Roken en erfelijkheid

M. Willemsen, J. Vink, D. Boomsma*

Erfelijkheid als determinant van rookgedrag is lange tijd onderbelicht geweest. Recentelijk werd het menselijk genoom bijna volledig in kaart gebracht. Deze en andere ontwilkelingen in de genetica hebben tot een sterke toename geleid van het onderzoek naar de erfelijkheid van roken. Deze bijdrage biedt een overzicht van de recente literatuur op dit terrein. Resultaten uit tweelingenstudies suggereren dat beginnen met roken door adolescenten sterker bepaald wordt door omgevingsinvloeden dan door erfelijke factoren. Bij volwassenen is echter gebleken dat meer dan de helft van de variatie in de mate waarin men verslaafd raakt aan sigaretten, erfelijk is. Het DNA- onderzoek naar de genen die een rol spelen bij nicotineverslaving is de laatste jaren in een stroomversnelling gekomen. De zoektocht naar een 'nicotinegen' concentreert zich op processen via welke genen invloed kunnen hebben op roken: het dopaminesysteem, nicotinemetabolisme en persoonlijkheidsfactoren. Van dit type onderzoek wordt verwacht dat het kan leiden tot nieuwe behandelingen van nicotineverslaving en tot betere afstemming van (psycho-)farmacologische hulpmiddelen op de individuele roker. Het inzicht dat genen, omgeving en psyche in interactie met elkaar rookgedrag bepalen, betekent dat biologen, farmacologen en gedragswetenschappers meer in multi-disciplinaire onderzoeksteams moeten samenwerken om effectievere stoppen-met-roken methoden te ontwikkelen.

Trefwoorden: roken, genetica, nicotineverslaving, stoppen-met-roken

INLEIDING

Roken is de belangrijkste risicofactor voor vroegtijdige sterfte in ontwikkelde landen. ${ }^{1,2}$ Jaarlijks overlijden in Nederland ruim 24.000 mensen aan de gevolgen ervan. ${ }^{3}$ Desondanks is het aantal rokers in Nederland nog bijzonder groot: in 1999 rookte 34\% van de volwassenen. Sinds 1991 is dat percentage niet gedaald. Wellicht de belangrijkste reden waarom de rokersprevalentie in Nederland, in tegenstelling tot veel andere westerse landen, niet daalt, is de grote maatschappelijke acceptatie van tabaksgebruik. Zolang roken niet als een collectief maatschappelijk probleem wordt gezien, valt er niet snel een doorbraak te verwachten, ondanks de grote schade voor de volksgezondheid. Ondertussen zijn veel mensen gebaat bij effectieve ondersteuning bij het stoppen-met-roken.

Nicotineverslaving wordt veroorzaakt door een combinatie van psychosociale en farmacologische factoren. ${ }^{4}$ Beide aspecten kunnen aanknopingspunten bieden voor preventie en behandeling. Psychosociale factoren worden vaak onderscheiden in factoren die rookgedrag direct beïnvloeden, zoals cognities, attitudes en eigen-effectiviteitsinschattingen, en meer distale factoren, zoals demografische factoren en persoonlijkheid. ${ }^{5}$ De distale factoren zijn vooral belang-

[^0]rijk om risicogroepen te onderscheiden. Ze worden daarom ook wel descriptieve variabelen genoemd. ${ }^{6}$ De farmacologische aspecten van nicotineverslaving omvatten onder meer de lichamelijke verslaving. Nicotine is zeer verslavend ${ }^{7}$ en is wat betreft subjectieve en fysiologische beleving vergelijkbaar met cocaïne. ${ }^{8}$ Een hiermee verband houdende factor is erfelijke aanleg. In recente verklaringsmodellen wordt het genetische aspect wel genoemd, maar er wordt weinig aandacht besteed aan de mate waarin en de manier waarop erfelijkheid nicotineverslaving beïnvloedt. ${ }^{9}$

Het erfelijk materiaal, aanwezig in de chromosomen in de celkern, codeert onder meer voor de aanmaak van eiwitten die farmacologische processen sturen. Rookgedrag kan indirect worden beïnvloed via een of meerdere fysiologische mechanismen. De chromosomen bestaan onder meer uit DNA. DNA is een aaneenschakeling van verschillende bouwstenen (basenparen). Het menselijk genoom bestaat uit 3.000 miljoen basenparen. De erfelijke verschillen tussen twee willekeurige personen zijn gemiddeld 1 op iedere 1000 basenparen. De erfelijke verschillen tussen familieleden zijn kleiner. Als erfelijke verschillen samenhangen met variatie in roken, is de verwachting dat verschillen in roken tussen genetisch verwanten, zoals bijvoorbeeld ouders en kinderen, kleiner zullen zijn dan tussen niet-familieleden. De afgelopen jaren is veel nieuw onderzoek verricht naar de genetische epidemiologie van roken. In dit artikel wordt deze literatuur besproken. Er wordt achtereenvolgens
onderzocht in welke mate wel of niet roken, beginnen met roken, en de hoeveelheid sigaretten die men rookt, erfelijk zijn. Met ‘erfelijk' (heritability) wordt dat deel van de variantie in individuele verschillen in gedrag bedoeld dat verklaard kan worden door genetische factoren. Deze drie vragen worden beantwoord aan de hand van een overzicht van resultaten uit tweelingenstudies. Vervolgens wordt biologisch onderzoek naar de genetische predispositie van nicotineverslaving besproken. Hier gaat het om de zoektocht naar een specifiek 'nicotineverslavingsgen'. Tot slot zal worden ingegaan op implicaties voor preventie en voorlichting. Deze literatuurstudie is verricht in het kader van een workshop over roken en genetica die door de Stichting Toekomstscenario's Gezondheidszorg op 23 mei 2000 werd georganiseerd in opdracht van Stivoro (Stichting Volksgezondheid en Roken). De uitkomsten van deze workshop worden elders in dit nummer door Astrid Kruijff gepresenteerd.

