
VU Research Portal

MOLECULAR GENETIC INVESTIGATION OF TWINS, FAMILIES, AND POPULATIONS

Beck, Jeffrey John

2021

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Beck, J. J. (2021). MOLECULAR GENETIC INVESTIGATION OF TWINS, FAMILIES, AND POPULATIONS.
[PhD-Thesis - Research and graduation internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 20. okt.. 2023

https://research.vu.nl/en/publications/1055d066-68ab-4dad-aada-c46d826043f2


M
O

LEC
ULA

R G
EN

ETIC
 IN

V
ESTIG

A
TIO

N
 O

F TW
IN

S, FA
M

ILIES, A
N

D
 PO

PULA
TIO

N
S

JEFFREY JO
H

N
 BEC

K

MOLECULAR GENETIC INVESTIGATION OF
TWINS, FAMILIES, AND POPULATIONS

Jeffrey John Beck



MOLECULAR GENETIC INVESTIGATION OF
TWINS, FAMILIES, AND POPULATIONS

Jeffrey John Beck



Author: Jeffrey John Beck

Printing: Ridderprint, www.ridderprint.nl
Layout & cover design: Sara Terwisscha van Scheltinga, persoonlijkproefschrift.nl

lSBN: 978-94-6416-898-3

Copyright 2021 © Jeffrey John Beck
The Netherlands. All rights reserved. No parts of this thesis may be reproduced, 
stored in a retrieval system or transmitted in any form or by any means without 
permission of the author.

 

 
 
 
 
 

VRIJE UNIVERSITEIT 
 

 
 
 

MOLECULAR GENETIC INVESTIGATION OF TWINS, FAMILIES, 

AND POPULATIONS 
 
 

 
 
 
 
 

ACADEMISCH PROEFSCHRIFT 
 

ter verkrijging van de graad Doctor aan 
de Vrije Universiteit Amsterdam, 
op gezag van de rector magnificus 

prof.dr. C.M. van Praag, 
in het openbaar te verdedigen 

ten overstaan van de promotiecommissie 
van de Faculteit der Gedrags- en Bewegingswetenschappen 

op donderdag 16 december 2021 om 15.45 uur 
in een bijeenkomst van de universiteit, 

De Boelelaan 1105 
 
 
 
 
 
 
 
 
 
 

door 
 

Jeffrey John Beck 
 

geboren te Marquette, Michigan, Verenigde Staten 
 

 
 
 
  
  



 

 
 
 
 

promotor: prof.dr. D.I. Boomsma  
 

  
copromotoren:  dr. E.A. Ehli 

dr. J.J. Hottenga 
 

  
promotiecommissie: prof.dr. L. Henneman 

prof.dr. P. Scheet 
prof.dr. K. Eyster 
dr. A. Abdellaoui 
prof.dr. C.B. Lambalk 
prof.dr. A.H.M. Willemsen 

 

 

 

Paranymphs: Brandon N. Johnson 
Austin J. Van Asselt  

 

  
 



ACKNOWLEDGMENTS
I gratefully acknowledge my parents, Allan and Patricia Beck, and my brother, 
Bradley Beck, and his family (Erin, Ella, Hally, Bobbie). Throughout my entire 
life and especially during graduate school, their unending compassion, 
unconditional support, and persistent encouragement motivated me never 
to give up and continuously pursue my dreams. I am forever appreciative 
of them and their unwavering patience and steadfast reassurance. I cannot 
possibly thank them enough. 

Additionally, countless acquaintances, family members, friends, and 
teammates have supported me throughout my life, particularly during the 
completion of this thesis. Although I cannot specifically acknowledge them 
all, I am incredibly appreciative of every one of them. 

I also want to extend a sincere thank you to my promoter, Dorret Boomsma, and 
my co-promoters, Jouke-Jan Hottenga and Erik Ehli. Each has been invaluable 
in helping me grow as an aspiring scientist in their unique ways, and I am very 
thankful for their supervision and guidance.

To my Dutch colleagues, I am incredibly appreciative of the hospitality and 
knowledge you imparted to me during numerous trips across the pond. You 
constantly invited me and made me feel welcome. I learned so much about 
Dutch culture and the Netherlands throughout these experiences. I am forever 
grateful for your compassion and the memories we shared.

Last but certainly not least, I would like to extend sincere appreciation to the 
Avera Institute for Human Genetics, the University of South Dakota, and Vrije 
Universiteit for fostering an educational and supportive atmosphere. For 
the last several years, these institutions have provided an environment that 
promoted my scientific development. Without the collaborative efforts of these 
institutions, none of the work presented in this thesis would have been possible. 



