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BACKGROUND: Individuals with exceptional longevity and their offspring have significantly larger high-density lipoprotein
concentrations (HDL-C) particle sizes due to the increased homozygosity for the I405V variant in the cholesteryl ester transfer
protein (CETP) gene. In this study, we investigate the association of CETP and HDL-C further to identify novel, independent CETP
variants associated with HDL-C in humans.
METHODS: We performed a meta-analysis of HDL-C within the CETP region using 59,432 individuals imputed with 1000 Genomes
data. We performed replication in an independent sample of 47,866 individuals and validation was done by Sanger sequencing.
RESULTS: The meta-analysis of HDL-C within the CETP region identified five independent variants, including an exonic variant and a
common intronic insertion. We replicated these 5 variants significantly in an independent sample of 47,866 individuals. Sanger
sequencing of the insertion within a single family confirmed segregation of this variant. The strongest reported association
between HDL-C and CETP variants, was rs3764261; however, after conditioning on the five novel variants we identified the support
for rs3764261 was highly reduced (βunadjusted = 3.179mg/dl (P value = 5.25 × 10− 509), βadjusted = 0.859 mg/dl (P value = 9.51 × 10− 25)),
and this finding suggests that these five novel variants may partly explain the association of CETP with HDL-C. Indeed, three of the
five novel variants (rs34065661, rs5817082, rs7499892) are independent of rs3764261.
CONCLUSIONS: The causal variants in CETP that account for the association with HDL-C remain unknown. We used studies imputed
to the 1000 Genomes reference panel for fine mapping of the CETP region. We identified and validated five variants within this
region that may partly account for the association of the known variant (rs3764261), as well as other sources of genetic contribution
to HDL-C.
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INTRODUCTION
Aging is characterized by a deterioration in the maintenance of
homeostatic processes over time, leading to functional decline
and increased risk for disease and death.1 One of the genes
linked to healthy aging and longevity is the cholesteryl ester
transfer protein (CETP) gene.1,2 Homozygosity in the 405VV
variants of CETP is associated with lower concentrations of CETP,
higher concentrations of high-density lipoprotein concentrations
(HDL-C), and greater HDL-C particle size, all associated with both
protection against cardiovascular disease3 and exceptional
longevity.4

Functional analyses in mice,5 hamsters,6 and rabbits7 have
revealed that the protein encoded by the CETP gene mediates the
transfer of cholesteryl esters from HDL-C to other lipoproteins
such as atherogenic (V)LDL particle and is a key participant in the
reverse transport of cholesterol from the periphery to the liver.8

Due to the function of CETP and the association of the gene with
HDL-C in humans,9,10 the CETP gene is one of the targets for drug
development for dyslipidemia.6,11,12 CETP-inhibition leads to an
increase of HDL-C from 30 up to 140% depending on the
compound used. The first drug of its class, Torcetrapib was
unfortunately associated with an increased mortality and morbid-
ity in patients receiving the CETP inhibitor in addition to
atorvastatin.13,14

The estimated heritability of HDL-C levels is high in humans:
47–76%.15–23 Previously published whole-genome sequence
data23 reported that common variants (minor allele frequency
(MAF)41%) explain up to 61.8% of the variance in HDL-C levels
and that rare variants (MAFo1%) explain an additional 7.8% of
the variance. Genome-wide association studies revealed that
numerous variants are associated with HDL-C, among which are
various common9,10 and rare24,25 variants within the CETP gene in
multiple ancestries.4,8,26–28 In this paper, we investigate the
association between CETP and HDL-C in humans in further detail
to identify variants that are likely to be causal.
To this end, we used a meta-analysis of association studies with

imputed genotypes within the CETP region. Our study consisted of
data from 59,432 samples, of which the genotypes were imputed
to the 1000 Genomes project reference panel (version Phase 1
integrated release v3, April 2012, all populations). By using 1000
Genomes imputed data, we expected to find more rare or
low-frequent variants, as well as novel insertions and deletions.