In hoeverre is wel of niet roken erfelijk BEPAALD?

Vanaf de jaren vijftig tot heden wordt genetisch epidemiologisch onderzoek verricht naar tabaksgebruik. Een van de hiervoor gebruikte methoden, naast bijvoorbeeld familieen adoptieonderzoek, is tweelingonderzoek. Dit onderzoek maakt gebruik van het feit dat er twee typen tweelingen zijn, een- en twee-eiigen. Door het gedrag van een- en twee-eiige tweelingen met elkaar te vergelijken kan worden berekend in hoeverre variatie in dat gedrag samenhangt met verschillen in erfelijke aanleg. Een-eiige, of monozygote (MZ) tweelingen zijn genetisch identiek. Ze ontstaan nadat een eicel zich na de bevruchting deelt. Dit leidt tot twee (of in zeldzame gevallen meerdere) individuen met hetzelfde genotype. Twee-eiige, of dizygote (DZ) tweelingen ontstaan als meerdere eicellen gelijktijdig worden bevrucht. DZ-tweelingen zijn genetisch net zo verwant als 'gewone' broers en zusters en delen gemiddeld 50% van hun genetisch materiaal. Een schatting van de erfelijkheid voor kwantitatieve, continu variërende eigenschappen, wordt verkregen door het verschil in correlatie tussen die eigenschap binnen eeneiige en twee-eiige tweelingenparen te kwantificeren. Voor discrete eigenschappen (zoals al of niet roken) wordt vaak gewerkt met een correlatie tussen familieleden in liability: een onderliggende gevoeligheid, waarvan de variatie ook weer wordt bepaald door genetische en omgevingsfactoren.

Al in 1958 was gebleken dat bij MZ-tweelingen vaker beide personen roken dan bij DZ-tweelingen. ${ }^{18}$ Dertig jaar later werd de erfelijke factor meer precies bepaald aan de hand van 18 tweelingenstudies: 53% (range $28 \%-84 \%$) van

Kernpunten

- Roken dient bij volwassenen ook als verslaving te worden benaderd.
- De mate waarin iemand verslaafd is aan nicotine is voor meer dan de helft erfelijk bepaald.
- Met nog te ontwikkelen DNA-tests kan worden voorspeld wie een grotere kans heeft op nicotineverslaving en bij wie farmacotherapeutische hulp het meest zal baten.
- Bij de ontwikkeling van stoppen-met-rokenprogramma's moeten genetici, farmacologen, psychologen en voorlichters samenwerken.
de variatie in roken (wel/niet roken) is aan variatie in erfelijk materiaal te wijten. ${ }^{11}$ Meer recentelijk werden nog eens vijf grootschalige studies van elk meer dan 1.000 tweelingenparen met observaties van eind jaren vijftig tot midden jaren tachtig op de erfelijkheid van roken bekeken. Hieruit bleek dat een goede schatting voor de erfelijke factor ligt tussen 33% en 78% bij vrouwen en 55% en 72% bij mannen. ${ }^{12}$ Tweelingenonderzoek laat dus een consistent beeld zien dat variatie in roken voor grofweg de helft erfelijk is, ${ }^{13,14}$ waarmee roken minstens zo sterk erfelijk bepaald is als alcoholgebruik. ${ }^{15}$

Tabaksconsumptie gaat vaak samen met andere verslavingen. ${ }^{1,16}$ Het verband tussen roken en alcoholgebruik en tussen roken en koffiedrinken is vrij sterk en is consistent in verschillende populaties aangetroffen. ${ }^{14}$ Uit een Amerikaans tweelingonderzoek bleek dat de variatie in roken voor 52% erfelijk is, alcoholgebruik voor 36% en koffieconsumptie voor $44 \% \cdot{ }^{14} \mathrm{Na}$ correctie voor de gemeenschappelijke variantie bleek dat roken voor 42%, alcohol voor 30% en koffieconsumptie voor 44\% erfelijk was.

Een algemene kritiek op tweelingenonderzoek is dat eeneiige tweelingen elkaars gedrag sterker beïnvloeden dan twee-eiige tweelingen, en dat eeneiige tweelingen meer gemeenschappelijke omgevingsinvloeden kunnen hebben. Het is echter gebleken dat de genetische predispositie van roken nauwelijks kleiner wordt na controle voor deze nieterfelijke factoren. ${ }^{12}$

Het feit of iemand wel of niet rookt is dus voor een belangrijk deel erfelijk. Een interessante vraag is vervolgens of deze erfelijkheid ook geldt voor veranderingen in rookgedrag.