TABLE OF CONTENTS

1 INTRODUCTION 13

2 BIOLOGY AND GENETICS OF DIZYGOTIC
AND MONOZYGOTIC TWINNING 37

3 PEDIGREE BASED ANALYSIS OF HUMAN DIZYGOTIC
TWINNING USING WHOLE GENOME SEQUENCE DATA 65

4 GENETIC SIMILARITY ASSESSMENT OF TWIN-FAMILY 
POPULATIONS BY CUSTOM-DESIGNED GENOTYPING ARRAY 85

5 GENETIC META-ANALYSIS OF TWIN BIRTH WEIGHT SHOWS 
HIGH GENETIC CORRELATION WITH SINGLETON BIRTH WEIGHT 119

6 INFERENCE OF GENETIC ANCESTRY: EVALUATION
WITHIN FAMILIES AND ACROSS GENOTYPING ARRAYS 159

7 SUMMARY AND
DISCUSSION 197

8 GENERAL
SUMMARY 231



1 INTRODUCTION



14 15

GENERAL INTRODUCTIONCHAPTER 1

TWINS AND TWIN GENETICS
Twins have intrigued human beings for centuries. The sameness exhibited by 
twins is fascinating, although the dissimilarities and manifestation of those 
differences are often even more compelling. Numerous literary texts and 
philosophical publications have drawn inspiration from and capitalized on 
the intriguing nature of twins. Some of those works highlight the unique and 
uncanny similarities of identical twins (e.g., The Comedy of Errors by William 
Shakespeare). In contrast, others emphasize the divergent appearance and 
behaviors of fraternal twins (e.g., Twelfth Night by William Shakespeare and 
biblical accounts of Jacob and Esau in the Book of Genesis).

Whether identical or fraternal, the defining characteristics of twins have 
also piqued the interest of scientists. For one, twins exemplify a form of a 
‘natural experiment,’ in which the degree of genetic and environmental 
sharing are known or controlled for in varying amounts. In this way, twins 
are valuable study subjects when control for genetic background and early 
environmental influences is desired. Informed study designs utilize twins to 
estimate the contribution of genetic factors to disease, trait, or phenotype 
variation. Secondly, the biological and endocrinological processes fostering 
the twinning process also have great medical and scientific relevance. 
Enhanced understanding of the regulatory mechanisms underlying ovarian 
function, follicular growth, and maintenance of a multiple gestation pregnancy 
represent critical research areas on women’s health and female (in)fertility. 
Our knowledge of the etiology of the twinning process has vastly improved 
in recent years, although a comprehensive understanding of identical and 
fraternal twins remains elusive.

Two kinds of twins exist - identical or monozygotic (MZ) twins and fraternal 
(non-identical) or dizygotic (DZ) twins. Both types of twins share prenatal and 
early environmental influences. The distinction of twin type is based on the 
number of independently fertilized zygotes during a single pregnancy; hence, 
the nomenclature monozygotic (i.e., one zygote) and dizygotic (i.e., two zygotes). 
MZ twins result from a postzygotic splitting event of a single fertilized zygote 
early in gestation resulting in a separation of cells into two or more embryos. 
MZ twins are therefore matched for genetic background. Alternatively, DZ twins 
derive from the release of two eggs, which are then independently fertilized 
by two sperm. Thus, DZ twins share the same amount of genetic material as 
ordinary siblings.

The difference in the number of fertilized zygotes dictates whether the twin 
pair is MZ or DZ. The universally accepted model for the generation of MZ 
twins is the ‘fission model,’ which conceptually defines the splitting of an 
embryo into two distinct entities within the first two weeks of development. 
The stage at which the splitting occurs is thought to determine membrane 
anatomy (chorionicity and amnionicity). Though widely adopted, the fission 
conjecture has been critically challenged, and alternative models have been 
proposed (i.e., the ‘fusion model’ – refer to chapter 2 for more details) [1]. The 
debate and remaining uncertainty around these hypotheses reiterate that 
the biological processes fundamental to the generation of MZ twins are still 
largely undetermined.

Regarding DZ twins, much more is understood concerning genetic and 
biological mechanisms leading to the development of two independent 
zygotes. Biologically, DZ twins arise from mechanisms that operate on the 
selection of developing ovarian follicles, where two follicles mature instead of 
one, releasing two oocytes that are then subsequently fertilized. A myriad of 
maternal factors are involved, including genetic disposition, hormonal (dys)
regulation and coordination, as well as anatomical and physiological support. 
Despite the genetic influence on DZ twinning, it is still not possible to define the 
risk of having twins at an individual level.