MATERIALS AND METHODS
Study descriptions
The descriptions of the participating cohorts can be found in the
Supplementary Information. All studies were performed with the approval
of the local medical ethics committees, and written informed consent was
obtained from all participants.

Study samples and phenotypes
The total number of individuals in the discovery phase was 59,432 and in
the replication phase 47,866. Of the discovery samples, 44,108 individuals
(74.21%) were of European ancestry. Of the replication samples, 47,081
individuals (98.36%) were of European ancestry. A summary of the details
of both the discovery and replication cohorts participating in this study can
be found in Supplementary Table 1.

Genotyping and imputations
All cohorts were genotyped using commercially available Affymetrix or
Illumina genotyping arrays, or custom Perlegen arrays. Quality control was
performed independently for each study. To facilitate meta-analysis and
replication, each discovery and replication cohort performed genotype
imputation using IMPUTE229 or Minimac30 with reference to the 1000
Genomes project reference panel. The details per cohort can be found in
Supplementary Table 2.

Association analysis in discovery cohorts
The lipid measurements were adjusted for sex, age, and age2 in all cohorts,
and if necessary also for cohort-specific covariates (Supplementary Table 1).
Some cohorts included samples using lipid-lowering medication; we did
not adjust for lipid-lowering medication in our analysis because HDL-C
levels are only minimally influenced by lipid-lowering medication. Each
discovery cohort ran association analysis for all variants within the CETP
region (chromosome 16, 56.99–57.02 Mbp) with HDL-C.

Meta-analysis of discovery cohorts
The association results of all discovery cohorts for all variants within the
CETP region (chromosome 16, 56.99–57.02 Mbp) were combined using
inverse-variance weighting as applied by METAL.31 This tool also applies
genomic control by automatically correcting the test statistics to account
for small amounts of population stratification or unaccounted relatedness
and the tool also allows for heterogeneity. We used the following filters for
the variants: 0.3oR2 (measurement for the imputation quality)o1.0 and
expected minor allele count (expMAC=2×MAF× R2 × sample size)410
prior to meta-analysis. After meta-analysis of all available variants, we
excluded the variants that were not present in at least three cohorts, to
prevent false positive findings.
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Selection of independent variants
To select only variants that were independently associated with HDL-C, we
used the Genome-wide Complex Trait Analysis (GCTA) tool, version 1.13.32

Although this tool currently supports multiple functionalities, we only used
the functions for conditional and joint genome-wide association analysis.
This function performs a stepwise selection procedure to select indepen-
dent single nucleotide polymorphisms (SNP) associations by a conditional
and joint analysis approach. It utilizes summary-level statistics from the
meta-analysis and linkage disequilibrium (LD) corrections between SNPs are
estimated from the 1000 Genomes (1000G Phase I Integrated Release
Version 22 Haplotypes (2010–11 data freeze, 14 February 2012 haplotypes)).
GCTA estimates the effective sample size and determines the effect size, the
s.e., and the P value from a joint analysis of all the selected SNPs. In this
way, we select the best associated variants in CETP. We subsequently
checked whether these variants were in LD within the 1000 Genomes
reference panel using PLINK33 software (Supplementary Table 3).

Replication of independent CETP variants
Five variants were selected for replication in a sample of 12 independent
cohorts: Athero-Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS,
NTR-NESDA, PREVEND, PROSPER, QIMR, TRAILS, and YFS. The lipid
measurements were adjusted for sex, age, and age2 in all cohorts, and if
necessary also for cohort-specific covariates (Supplementary Table 1b). The
details per cohort regarding variant genotyping and imputations can be
found in Supplementary Table 2. The association results of all replication
cohorts were combined and the s.e.-based weights were calculated by
METAL.31 Since none of the five variants are in LD (Supplementary Table 3),
the Bonferroni-corrected P value for multiple testing was 0.01.