IN WELKE MATE IS BEGINNEN MET ROKEN ERFELIJK?

Beginnen met roken wordt in tweelingenstudies meestal gemeten door te vragen of men ooit gerookt heeft. Nederlands longitudinaal onderzoek aan de hand van het tweelingenregister van de Vrije Universiteit (12 tot 24 jarigen) toonde aan dat $31 \%-39 \%$ van de variatie in wel of niet beginnen-met-roken erfelijk is, terwijl $54 \%-59 \%$ verklaard kan worden door gedeelde omgevingsfactoren. ${ }^{17,18}$ In recente Amerikaanse retrospectieve tweelingenstudies bij adolescenten ${ }^{19}$ en volwassenen ${ }^{20}$ werden bevindingen gerapporteerd die in dezelfde lijn liggen: beginnen-metroken is sterker bepaald door omgevingsfactoren dan door erfelijke factoren, hoewel die duidelijk wel een belangrijke rol spelen. Verder vonden ze dat de erfelijke component bij jongens sterker was dan bij meisjes. Deze onderzoekingen suggereren dat beginnen-met-roken sterker bepaald wordt door omgevingsinvloeden, zoals van ouders, vrienden en
school, dan erfelijkheid. Tweelingenstudies in andere landen hebben echter een groter relatief belang van erfelijkheid gevonden, ${ }^{12}$ hetgeen suggereert dat de bijdrage van erfelijkheid aan het beginnen-met-roken mogelijk verschilt per cultuur. Het is een uitdaging om de omgevingsinvloeden, die in belangrijke mate hetzelfde zijn voor kinderen die opgroeien in hetzelfde gezin, te identificeren. De veronderstelling dat rookgedrag van ouders een belangrijke omgevingsdeterminant zou zijn, wordt niet gestaafd door empirisch onderzoek. In het bovengenoemde Nederlandse tweelingenonderzoek werd het rookgedrag van de adolescente tweelingen gerelateerd aan dat van hun ouders. De overeenkomsten tussen ouders en kinderen bleken geringer dan de overeenkomsten tussen broers en zusters, en geheel te verklaren door genetische en niet door culturele overerving. ${ }^{17}$

De hoeveelheid gerookte sigaretten

Bij volwassenen die reeds roken, is sprake van variatie in de mate waarin ze roken. Ondanks de sterk verslavende eigenschappen van nicotine, zijn er rokers die in staat zijn om dagelijks te roken zonder verslaafd te raken (ze roken niet meer dan vijf sigaretten per dag). Deze rokers worden in de literatuur wel als chipper aangeduid. ${ }^{21,22}$ Deze groep rookt om sociale en sensorische redenen (iets in de handen hebben, etc), maar niet om de nicotine. Als ze stoppen met roken ondervinden ze geen ontwenningsverschijnselen. ${ }^{21}$ Ongeveer 10% van alle volwassen rokers is chipper.

Als iemand eenmaal begonnen is met roken blijken erfelijke factoren doorslaggevend voor het aantal sigaretten dat men rookt. Uit het Amsterdamse tweelingenonderzoek kwam naar voren dat 86% van de variatie in de hoeveelheid sigaretten die 12 tot 24 jarigen roken, erfelijk bepaald is. ${ }^{18}$ De hoeveelheid dagelijks gerookte sigaretten geeft een indicatie van de mate van nicotineverslaving. Een meer valide manier om dit te bepalen is met behulp van de Fagerström Tolerance Questionnaire (FTQ). Een recent onderzoek onder vrouwelijke tweelingenparen vond dat erfelijkheid 72% van de variatie in scores op de FTQ-test bepaalt. ${ }^{23}$ Koopmans e.a. veronderstellen dat genetische verschillen in de gevoeligheid voor nicotine, in de ontwikkeling voor tolerantie en in de gevoeligheid voor de belonende effecten van nicotine, uitmaken hoeveel iemand gaat roken. Ook anderen menen dat de 'gevoeligheid voor nicotine' erfelijk is. 12,13,24
Volgens één theorie hangt het risico op nicotineverslaving af van de mate waarin iemand 'gevoelig' is voor nicotine. ${ }^{13,24}$ Die gevoeligheid blijkt uit sterke aversieve gevoelens bij het roken van de eerste sigaret (duizelig, misselijk, etc), maar ook uit sensaties die men als positief ervaart, zoals een tijdelijke verbetering van functioneren of van een gevoel van welbevinden. In tegenstelling tot wat vaak gedacht wordt, zijn het juist de mensen die nicotinegevoelig zijn die snel tolerantie ontwikkelen en verslaafd raken. Bij mensen die weinig gevoelig zijn, is de invloed van de omgeving van relatief groot belang. Invloed van bijvoorbeeld leeftijdsgenoten bepaalt of zo iemand helemaal niet gaat roken of beperkt gaat roken. In het laatste geval spreekt men van de eerdergenoemde chippers.