Knowledge gaps of the twinning process persist, yet it is well understood 
that there are distinguishing characteristics in the mechanisms leading 
to MZ and DZ twins. Also evident is variation in the occurrence of MZ and 
DZ twins across worldwide populations. In general, MZ twinning seems to 
be a random yet consistent event, occurring in roughly 3 out of every 1000 
maternities. Alternatively, rates of DZ twinning seem to fluctuate considerably 
with geography and time. Variation in DZ twinning rates have been studied 
extensively, with the highest rates observed in Sub-Saharan Africa (~23-40 per 
1000 maternities), intermediate rates in Europe (10-20 per 1000 maternities), and 
the lowest rates occurring in Asia (~5-6 per 1000 maternities) [2, 3].

The various characteristics of twins and twin genetics are a central theme to 
this thesis. In chapter 2, an extensive review of the biology and genetics of MZ 
and DZ twinning is presented, highlighting what is known about twinning based 
on historical observations, epidemiological and clinical studies, and more 
recent molecular investigations. Chapter 3 overviews a molecular genetic 
analysis of DZ twinning in a large, multigenerational pedigree with multiple 
mothers of DZ twins. Chapter 4 utilizes genetic data from globally diverse twin-
family populations to establish the degree of interpopulation genetic similarity 
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using a custom-designed genotyping microarray, including genetic markers 
specific to DZ twinning and female fertility.

Twins are representative of the general population as participants in research 
projects since they tend to be born in all strata of society [4]. However, the 
inclusion of twin data into research projects raises additional questions. For 
example, to what extent can findings from genetic association studies of birth 
weight in singletons be generalized to twins? And can twins be included to 
boost sample sizes? Accordingly, chapter 4 focuses on the genetics underlying 
birth weight, a complex phenotype with maternal and fetal contributions, in 
twins compared to singletons.

Increasingly, data collection efforts for twin studies include (nuclear) family 
members in addition to the twin pair. Such family-based study designs offer 
advanced options for research and provide advantages over population-
based approaches. Chapter 5 explores genetic ancestry estimates in twins 
and their family members as determined by popular bioinformatic methods.

THE NETHERLANDS TWIN REGISTER AT VRIJE UNIVERSITEIT
Scientific studies have exploited the differential genetic relatedness among 
twins by incorporating them in their designs since the early 1900s [5, 6]. 
Following the seminal twin studies, more elaborate study designs have been 
employed to partition trait variation or disease susceptibility into genetic and 
environmental components. The scientific merit of studies featuring twins was 
quickly realized, necessitating concerted efforts for gathering genetic and 
phenotypic data from twins and their family members.

Twin registries have increasingly become attractive resources for promoting 
twin and epidemiological studies by collecting biological samples and 
longitudinal data. The Netherlands Twin Register (NTR), maintained by the 
Department of Biological Psychology at Vrije Universiteit, is one example 
among global twin registers. Initiated in 1987 [7], the NTR has invited twins and 
their family members to enroll and participate in a wide variety of research 
studies related to behavior, development, and health. A primary research goal 
of the NTR is to analyze genetic and phenotypic data obtained from twins 
to disentangle the genetic and environmental contributions to cognitive 
and emotional development in childhood and adolescence as well as adult 
behavior, health, and well-being.

For more than thirty years [8], the NTR has curated a rich data resource for 
assessing genetic and nongenetic trait influences and contributing to gene-

finding initiatives for complex human traits. Since its inception, more than 
120,000 twins have enrolled in the twin register with nearly equal representation 
of their family members. Most twins and their families have participated in 
survey studies, with subsets generously donating some form of biological 
material. Longitudinal phenotyping, biological sample collection, and extended 
pedigrees with multigenerational representation have enabled research 
initiatives aimed at gene discovery, modeling causality, determining genetic 
inheritance, and studying population genetics.

An ongoing effort of the NTR is to collect biological samples from individuals 
who have provided phenotypic information. Whole blood samples are 
collected from adult twins to measure metabolic and immunological markers 
and extract genetic material (DNA and RNA) used in molecular genetic studies. 
In addition, adult twins and NTR participants who do not take part in biobank 
studies are asked to provide a swab of buccal epithelial cells, a far less invasive 
sample collection method. Buccal swabs are also the primary DNA collection 
method for young twins, their siblings, and parents. Large-scale sample 
collection is a primary motivation of the NTR, for which the scientific benefits 
are evident, especially when coupled with survey data. For twin participants 
themselves, receiving information on their zygosity is an extra incentive.