Test previous published results
The meta-analysis of HDL-C as published by Teslovich et al.9 identified 38
genome-wide significant (P valueo5×10− 8) variants within the CETP
region (chromosome 16, 56.99–57.02Mbp). Within all discovery and
replication cohorts, we tested these 38 variants, adjusting for the 5 newly
identified independent variants to explore whether the new variants
explain previously published results. The association results of all cohorts
were combined and the s.e.-based weights were calculated by METAL.31

We used the genotypes of all 1,092 individuals of the 1000 Genomes
project to calculate the correlation between the 38 variants. This
correlation matrix was used by matSpDlite34 which examines the ratio of
observed eigenvalue variance to its theoretical maximum to determine the
number of independent variables. For these 38 genome-wide significant
variants within the CETP region, the effective number of independent
variables is 18 and therefore the experiment-wide significance threshold
required to keep type I error rate at 5% is 2.85×10− 3.

Conditional analysis of independent CETP variants
The replicated independent variants were selected for conditional analysis
in both the discovery and the replication cohorts. In this analysis we
adjusted for the lead SNP for this region as reported by Teslovich et al.9

(rs3764261, chromosome 16, position 56,993,324 bp). The association
results of all discovery and replication cohorts were combined and the s.e.
based weights were calculated by METAL.31 The Bonferroni-corrected
P value for multiple testing was 0.01, since none of the five variants is in LD
(Supplementary Table 3).

Validation of the new CETP insertion within a family
Within the ERF study, 3,658 individuals have been genotyped on various
Illumina (Illumina, San Diego, CA, USA) and Affymetrix chips (Affymetrix,
Santa Clara, CA, USA), followed by imputations with MaCH (1.0.18c) and
Minimac (minimac-β-14 March 2012) to the 1000 Genomes reference
panel. Based on the best guess imputed genotypes, we selected one family
in which we expected the insertion to segregate.
Validation of the insertion was performed by Sanger sequencing.

Genomic DNA was isolated from peripheral blood using standard protocols
(salting-out). The intron 2–3 of the CETP gene (Supplementary Table 4) was
amplified using PCR and the following primer sequences were used to
amplify: forward; 5ʹ-tgggggactcaggtctctcc-3ʹ; reverse; 5ʹ-aaagcacctggccca
caacc-3ʹ; size 409 bp.
PCR reactions was performed in 17.5 μl containing 37.5 ng DNA,

10 pmol/μl of each primer, 2.5 mM dNTPs, 10x PCR buffer with Mg+

(Roche) and 5 U/μl FastStart Taq (Roche Nederland B.V., Woerden,

the Netherlands). Cycle conditions: 7 min at 94 °C; 10 cycles of 30-s
denaturation at 94 °C, 30 s annealing at 70 –1 °C per cycle and 90-s
extension at 72 °C; followed by 20 cycles of 30-s denaturation at 94 °C, 30 s
at 60 °C, and 90 s at 72 °C; final extension 10min at 72 °C. Sephadex G50
(Amersham Biosciences) was used to purify the sequenced PCR products.
Direct sequencing of both strands was performed using Big Dye
Terminator chemistry version 4 (Applied Biosystems, Bleiswijk, the
Netherlands). Fragments were loaded on an ABI3100 automated
sequencer and analyzed with DNA Sequencing Analysis (version 5.3) and
SeqScape (version 2.6) software (Applied Biosystems). All sequence
variants are numbered at the nucleotide levels according to the following
references: NC_000016.10:g.56963437_56963438insA (NCBI), NM_000078.2:
c.233+313_233+314insA, Human Feb. 2009 (GRCh37/hg19) Assembly.

RESULTS
Meta-analysis in all discovery cohorts to select independent
variants
The association of all variants within the CETP region (chromo-
some 16, 56.99–57.02 Mbp) to HDL-C was tested in all discovery
cohorts. These results were combined using the inverse-variance
weights as applied by METAL.31 After exclusion of the variants that
were not present in at least 3 cohorts, 254 variants remained
(Figure 1). A conditional and joint analysis of the 254 variants
using GCTA identified 5 independent variants (Figure 2). Three
variants were intronic (rs5817082, rs4587963, and rs7499892), one
variant was intergenic (rs12920974) and one variant was exonic
(rs34065661) (Table 1). Using PLINK software,33 we calculated the
LD between the five variants based on the 1000 Genomes
reference panel, and found that none are in high LD with each
other (Supplementary Table 3).