Naast erfelijke factoren kan prenatale blootstelling aan nicotine (intra-uteriën, via de moeder) mogelijk bijdragen aan gevoeligheid voor nicotine. ${ }^{13}$

Er is ook wel onderzoek gedaan naar de erfelijkheid van stoppen-met-roken (versus door- blijven-roken). Een Amerikaans tweelingenonderzoek vond een significant hogere overeenstemming in stoppen-met-roken bij MZ- tweelingen dan bij DZ-tweelingen. ${ }^{25}$ Een retrospectief Australisch onderzoek bij tweelingen van 31 jaar en ouder vond dat 53% van de variatie in stoppen met roken erfelijk is. ${ }^{26} \mathrm{Na}$ analyse van data uit Scandinavische, Amerikaanse en Australische tweelingenregistraties bleek een relatie met erfelijkheid van 69% voor stoppen-met-roken (versus blijven-roken). ${ }^{1}$ Een recente studie bij 4.000 tweelingen onder Vietnamveteranen vond een erfelijkheidsfactor (heritability) van 70\%. ${ }^{15}$

De zoektocht naar 'het nicotine verslavingsgen'

Na de golf van tweelingenstudies in de jaren negentig heeft het onderzoek zeer recentelijk de stap gemaakt naar DNAonderzoek dat antwoord moet geven op de vraag wát de genetische bepaaldheid van roken inhoudt. Recente ontwikkelingen in de moleculaire genetica, waardoor het menselijke genoom bijna volledig in kaart is gebracht, zijn dusdanig hoopgevend dat er snel meer inzicht in deze complexe materie verwacht wordt. ${ }^{14}$ Met de beschikbaarheid van 'DNA-markers' die het gehele menselijke genoom bestrijken en verbeterde detectiemethoden, is het in principe mogelijk geworden om de specifieke genen die verantwoordelijk zijn voor de variatie in nicotineverslaving te vinden. De wetenschappelijke kennis over de specifieke genen die verband houden met nicotineverslaving bevindt zich momenteel echter nog in de kinderschoenen. ${ }^{14,27}$ Bij proefdieren zijn inmiddels wel een aantal genen die met verslaving te maken hebben geïdentificeerd. ${ }^{28}$ Het is niet waarschijnlijk dat er één specifiek nicotineverslavingsgen gevonden zal worden. Er zijn waarschijnlijk meerdere genen die in interactie met omgevingsfactoren iemands kans om te roken bepalen. In de regel is de variatie in complexe gedragingen, zoals roken, dat door één gen kan worden verklaard, betrekkelijk klein. ${ }^{14,29}$ Bij de verschillende aspecten van roken zijn vermoedelijk ook nog eens verschillende genen betrokken. Recent onderzoek bij vrouwelijke Amerikaanse tweelingen heeft gedemonstreerd dat erfelijke factoren voor beginnen-met-roken en voor de hoeveelheid sigaretten die men vervolgens rookt verschillen. ${ }^{23}$

Uit een eerste DNA-scan bleek dat chromosomen 2, 4, $10,16,17$ en 18 mogelijk genen bevatten die met nicotineverslaving te maken hebben. ${ }^{30}$ Deze eerste poging suggereerde dat er waarschijnlijk sprake is van meerdere genen, die elk afzonderlijk slechts een matig effect hebben op nicotineafhankelijkheid, maar in combinatie een sterk effect hebben. In de literatuur worden verschillende mediërende processen gesuggereerd via welke genen een invloed kunnen hebben op roken: verschillen in farmacologische reactie op nicotine (via dopaminereceptoren en via nicotinemetabolisme), verschillen in persoonlijkheid of via psychopathologie (neuroticisme, depressiviteit). ${ }^{25,31}$

Dopamine

Een van de belangrijke ontdekkingen in de neurobiologie van de verslaving is dat de receptoren waarop verslavende stoffen ingrijpen zich in het mesalymbisch systeem bevinden. ${ }^{32}$ Nicotine stimuleert, na binding op receptoren in het mesalymbisch gebied, de afgifte van dopamine. Dit specifieke neuronale pad wordt ook wel het reward pathway genoemd, omdat een toename van dopamine als belonend wordt ervaren. Dopamine wordt afgebroken door Monoamine Oxidase B (MAO-B), een hersenspecifiek enzym. Sigarettenrokers hebben een 40% lager gehalte van het MAO-B enzym. ${ }^{32}$ Nog onbekende stoffen in de sigarettenrook lijken het MAO-B enzym te blokkeren, hetgeen extra effect heeft op het dopamineniveau. ${ }^{32}$ Naast het effect van nicotine op het neuronale beloningssysteem zijn er aanwijzingen dat nicotine angst en emotionele spanning reduceert en concentratie verhoogt door een effect op cholinerge en noradrinerge neuronale paden. ${ }^{14}$