A primary interest of this thesis is the measurement of genetic variation 
from extracted DNA of the supplied biomaterial by NTR participants. Recent 
technological developments have enabled the direct measurement of 
hundreds of thousands of genetic variants at the DNA level at an affordable 
cost. The genetic variants, most often single nucleotide polymorphisms (SNPs), 
can be directly measured with polymerase chain reaction (PCR), microarray 
genotyping, or whole-genome sequencing. Regardless of the chosen 
technology, knowledge of an individual’s genetic composition is attained.

Creating an extensive database of genetic measures linked with survey 
responses has established the NTR as a data-rich resource for studying human 
traits and diseases. Accordingly, the NTR has contributed to gene-discovery 
efforts for a considerable number of human phenotypes. In many of these 
studies, the NTR represents a single contribution to a concerted effort of many 
population-based twin registers from around the globe. Often, these efforts 
are organized by consortia dedicated to unraveling the genetic contributions 
to a particular trait or disease.

In this thesis, several aspects of the value of NTR genetic and phenotypic 
data are discussed. In chapter 3, a large, multigenerational Dutch pedigree 
with a rich history of DZ twinning is investigated using genotype and whole-
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genome sequence data. In chapter 4, population genetics of NTR participants 
are compared to other European ancestry-based populations for which 
data are routinely combined via consortia-led projects for gene discovery. 
In chapter 5, genetic data and birth weight information from twins enrolled 
in the NTR, and other worldwide twin registers were used to conduct a 
genome-wide association meta-analysis (GWAMA) on birth weight in twins. 
In chapter 6, genetic information from NTR participants was utilized to compare 
bioinformatic estimates of genetic ancestry in twins and their families.

THE AVERA TWIN REGISTER – A MIDWESTERN 
AMERICAN TWIN COHORT
Twin registers from around the world, especially prominent entities such as the 
NTR, have established the immense scientific importance of combined genetic 
and phenotypic data. The often-limited geographical scope of twin registers 
allows for meaningful comparisons of gene-trait associations between and 
within populations. Thus, an added incentive for establishing a population-
based twin register is the opportunity to contribute to joint genetic analyses 
for gene discovery organized by global consortia.

The Avera Institute for Human Genetics (AIHG) in Sioux Falls, South Dakota, 
established the Avera Twin Register (ATR) in May of 2016 [9, 10]. The ATR is the first 
and only twin register in South Dakota. The primary goal of the ATR is to study 
the genetic and environmental influences on health, disease, and complex 
traits by harnessing the power of longitudinal biological sample collection 
and survey correspondence. Although twins and their family members have 
enrolled from across all United States regions, a majority come from Midwestern 
states, including South Dakota, North Dakota, Minnesota, Iowa, and Nebraska. In 
addition to serving as a prime research model for studying health and disease 
in a regional setting, another core goal of the ATR is to contribute to consortia-
driven large-scale genetic studies focusing on the genetic underpinnings of 
complex traits. Furthermore, as a division of the molecular genetics lab at 
AIHG, the ATR prioritizes extensions of the twin design with advanced molecular 
assays of DNA, human microchimerism [11, 12], epigenetics (e.g., methylation) 
[13, 14], telomere repeat mass [15], and the gut microbiome [16, 17].

Chapter 4 assesses the degree of genetic similarity between the Midwestern 
American population exemplified by the ATR and global twin-family populations 
originating from the NTR and Australia. The work presented in chapter 4 
represents the first application of genetic data collected on enrolled and 
consented participants of the ATR. Moreover, paired genotypic and phenotypic 
data for ATR participants were analyzed in chapter 5 to contribute to a global 

effort of gene discovery for birth weight in twins. This application represents 
the first usage of phenotypic data collected by the ATR.

THE NTR-AVERA COLLABORATION
Large-scale genetic investigations of complex traits have demonstrated the 
need for a collaborative research model to achieve the required sample sizes 
for answering complicated genetic questions. Often institutions/facilities are 
not fully equipped with both the laboratory instrumentation to systematically 
measure genetic variation and the computational equipment necessary to 
process and analyze the generated data. The disparity is exacerbated by 
the need for specialized knowledge and skill sets relevant to the laboratory 
setting and downstream bioinformatic/statistical analyses. Leveraging their 
expertise in wet-lab and dry-lab application, respectively, the AIHG and the NTR 
initiated collaboration in 2008 with the establishment of a formal agreement 
in May 2015. To this end, the molecular genetics laboratory at the AIHG has 
supplied the expertise and infrastructure necessary for performing a multitude 
of molecular genetic experiments.