Replication of the independent CETP variants
The five independent variants within the CETP region were
selected for replication within the following cohorts: Athero-
Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA,
PREVEND, PROSPER, QIMR, TRAILS, and YFS. Five variants were
replicated at a P value of 2.99 × 10− 34 (Figure 3 and Table 2).

Test to explain the previously published results
In each discovery and replication cohort, we tested if the five
independent variants explain the associations within the CETP
region (chromosome 16, 56.99–57.02 Mbp) as reported in the
study by Teslovich et al.9 We tested a total of 38 genome-wide
significant (P valueo5 × 10− 8) SNPs within this region
identified by Teslovich et al.9 and conditioned for the five
independent variants in all discovery and replication cohorts. All
38 variants were significantly (P value corrected for multiple
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Figure 1. Results of the meta-analysis of all discovery cohorts within
the CETP region. CETP, cholesteryl ester transfer protein.
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testingo2.85 × 10− 3) associated with HDL-C in our joint analyses
without adjusting for the 5 independent variants we identified
in this work, and 37 (97.37%) were genome-wide significant
(P valueo5 × 10− 8) despite the fact that our sample size is about
65% of the study by Teslovich et al.9 (Table 3). When conditioning
on the 5 variants identified in this work, 27 (71.05%) variants
remained significant (P valueo2.85 × 10− 3), though the P values
were markedly reduced (Table 3). This finding suggests that the
new variants we identified may explain in part the previously
reported association. Remarkably, the P value of rs3764261 which

was reported as the lead SNP for this CETP region by Teslovich
et al.9 was highly reduced from 5.25 × 10− 509 to 9.51 × 10− 25 while
the β decreased from 3.179 mg/dl to 0.859 mg/dl. This variant is
not in LD with any of the five new variants. Due to the lack of LD,
the s.e. of rs3764261 does not change much (s.e.unadj = 0.066,
s.e.adj = 0.084), but the effect of rs3764261 does (βunadj = 3.179,
βadj = 0.859) and therefore the χ2 decreases as well, and that
results in a higher P value. This indicates that a part of the effect
of rs3764261 can be explained by the effect of the five new
variants.
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Figure 2. Forest plots from the discovery meta-analysis results for the five independent variants identified within the CETP region. Only
cohorts in which the variants passed QC are included in the forest plot. (a) rs12920974 (chromosome 16, position 56,993,025), (b) rs34065661
(chromosome 16, position 56,995,935), (c) rs5817082 (chromosome 16, position 56,997,349), (d) rs4587963 (chromosome 16, position
56,997,369), and (e) rs7499892 (chromosome 16, position 57,006,590). CETP, cholesteryl ester transfer protein.

Table 1. The five independent variants after meta-analysis in the discovery cohorts

After meta-analysis After GCTA analysis

Marker name Chr Position EA Type Freq βa S.e.β P value Freqgeno βJa S.e.βj P valueJ

rs12920974 16 56,993,025 T SNP 0.271 − 1.748 0.096 1.41E− 74 0.281 − 1.806 0.139 2.40E − 38
rs34065661 16 56,995,935 G SNP 0.058 7.203 0.560 7.04E− 38 0.020 6.782 0.582 2.23E− 31
rs5817082 16 56,997,349 CA INDEL 0.285 − 2.869 0.098 8.95E− 187 0.305 − 4.286 0.172 1.55E − 137
rs4587963 16 56,997,369 A SNP 0.240 − 0.972 0.101 5.25E− 22 0.261 − 2.014 0.165 2.11E − 34
rs7499892 16 57,006,590 T SNP 0.209 − 3.384 0.107 2.94E− 218 0.245 − 2.083 0.150 1.31E − 43

Abbreviations: EA, effect allele—the allele for which the effect on HDL-C is estimated; Freq, the frequency of reference allele in the discovery cohorts; Freqgeno,
the frequency of the variant within the reference panel.
aβ is the effect of the effect allele. βj is the effect of the effect allele after joint analysis of all selected variants by GCTA.