De ontdekking dat het dopaminesysteem betrokken is bij de belonende effecten van nicotine is richtinggevend geweest bij de speurtocht naar welke genen een rol spelen bij nicotineverslaving. Er ziin meerdere 'dopamine receptorgenen' geïdentificeerd. ${ }^{27,33}$ De belangstelling heeft zich vooral gericht op het D2 dopamine receptorgen (DRD2). Mensen die het A1-allel van dit gen bezitten hebben minder dopamine receptoren. ${ }^{34,35}$ De veronderstelling is dat men hierdoor meer beloning ervaart bij blootstelling aan de verslavende stof en gevoeliger is voor nicotine. Dit ligt in de lijn van de eerder besproken 'gevoeligheids hypothese'. ${ }^{13,24}$ Het A1-allel zou bij rokers vaker voorkomen dan bij nooitrokers. ${ }^{34}$ Rokers die erin slagen om te stoppen bezitten volgens een Amerikaanse studie vaker het A1-subtype dan mensen die niet succesvol zijn. ${ }^{36}$ Recent onderzoek suggereert dat ook het B1-allel in het DRD2-gen een rol speelt bij nicotineverslaving zoals gemeten met de FTQ-nicotineverslavingsschaal. ${ }^{37}$ Een recente studie vond echter geen verband tussen het DRD2-A1 subtype en wel of niet roken in een Britse populatie. ${ }^{38}$ Lerman e.a. ${ }^{29}$ vonden aanwijzingen dat het DRD4-dopamine receptorgen een rol speelt bij roken bij mensen met een depressieve stoornis.

Het SLC6A3-gen codeert voor een eiwit dat de heropname van dopamine regelt. ${ }^{39,40}$ Recent bleek dat dragers van een bepaald allel in dit gen (het SLC6A3-9 allel) minder vaak roken dan mensen zonder dat subtype. ${ }^{39}$ Waarschijnlijk hebben mensen met dit genotype een verhoogde dopamineactiviteit, waardoor ze minder behoefte hebben aan externe stoffen zoals nicotine. Ze waren in staat om langer van het roken af te blijven en waren op latere leeftijd met roken begonnen. ${ }^{39}$ Een ander onderzoek liet zien dat dragers van dit genotype anderhalf keer zoveel kans hebben om ex-roker te zijn dan niet-dragers. ${ }^{40}$ Dragers scoorden minder hoog op een maat voor novelty seeking, hetgeen in verband staat met beginnen-met-roken en met stoppen-metroken ${ }^{40,41}$. Het SLC6A3-gen is vooralsnog één van meerdere genen die verantwoordelijk lijken te zijn voor de erfelijke component van roken: het verklaarde slechts 2% van de variatie in rookgedrag. ${ }^{40}$

Nicotine metabolisme

Het CYP2A6-gen op chromosoom 19 is verantwoordelijk voor de productie van een enzym dat nicotine in het bloed afbreekt (metabolisme). Mensen met een defecte copie van dit gen produceren slechts de helft van dat enzym. Farmacologisch onderzoek liet zien dat dragers van dit genetisch defect ongeveer de helft minder risico lopen om roker te zijn. ${ }^{42}$ Het bleek ook dat de dragers - als ze wel rookten 20% minder sigaretten rookten. De resultaten moeten echter nog worden gerepliceerd door andere onderzoeksgroepen, voordat er echt waarde aan gehecht kan worden. Recent Zweeds onderzoek vond nog een aantal andere defecte CYP2A6-genotypen en rapporteerde een hoge mate van misclassificatie van genotypen. ${ }^{43}$ Inmiddels wordt het onwaarschijnlijk geacht dat het defect in het CYP2A6- gen een significante bescherming biedt voor nicotineverslaving. ${ }^{30}$

Persoonlijkheidsfactoren en psychopathologie

Veel aandacht is uitgegaan naar de persoonlijkheidstrek sensation seeking: de geneigdheid om impulsief, risicovol gedrag te willen vertonen. ${ }^{44}$ Twee onafhankelijke studies hebben een verband gevonden tussen deze factor en bepaalde genotypen in het D4-dopamine-receptorgen (D4DR). ${ }^{18}$ Heath en Madden ${ }^{12}$ halen Australisch onderzoek aan waaruit blijkt dat de genetische predispositie om te gaan roken deels via deze persoonlijkheidsfactor wordt gemedieerd. Heath e.a. ${ }^{41}$ vonden een effect van deze factor op beginnen-met-roken in een Australisch tweelingenonderzoek, namelijk 18% tot 28% verklaarde variantie. Persoonlijkheidsfactoren konden 37% van de genetische variatie in wel of niet beginnen-met-roken bij vrouwen en 55% in mannen verklaren. Een belangrijk deel is dus nog onverklaard. ${ }^{12}$

Een tweede persoonlijkheidsfactor waar onderzoek naar is gedaan is neuroticisme. Rookgedrag lijkt beïnvloed te worden door een interactie tussen neuroticisme en een erfelijke 'afwijking' in het SLC6A4-gen: alleen bij mensen die dit specifieke genotype hebben hangt roken samen met neuroticisme. ${ }^{45,46}$ Neuroticisme hangt tevens sterk samen met klinische depressiviteit. ${ }^{31,45}$ Verschillende studies hebben een significante samenhang gevonden tussen symptomen van depressiviteit en roken. ${ }^{47,48}$ Uit tweelingenonderzoek was al eerder gebleken dat klinische depressie en roken mogelijk voor een deel dezelfde genetische oorsprong hebben. ${ }^{48}$

IMPLICATIES VOOR VOORLICHTING

Als de 'gevoeligheidshypothese' correct is, hebben traditionele behandelingsmethoden die ingaan op cognitieve en sociale determinanten van stoppen-met-roken, vooral effect bij mensen die relatief weinig gevoelig zijn voor nicotine. Bij nicotinegevoelige individuen is een andere benadering noodzakelijk die meer ingrijpt op de genetische predispositie. ${ }^{13}$ De ontdekking van specifieke genetische determinanten van nicotineverslaving biedt belangrijke mogelijkheden om groepen rokers te onderscheiden die een verhoogd risico lopen op nicotineverslaving, of bij wie bepaalde vormen van
farmacotherapie het meest effectief zijn. ${ }^{27,33} \mathrm{Er}$ zijn snelle en betrouwbare DNA-tests in ontwikkeling.

