag: Stivoro.
Straub, R.E., Sullivan, O.F., Ma, Y., Myakishev, M.V., Harris-Ker, C., Wormley, B., Kadambi, B., Sadek, H., Silverman, M.A., Neale, M.C., Bulik, C.M., Joyce, P.R. \& Kendler, K.S. (1999). Susceptibility genes for nicotine dependence: a genome scan and follow-up in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Molecular Psychiatry, 4, 129-144.
Swan, A.V. \& Murray, M. (1990). When and why children first start up smoke. InternationalJ of Epidemiology, 19(2), 323-330.
Swan, G.E. (1999). Implications of genetic epidemiology for the prevention of tobacco. Nicotine Tobacco Research, 1 Suppl 1, S49-56.
True, W., Heath, A., Scherrer, J., Waterman, B., Goldberg, J., Lin, N., Eisen, S., Lyons, M. \& Tsuang, M. (1997). Genetic and environmental contributions to smoking. Addicilion, 92(10), 1277-1287.
Willemsen, M.C. \& Zwart de, W.M. (1999). The effectiveness of policy and health education strategies for reducing adolescent smoking: a review of the evidence. Journal of Adolescence, 22, 587-599.
Zwart de, W.M., Monshouwer, K. \& Smit, E. (1999). Jeugd en riskant gedrag. Kerngegevens 1999. Utrecht: Trimbos-instituut.