Fine mapping the association between HDL-C and CETP
EM van Leeuwen et al

4

npj Aging and Mechanisms of Disease (2015) 15011 © 2015 Japanese Society of Anti-Aging Medicine/Macmillan Publishers Limited



Conditional analysis of the independent CETP variants
Next, we performed conditional analysis of the independent
variants in both the discovery and replication cohorts. We
conditioned on the lead SNP for the CETP region as reported by
the study by Teslovich et al.9 (rs3764261, chromosome 16, position
56,993,324 bp), see Table 4 and Figure 4. This analysis showed that
three out of the five variants (rs34065661, rs5817082, rs7499892)
are independent of rs3764261. For all variants the P values and β’s
decreased, but all P values remained significant. The effect of the

single variant rs34065661, of the insertion rs5817082, and of the
single variant rs7499892 were reduced by 53.20%, 38.48%, and
32.67%, respectively.

Validation of the insertion within a family
We selected based on the best guess imputations of the ERF
study, a large family of 30 individuals for Sanger sequencing of
rs5817082. Using MERLIN35 we estimated that the total heritability
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Figure 3. Forest plots of the replication meta-analysis for the five independent variants within the CETP region. Only cohorts in which the
variants passed QC are included in the forest plot. (a) rs12920974 (chromosome 16, position 56,993,025), (b) rs34065661 (chromosome 16,
position 56,995,935), (c) rs5817082 (chromosome 16, position 56,997,349), (d) rs4587963 (chromosome 16, position 56,997,369), and
(e) rs7499892 (chromosome 16, position 57,006,590). CETP, cholesteryl ester transfer protein.

Table 2. Replication of the 5 independent variants within the CETP region

Marker name Chr Position EA Non effect allele Freq βa S.e.β P value Direction of effect per cohortb

rs12920974 16 56,993,025 T G 0.288 − 2.140 0.112 3.36E − 81 − − − − − − − − − − − −
rs34065661 16 56,995,935 G C 0.018 39.958 1.884 8.46E − 100 ? ? ? ? + ? ? ? + ? ? ?
rs5817082 16 56,997,349 CA C 0.229 − 2.911 0.153 1.09E − 80 + − − − ? − − − ? − − −
rs4587963 16 56,997,369 A T 0.325 − 1.433 0.117 2.99E − 34 − − − − − − − − − − − −
rs7499892 16 57,006,590 T C 0.257 − 3.434 0.127 5.64E − 160 − − − − − − − − − − − −

Abbreviations: CETP, cholesteryl ester transfer protein; EA, effect allele—the allele for which the effect on HDL-C is estimated; Freq, the frequency of effect
allele.
aβ is the effect of the effect allele.
bDirection of the effect of the effect allele of the following cohorts: AEGS, CHS (AA), FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA, PREVEND, PROSPER, QIMR,
TRAILS, and YFS.
The question marks mean that the variant was removed prior to meta-analysis due to a low imputation quality and/or expMAC o10.
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of HDL-C within this family is 27.47%. DNA was available for 16
individuals. Figure 5 shows the results of the Sanger sequencing
for rs5817082 for these 16 individuals within the family. The
sequencing of the insertion confirmed the best guess results for
10 individuals (62.5%), of which 7 were heterozygous for the

insertion, 1 was homozygous for the insertion, and 2 did not carry
the insertion. Three individuals that are homozygous for the
insertion, were predicted to be heterozygous by the best guess
imputations. Three individuals that are heterozygous for the
insertion were not predicted to carry the insertion by the best

Table 3. Unadjusted and conditional analysis of the Teslovich variants on the five independent variants in the combined analysis of all discovery and
replication cohorts