In de recente literatuur worden al verschillende suggesties gedaan hoe genetisch onderzoek kan helpen om stop-pen-met-roken hulpmiddelen meer effectief te maken. Zo is het plausibel dat rokers met een bepaald genotype in het SLC6A4-gen, dat ingrijpt op de neurotransmitterstof serotonine, baat zullen hebben bij fluoxetine, een stof die depressieve rokers kan helpen bij het stoppen met roken. ${ }^{45}$ Een ander voorbeeld is het SLC6A3-9 genotype. Dragers hiervan hebben een verhoogde dopamine-activiteit. Deze groep zal mogelijk beter reageren op specifieke farmacotherapie die aangrijpt op dopamine zoals buproprion hydrochloride, dat recentelijk onder de merknaam Zyban in Nederland is toegelaten als hulpmiddel bij het stoppen met roken. De precieze werking van buproprion is nog niet geheel duidelijk, maar heeft waarschijnlijk te maken met inhibitie van dopaminereceptoren. ${ }^{49}$

Uit de bespreking van de literatuur blijkt dat de kans dat een persoon nicotineverslaafd raakt sterk bepaald wordt door erfelijke factoren. Er komt steeds meer zicht op de specifieke genen die hierbij een rol spelen. Dit inzicht heeft de potentie om tot fundamentele veranderingen te leiden in de voorlichting en preventie van roken, met name de voorlichting en hulpverlening aan mensen die willen stoppen met roken. Tot nu toe zijn gedragswetenschappen en de farmaceutische industrie er niet in geslaagd om een bijzonder effectief middel te ontwikkelen om met roken te stoppen. Zelfs de beste stopmethoden geven een verhoging van het succespercentage met slechts 20% boven de 5 tot 10% succeskans die een roker zonder hulpmiddelen heeft. ${ }^{50}$ De kans bestaat dat genetisch onderzoek in de toekomst wel leidt tot een krachtige therapie voor subgroepen van rokers. Voor de voorlichting aan jongeren om niet te gaan roken is minder duidelijk of genetica kan helpen, aangezien de onderzoeksbevindingen met betrekking tot de erfelijke component minder eensluidend zijn.

De belangstelling vanuit de gedragswetenschappen voor het onderzoek naar de genetica van roken en nicotineverslaving begint de laatste jaren toe te nemen, maar is jarenlang zeer gering geweest. Als we roken bijvoorbeeld vergelijken met alcohol, valt op dat de erfelijke component bij alcoholverslaving al veel langer algemeen erkend is dan de erfelijke component van nicotineverslaving. Een eerste verklaring voor het feit dat die erkenning bij roken veel later op gang is gekomen, is dat de genetica van het roken jarenlang in een minder positief daglicht heeft gestaan. De eerste onderzoekingen naar de genetische predispositie van roken werden gedaan in het licht van de discussie over de vraag of het roken van tabak longkanker veroorzaakt. Fisher betoogde in 1959 bijvoorbeeld dat sommige genen zowel in verband gebracht kunnen worden met roken als met kanker. ${ }^{10}$ Roken zou derhalve niet de oorzaak van kanker hoeven te zijn. Eysenck meende te kunnen vaststellen dat erfelijk bepaalde persoonlijkheidsfactoren oorzaak zijn van zowel kanker als roken. ${ }^{51}$ Deze opvatting werd door de tabaksindustrie aangehaald om de oorzakelijkheid van roken en kanker in twijfel te trekken. Mede door deze gebeurtenissen
richtte het onderzoek naar de determinanten van roken en van stoppen-met-roken zich vrij eenzijdig op de psychosociale factoren. Er is nu sprake van hernieuwde aandacht voor genetische factoren. ${ }^{52}$ Een andere mogelijke reden voor het negeren van erfelijkheid is de vrees dat de voorlichting over stoppen met roken er ingewikkelder en wellicht ook minder effectief door wordt. Als meer nadruk zou worden gelegd op de erfelijke predispositie van nicotineverslaving, zou het wellicht moeilijker worden om rokers ertoe te bewegen met roken te stoppen. Naar de consequenties voor de effectiviteit van voorlichting is helaas nog geen onderzoek verricht.

De tijd dat roken eenzijdig gezien werd als de resultante van de interactie tussen omgeving en gedrag is voorbij. Sinds begin jaren negentig wordt roken ook als een lichamelijke verslaving beschouwd. Dit leidde tot de ontwikkeling van een serie van effectieve hulpmiddelen (nicotinepleisters, - kauwgom, etc). Recentelijk is daar het inzicht bijgekomen dat een belangrijk deel van het probleem in de genen gezocht moet worden. In dit tijdschrift is recent betoogd dat onderzoek naar determinanten van ziekten zich in de toekomst meer moeten richten op multi-factoriële etiologie, waarbij zowel genetische als omgevingsinvloeden van belang zijn. ${ }^{53}$ Hetzelfde kan gezegd worden van het onderzoek naar determinanten van rookgedrag. Genen, omgeving en psyche werken niet onafhankelijk van elkaar, maar in interactie. ${ }^{54}$ Dit betekent dat er in de toekomst op het gebied van de ontwikkeling van stoppen-met-rokenvoorlichting meer gewerkt zal moeten worden in multidisciplinaire onderzoeksgroepen waarin genetica, farmacologie, psychologie en gezondheidsvoorlichting samenwerken.

