Additional details on principal component analysis of DeepSAGE expression data
To increase the statistical power of eQTL detection, we used principal component analysis (PCA) to correct for technical and biological confounders. We determined that using 15 PCs as covariates yielded the highest number of significant cis-eQTLs, reflecting an almost two-fold increase.

Although correction for the first principal components substantially increased the number of detectable cis-eQTLs, it remains somewhat elusive why this correction procedure is so effective. We therefore investigated which phenomena these components represent and investigated the correlation with various sample characteristics. The first principal component was highly significantly correlated with the percentage of GC in the reads of a sample (r2 = 0.76) (Figure S1). GC content is one of the most important sources of bias in RNA-seq data and strongly affects gene expression measurements [1,2]. Although various dedicated strategies have been proposed to overcome this bias (for a review see [3]

ADDIN CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1186/1471-2105-12-480", "abstract" : "ABSTRACT: BACKGROUND: Transcriptome sequencing (RNA-Seq) has become the assay of choice for high-throughput studies of gene expression. However, as is the case with microarrays, major technology-related artifacts and biases affect the resulting expression measures. Normalization is therefore essential to ensure accurate inference of expression levels and subsequent analyses thereof. RESULTS: We focus on biases related to GC-content and demonstrate the existence of strong sample-specific GC-content effects on RNA-Seq read counts, which can substantially bias differential expression analysis. We propose three simple within-lane gene-level GC-content normalization approaches and assess their performance on two different RNA-Seq datasets, involving different species and experimental designs. Our methods are compared to state-of-the-art normalization procedures in terms of bias and mean squared error for expression fold-change estimation and in terms of Type I error and p-value distributions for tests of differential expression. The exploratory data analysis and normalization methods proposed in this article are implemented in the open-source Bioconductor R package EDASeq. CONCLUSIONS: Our within-lane normalization procedures, followed by between-lane normalization, reduce GC-content bias and lead to more accurate estimates of expression fold-changes and tests of differential expression. Such results are crucial for the biological interpretation of RNA-Seq experiments, where downstream analyses can be sensitive to the supplied lists of genes.", "author" : [ { "dropping-particle" : "", "family" : "Risso", "given" : "Davide", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Schwartz", "given" : "Katja", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Sherlock", "given" : "Gavin", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Dudoit", "given" : "Sandrine", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" } ], "container-title" : "BMC bioinformatics", "id" : "ITEM-1", "issue" : "1", "issued" : { "date-parts" : [ [ "2011", "12", "17" ] ] }, "page" : "480", "title" : "GC-Content Normalization for RNA-Seq Data.", "type" : "article-journal", "volume" : "12" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=aca8c028-d072-4d0f-9ac7-8de772093ecf" ] } ], "mendeley" : { "manualFormatting" : ")", "previouslyFormattedCitation" : "[3]" }, "properties" : { "noteIndex" : 0 }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }) and more sophisticated algorithms to correct for technical and biological confounders exist such as PEER and PANAMA [4–6], this straightforward PCA-based method also efficiently corrects for GC content differences across samples. 

Principal components seven and eleven correlated significantly with various blood cell count parameters, indicating that these PCs reflect differences in cell type compositions between samples (Figure S2). To further substantiate this latter point, we associated the top 100 genes that had the most extreme (highest and lowest) factor loadings on PC7 and PC11 with cell types reported in the literature, using the Anni software for text concept association [7] and observed that:

-
Genes with highly positive factor loadings on PC7 are strongly associated with (and therefore likely expressed in) lymphocytes. This is in agreement with the positive correlation of PC7 with lymphocyte counts (Figure S2). Genes with the most negative factor loadings on PC7 are strongly associated with macrophages and neutrophils. This is in agreement with the negative correlation of PC7 with neutrophil counts (Figure S2.

-
Genes with highly positive factor loadings on PC11 are strongly associated with different types of leukocytes, while genes with the most negative factor loadings on PC11 are strongly associated with erythrocytes.
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