Unadjusted analysis Adjusted analysis

Marker name Chr position EA NEA Freq βa S.e.β P value Freq βa S.e.β P value

rs6499861 16 56,991,495 C G 0.758 1.432 0.090 5.63E− 57 0.781 1.083 0.106 1.47E− 24
rs6499863 16 56,992,017 A G 0.251 − 1.420 0.093 1.02E− 52 0.227 − 1.162 0.112 2.59E− 25
rs12708967 16 56,993,211 T C 0.726 2.419 0.087 9.61E− 170 0.768 − 0.363 0.110 9.99E− 04
rs3764261 16 56,993,324 A C 0.409 3.179 0.066 5.25E− 509 0.358 0.859 0.084 9.51E− 25
rs12447839 16 56,993,935 T C 0.665 1.215 0.077 1.87E− 56 0.738 0.302 0.111 6.35E− 03
rs12447924 16 56,994,192 T C 0.683 1.218 0.077 8.54E− 57 0.737 0.321 0.109 3.15E− 03
rs4783961 16 56,994,894 A G 0.496 1.680 0.064 9.60E− 152 0.493 0.732 0.073 6.73E− 24
rs4783962 16 56,995,038 T C 0.318 − 1.178 0.081 1.51E− 48 0.255 − 0.288 0.123 1.97E− 02
rs1800775 16 56,995,236 A C 0.471 2.788 0.064 2.12E− 416 0.495 0.547 0.088 4.97E− 10
rs711752 16 56,996,211 A G 0.445 2.782 0.064 3.93E− 414 0.435 0.396 0.083 1.56E− 06
rs1864163 16 56,997,233 A G 0.311 − 2.991 0.076 1.33E− 340 0.238 − 0.307 0.115 7.75E− 03
rs9929488 16 56,998,572 C G 0.338 − 2.189 0.075 7.55E− 189 0.308 0.125 0.092 1.76E− 01
rs7203984 16 56,999,258 A C 0.693 2.903 0.080 2.44E− 287 0.737 0.076 0.112 4.95E− 01
rs11508026 16 56,999,328 T C 0.417 2.703 0.065 1.27E− 383 0.407 0.326 0.082 7.60E− 05
rs820299 16 57,000,284 A G 0.578 0.892 0.066 8.60E− 42 0.595 0.336 0.084 6.07E− 05
rs12597002 16 57,002,404 A C 0.389 − 1.228 0.071 2.02E− 66 0.307 − 0.481 0.103 3.25E− 06
rs9926440 16 57,002,663 C G 0.371 − 2.141 0.072 1.18E− 196 0.351 0.131 0.085 1.26E− 01
rs9939224 16 57,002,732 T G 0.288 − 2.944 0.080 2.72E− 300 0.229 0.051 0.109 6.41E− 01
rs11076174 16 57,003,146 T C 0.797 2.388 0.123 1.70E− 83 0.825 0.496 0.133 1.99E− 04
rs7205804 16 57,004,889 A G 0.440 2.644 0.063 1.63E− 386 0.422 0.291 0.082 3.51E− 04
rs1532624 16 57,005,479 A C 0.420 2.639 0.063 6.82E− 386 0.412 0.291 0.082 3.48E− 04
rs11076175 16 57,006,378 A G 0.740 3.326 0.084 5.05E− 342 0.815 − 0.031 0.127 8.05E− 01
rs7499892 16 57,006,590 T C 0.323 − 3.227 0.084 6.95E− 323 0.241 − 0.197 0.119 9.74E− 02
rs289714 16 57,007,451 A G 0.669 2.624 0.085 6.46E− 208 0.708 0.540 0.101 1.01E− 07
rs289715 16 57,008,508 A T 0.256 2.047 0.106 5.38E− 83 0.245 0.420 0.106 7.37E− 05
rs289717 16 57,009,388 A G 0.422 − 1.357 0.068 1.39E− 89 0.401 − 0.353 0.077 4.15E− 06
rs289719 16 57,009,941 T C 0.383 1.701 0.070 2.85E− 132 0.374 0.461 0.072 1.32E− 10
rs4784744 16 57,011,185 A G 0.396 − 1.319 0.066 1.05E− 87 0.386 − 0.350 0.074 2.37E− 06
rs4784745 16 57,014,875 A G 0.614 1.327 0.068 5.66E− 85 0.626 0.314 0.075 3.21E− 05
rs5880 16 57,015,091 C G 0.135 − 4.495 0.175 4.42E− 146 0.119 − 1.331 0.181 1.92E− 13
rs5882 16 57,016,092 A G 0.613 − 1.442 0.067 4.19E− 102 0.614 − 0.410 0.069 2.39E− 09
rs9923854 16 57,017,002 T G 0.802 − 1.391 0.115 1.07E− 33 0.805 − 0.543 0.117 3.28E− 06
rs289741 16 57,017,474 A G 0.631 − 1.547 0.068 3.37E− 113 0.633 − 0.476 0.070 1.02E− 11
rs1801706 16 57,017,662 A G 0.276 1.040 0.091 1.82E− 30 0.270 0.493 0.095 1.92E− 07
rs289742 16 57,017,762 C G 0.295 1.811 0.098 1.21E− 76 0.285 0.407 0.098 3.40E− 05
rs289744 16 57,018,102 T G 0.641 − 1.544 0.069 4.99E− 110 0.643 − 0.469 0.071 3.33E− 11
rs12720917 16 57,019,392 T C 0.769 − 1.474 0.110 1.15E− 40 0.775 − 0.377 0.109 5.43E− 04
rs289745 16 57,019,532 A C 0.579 0.276 0.081 6.82E− 04 0.581 0.204 0.081 1.12E− 02