Abstract

Heredity is an important determinant of smoking. This has long been underappriciated. However, the human genome project and other recent developments in genetics have stimulated research into the genetics of smoking. This article presents an overview of the literature on this subject. Results from twin studies suggest that smoking initiation is more strongly determined by environmental factors than by heredity. However, the extent to which adults become nicotine addicted has been found to be genetically determined for more than 50%. Recently, we have seen a strong increase in the number of DNA studies that look at the role genes play in nicotine addiction. The search for a 'nicotine gene' focuses on mediating processes through which genes influence addiction: the dopamine system, nicotine metabolism and personality factors. It is expected that this type of research will lead to new treatments and to a better match between (psycho) pharmacological drugs and the smoker. The insight that genes, environment and psyche interact to influence smoking behaviour, points to the need for multi-disciplinary research teams in which biologists, pharmacologists and behavioural scientists work together to develop more effective smoking cessation methods.
Key words: smoking, genetics, nicotine addiction, smoking cessation.

Literatuur

1 Bergen AW, Caporaso N. Cigarette smoking. J Nat Can Inst 1999;91:1365-75.
2 Peto R, Lopez AD, Boreham J, et al. Mortality from smoking in developed countries: 1950-2000: indirect estimates from national vital statistics. New York: Oxford Univ. Press, 1994.
3 Stivoro. Jaarverslag 1999. Den Haag: Stivoro, 2000.
4 Fisher EB, Lichtenstein E, Haire-Joshu D. Multiple determinants of tobacco use and cessation. In C.T. Orleans \& J. Slade, Nicotine Addiction: Principles and management. (pp. 59-88). New York: Oxford Univ. Press, 1993.
5 De Vries H, Backbier E, Kok G, et al. The impact of social influences in the context of attitude, self-efficacy, intention, and previous behavior as predictors of smoking onset. J Appl Soc Psych, 1995;25:237-57.
6 Evans RI, Dratt LM, Raines BE, et al. Social influences on smoking initiation: importance of distinguishing descriptive versus mediating process variables. J Appl Soc Psych 1988;18:925-43.
7 U.S. Office on Smoking and Health. The health consequences of smoking: nicotine addiction. A report of the Surgeon General. Rockville (MD): [DHHS Publ No. 88-8406].

8 Jones HE, Garrett BE, Griffiths RR. Subjective and physiological effects of intravenous nicotine and cocaine in cigarette smoking cocaine abusers. J Pharm Exp Therap, 1999; 288:188-97.
9 Flay BR, Petraitis J, Hu FB. Psychosocial risk and protective factors for adolescent tobacco use. Nicotin Tobac Res 1999;1:S59-S65.
10 Fisher RA. smoking: the cancer controversy. Some attempts to assess the evidence. London, Oliver \& Boyd: 1959.
11 Hughes JR. Genetics and smoking: A brief review. Behav Therap 1986;17:335-45.
12 Heath AC, Madden PAF. Genetic influences on smoking behavor. In JR Turner, LR Cardon \& JK Hewitt (Eds). Behavior Genetic Approaches in Behavioral Medicine. Plenum Press, New York: 1995.
13 Pomerleau OF. Individual differences in sensitivity to nicotine: implications for genetic research on nicotine dependence. Behav Genetics 1995;25:161-77.
14 Swan, GE. Implications of genetic epidemiology for the prevention of tobacco use. Nicotin Tobac Res, 1999;1:S49-S56.
15 True WR, Heath AC, Scherrer JF, et al. Genetic and environmental contributions to smoking. Addiction 1997;92:1277-87.
16 Derzon JH, Lipsey MW. Predicting tobacco use to age 18: A synthesis of longitudinal research. Addiction 1999;94:995-1006.
17 Boomsma DI, Koopmans JR, van Doornen LJP, et al. Genetic and social influences on starting to smoke: A study of Dutch adolescent twins and their parents. Addiction 1994;89:219-226.
18 Koopmans JR, Heath AC, Neale MC, et al. The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. Behav Gen 1999;29:383-93.
19 Han C, McGue MK, Iacono WG. Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: univariate and multivariate behavioural genetic analyses. Addiction 1999;94: 981-93.
20 Stalling MC, Hewitt JK, Beresford T, et al. A twin study of drinking and smoking onset and latencies from first use to regular use. Behavior Genetics 1999;29:409-21.
21 Shiffman S. Refining models of dependence: variations across persons and situations. Br J Addict 1991;86:611-5.
22 Shiffman S, Gnys M, Elash C, et al. Nicotine withdrawal in chippers and regular smokers: subjective and cognitive effects. Health Psych 1995;14:301-9.