Abbreviations: EA, effect allele for which the effect is estimated; Freq, the frequency of effect allele; NEA, non-effect allele.
aβ is the effect of effect allele.

Table 4. Analysis of the independent variants within the CETP region conditioned on the lead SNP for the CETP region as reported by the study by
Teslovich et al.9 (rs3764261) in the combined analysis of all discovery and replication cohorts

Unadjusted analysis Adjusted analysis

Marker name Chr Position EA NEA Freq βa S.e.β P value Freq βa S.e.β P value

rs12920974 16 56,993,025 T G 0.344 − 1.880 0.074 9.91E− 143 0.336 − 0.278 0.076 2.82E− 04
rs34065661 16 56,995,935 C G 0.854 − 9.333 0.520 6.02E− 72 0.838 − 4.368 0.550 1.94E− 15
rs5817082 16 56,997,349 CA C 0.360 − 2.765 0.085 1.49E− 231 0.351 − 1.701 0.086 2.16E− 86
rs4587963 16 56,997,369 A T 0.351 − 1.133 0.077 1.62E− 48 0.339 0.309 0.079 8.81E− 05
rs7499892 16 57,006,590 T C 0.317 − 3.275 0.082 2.90E− 346 0.304 − 2.205 0.083 5.14E−156

Abbreviations: CETP, cholesteryl ester transfer protein; EA, effect allele for which the effect on HDL-C is estimated; Freq, the frequency of effect allele;
SNP, single nucleotide polymorphism.
aβ is the effect of the effect allele.
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guess imputations. Furthermore, the Sanger sequencing showed
that the insertion segregates with the outcome within this family.
The proportion of variance explained by the insertion within this
family is 35.50%, while the proportion explained by rs3764261, the
lead SNP within the CETP region as reported by the study by
Teslovich et al.9 is 14.11%.

DISCUSSION
We conducted an analysis to fine map the association between
CETP genetic variants and HDL-C. To this end, a total of 59,432
samples were imputed to the latest version of the 1000 Genomes
(version Phase 1 integrated release v3, April 2012, all populations).
We identified and replicated five independent variants within the
CETP region (chromosome 16, 56.99–57.02 Mbp), of which four are
SNPs and one is an insertion. We validated the insertion by Sanger
sequencing within a large family, as the largest effect on HDL-C
comes from this insertion.
The relationship between the CETP gene and HDL-C has been

known for a long time9 and genome-wide association studies
have revealed many common and rare variants in this region.
Although the associated genetic variants are strongly correlated
with HDL-C, the causal variants have not been determined. Our
study showed that when using the latest 1000 Genomes reference

panel, we have more power to fine map this association.
By conditional analysis of the five variants, we were able to
reduce the P values of the genome-wide significant associations
published before by Teslovich et al.9 Furthermore, conditional
analysis showed that three out of the five variants are
independent of the lead SNP for the CETP region as reported by
the study by Teslovich et al.9 (rs3764261).
Several fine-mapping effort have been previously published36,37

and in all those efforts sequencing was used for the fine mapping.
In our project we did not use sequencing, but imputations using
the 1000 Genomes as a reference panel. This method has been
widely used in the past and is much lower in cost. With new
reference panels available, we were able to have a revised study of
this region. The 1000 Genomes reference panel consists of 30
million variants including a million insertions and deletions. By
using this reference panel for imputation, we were able to impute
these insertions and deletions in 59,432 samples from various
cohorts. This led to the significant association of an insertion
within a known region with HDL-C. So far, no association between
a structural variation and HDL-C has been found in such a large
sample size. Validation of the insertion by Sanger sequencing
confirms the correct imputations of this insertion in 62.5%
of the individuals, of which seven heterozygous carriers, one
homozygous carrier and two did not carry the insertion.

β
−5 −4 −3 −2 −1 0 1 2

β
−2 −1 0 1 2 3 4 5

β
−5 −3 −1 0 1 2 3 4

β
−3 −2 −1 0 1 2 3

β
−20 −10 0 10 20 30

Figure 4. Forest plots of the conditional analysis in the combined discovery and replication cohorts for the five independent variants within
the CETP region. Only cohorts in which the variants passed quality control (QC) are included in the forest plot. (a) rs12920974 (chromosome
16, position 56,993,025), (b) rs34065661 (chromosome 16, position 56,995,935), (c) rs5817082 (chromosome 16, position 56,997,349),
(d) rs4587963 (chromosome 16, position 56,997,369), and (e) rs7499892 (chromosome 16, position 57,006,590). CETP, cholesteryl ester transfer
protein.
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The results of this study showed that by using the 1000
Genomes reference panel, the proportion of the variance
explained can be increased and that multiple common variants
in the same region may be implicated in a single family of the ERF
study. The insertion we identified in this study explains 35.50% of
variation in the HDL-C level in a single family of the ERF study; this
is in concordance with the results of the whole-genome sequence
data.23 This is much higher than the proportion of the variance
explained (14.11%) in the same family by rs3764261, which was
reported before as the lead variant of this region. Fine mapping
of various associations may help us to unravel the genetic
background of various phenotypes.
Although rs3764261 was identified by Teslovich et al.9 to be the

lead SNP of this region, other variants are used in clinical settings.
Three of the classical variants are located in the promoter region
of the CETP gene: − 1337C/T (rs708272 or Taq1B), − 971G/A, and
− 629C/A (rs1800775) polymorphisms.38 Carriers of the B2 allele of
the common Taq1B polymorphism exhibit lower plasma CETP
levels and higher HDL-C. Furthermore, a recent meta-analysis
showed that the B2 allele is associated with a reduced risk for
coronary heart disease.39 One more classical variant is rs5882A
(405I/V), which is located outside the promoter region.40 The
− 1337C/T and − 629C/A are in strong LD, however, they are in
very low LD (r2 of 0.442 for rs708272 and 0.461 for rs1800775)
with rs3764261, despite the fact that all three variant are within
3,000 bp of each other.
Large HDL-C particle sizes have been associated with excep-

tional longevity before and with an increased homozygosity for
the I405V variant within the CETP gene.1–4 Many of the studies
confirm this relationship, however, all are based on genotyping of
the I405V variant. Our study, however, shows that more variants

within the CETP gene are associated with HDL-C levels in the
blood circulation. Therefore we would suggest investigating more
variants within the CETP gene for its association with longevity
and healthy aging.
Some genetic variants identified in our study were published

before,41,42 but so far no conditional analyses have been
performed with these variants. Our study suggests that various
CETP variants may be relevant for HDL-levels in the blood
circulation and that these may have a substantial role in the
heritability of HDL-C in specific families.
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