23 Kendler KS, Neale MC, Sullivan Pet al. A population-based twin study in women of smoking initiation and nicotine dependence. Psych Med 1999,29:299-308.
24 Pomerleau OF, Collins AC, Shiffman S, et al. Why some people smoke and others do not: New perspectives. J Consult Clin Psych 1993;61:723-31.
25 Carmelli D, Swan GE, RobinetteD, et al. Genetic influence on smoking: A study of male twins. New Engl J Med 1992;327:829-33.
26 Heath AC, Martin NG. Genetic models for the natural history of smoking: Evidence for a genetic influence on smoking persistence. Add Behav 1993;18:19-34.
27 Rossing MA. Genetic influences on smoking: Candidate Genes. Env Health Persp 1998;106:231-8.
28 Crabbe JC, Phillips TJ, Burk KJ et al. Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends in Neuroscience 1999;22:173-9.
29 Lerman C, Main D, Audrain J, et al. Depression and self-medication with nicotine: the modifying influence of the dopamine D4 receptor gene. Health Psych, 1998;17, 56-62.
30 Straub RE, Sullivan PF, Ma Y, et al. Susceptibility genes for nicotine dependence: A genome scan and followup in an independent sample suggest that regions on chromosomes $2,4,10,16,17$ and 18 merit further study. Moluc Psychiatry 1999;4:129-44.
31 Gilbert DG, Gilbert BO. Personality, psychopathology, and nicotine response as mediators of the genetics of smoking. Behav Gen 1995;25:133-47.
32 Leshner AI. Understanding drug addiction: Implications for treatment. Hosp Pract 1996; 31:47-54.
33 Clarke PBS. Tobacco smoking, genes, and dopamine. The Lancet 1998;352:84-5.
34 Noble EP. The DRD2 gene, smoking, and lung cancer. Editorial. J Nat Cancer Inst 1998;90:343-5.
35 Noble EP. Addiction and its reward process through polymorpisms of the dopamine receptor gene: A review. Eur Psychiatry 15 (2): 79-89.
36 Comings DE, Ferry L, Bradshaw-Robinson S, et al. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996;6:73-9.
37 Spitz MR, Shi H, Yang F, et al. Case-control study of the D2 dopamine receptor gene and smoking status in lung cancer patients. J Nat Cancer Inst 1998;90:358-63.
38 Singleton AB, Thomson JH, Morris CM, et al. Lack of association between the dopamine D 2 receptor gene allele DRD2A1 and cigarette smoking in a United Kingdom population. Pharmocogenetics 1998;8:125-8.
39 Lerman C, Audrain JMain D, et al. Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psych 1999;19:14-20.
40 Sabol SZ, Nelson ML, Fisher C, et al. A genetic association for cigarette smoking behavior Health Psych 1999;18:7-13.
41 Heath AC, Madden PAF, Slutske Wset al. Personality and the inheritance of smoking behavior: A genetic perspective. Behav Genetics 1995;25:103-17.
42 Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature 1998;393:750.
43 Oscarson M, Gullsten H, Rautio A, et al. Genotyping of human cytochrmoe P450 2 A6 (CYP2A6): a nicotine C-oxidase. FEBS Lett 1998;438:201-5.
44 Zuckerman M. Sensation seeking: beyond the optimum level of arousal. Hillsdale,NJ, Erlbaum,:1979.

45 Hu S, Brody CL, Fisher C, et al. Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior. Mol Psychiatry 2000;4:181-8.
46 Lerman C, Caporaso NE, Audrain J, et al. Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Mol Psychiatry 2000;5:189-92.
47 Covey LS, Glassman AH, Stetner F. Cigarette smoking and major sepression. J Addict Diseases 1998;17:35-46.
48 Kendler KS, Nelae MC, MacLean CJ, et al. Smoking and major depression: A causal analysis. Arch Gen Psychiatry 1993;50:36-43.
49 Broer J, Meyboom-de Jong, van der Molen T. Nieuwe mogelijkheden om te stoppen met roken. Med Contact 1999;54:1159-63.
50 Cinciripini PM, McClure JB. Smoking cessation: Recent developments in behavioral and pharmacologic interventions. Oncology 1998;Fe-bruary:249-59.

51 Eysenck HJ. The causes and effects of smoking. London : Maurice Temple Smith, 1980.
52 Kozlowski LT. Rehabilitating a genetic perspective in the study of tobacco and alcohol use. Br J Addict 1991;86:517-20.
53 Cornel MC. Omgeving en gen in de epidemiologie. Tijdschr Gezondheidsw 1999;77 (WEON-supplement): 3.
54 Hudmon KS, Swan GE. Genetics and nicotine dependence: An update and call for integration. SRNT Newsletter 1998;4(3):10-1.

CORRESPONDENTIE-ADRES:

Dr. M.C. Willemsen, Stivoro, Postbus 16070, 2500 BB Den Haag, tel. 0703522554 , fax 0703544829
E-mail: mwillemsen@stivoro.nl

Voor publicatie aanvaard op 5 januari 2001

[^0]: ${ }^{*}$ M. Willemsen, ${ }^{1}$ J. Vink, ${ }^{2}$ D. Boomsma ${ }^{2}$
 ${ }^{1}$ Stivoro, Den Haag
 ${ }^{2}$ Vakgroep Biologische Psychologie, Vrije Universiteit, Amsterdam