An essential component of the collaborative agreement between the AIHG 
and the NTR is generating and analyzing genetic data and combining these 
data with health, lifestyle, and behavioral assessments to further gene 
discovery and contribute to projects aimed at improving physical and mental 
health. Microarray technologies have been the preferred method for directly 
measuring genetic variation. For the most part, the allure is due to the cost-
effectiveness of microarrays compared to whole-genome sequencing. While 
not as comprehensive as sequencing-based approaches, microarrays provide 
genetic information in a more selective manner. Microarrays directly assay sites 
or regions of the human genome that are known to vary among individuals. 
The AIHG has offered the capability of generating genotype data with three 
primary microarray platforms, namely Affymetrix SNP 6.0, Affymetrix Axiom, 
and the Illumina Global Screening Array (GSA). Data from all three genotyping 
platforms were fundamental to NTR and ATR studies presented in chapters 3, 
4, 5, and 6.

The NTR-Avera collaborative genotyping initiative has been extremely 
successful since its inception. The productive partnership has inspired fruitful 
contributions to several large-scale association studies spanning various 
human traits and disorders. Examples include aggression [18, 19], attention 
problems [20-25], brain structure and volume [26-29], depression [30-34], 
exercise behavior [35, 36], female fertility and twinning [37, 38], intelligence 
[39], substance use [40-42], personality [43], and a variety of others [44-47].
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Exploiting the pertinent expertise of scientists at the AIHG and the NTR, the NTR-
Avera partnership further enabled the design of customized DNA microarrays. 
The arrays were designed to enhance coverage of the human genome by 
utilizing suitable whole-genome reference sequences obtained from the 
Genome of the Netherlands project [48]. Additionally, the custom genotyping 
solutions were designed to include markers specific to pharmacogenomic 
responsiveness, cardiometabolic disease, psychiatric disorders, and other 
traits of particular interest, including fertility and twinning. The portfolio of 
custom-designed microarrays includes the Affymetrix Axiom-NL array [49] 
and its successor, the Illumina GSA. A detailed description of the GSA design 
and its first research application is provided in chapter 4.

In addition to DNA genotyping, the AIHG excels in performing additional 
molecular genetic methods, including, but not limited to, measurements of 
epigenetic signatures (i.e., DNA methylation) and whole-genome sequencing. 
The cost of sequencing has decreased by orders of magnitude since the 
completion of the Human Genome Project, reflecting Moore’s Law (https://
www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-
Genome-cost). The more affordable price, together with the ever-growing 
desire to discover trait-associated genetic variants extending beyond those 
identified through SNP-based association studies, fosters novel research ideas 
that necessitate whole-genome sequence data. For example, detecting rare 
and functional variants associated with the DZ twinning process that cannot 
be identified through traditional common variant association studies. In 
chapter 3, the first results of a whole-genome sequencing project on a large 
Dutch pedigree with a rich history of DZ twinning are presented. The NTR 
ascertained the large pedigree for multiple mothers of spontaneous DZ twins 
with subsequent whole-genome sequencing at the AIHG on an Illumina Hi-Seq 
2500. To date, this project represents the first NTR-Avera collaborative human 
whole-genome sequencing project.

SNP GENOTYPING
The human genome is enormous, comprising about three billion base pairs of 
DNA. The amount of biochemical individuality, or genetic variation, between 
any two humans is estimated at around 0.1% [50, 51]. On average, this means 
that about one base pair out of 1,000 will vary between any two individuals, 
equating to approximately 3 million total differences. However, the estimate 
may be higher if more complex forms of variation (e.g., copy-number variants) 
are considered. Given the vast number of potential genetic differences 
between humans, there exists a need for automated procedures to measure 
and analyze genetic variation. DNA microarray technologies have done just 

that, allowing for the assessment of thousands or even millions of genetic 
variants (i.e., SNPs) in a single experiment. Information obtained from these 
genotyping experiments is routinely utilized in population genetics, studies of 
pharmacogenomics, and precision medicine research.

Whereas the exact order of DNA base pairs can be determined in a targeted 
or whole-genome approach with sequencing methodologies, SNP genotyping 
more selectively defines which specific genetic variants an individual 
possesses. Given that greater than 10 million common genetic variants are 
likely to exist [52], SNP genotyping aims to measure a fraction of these variants 
directly, often between 100,000 and 1,000,000. Thus, these methods rely upon 
knowing where key variation exists within the genome. Identifying the minimal 
set of SNPs needed to genotype the entire human genome was the driving 
force behind establishing the International HapMap project [53].

Concerted whole-genome sequencing efforts like the 1000 Genomes Project 
[54] and the Genome of the Netherlands [48] have been invaluable for providing 
a genetic ‘roadmap’ of the human genome, highlighting important areas of 
genetic variation that exist between individuals and populations. These large-
scale initiatives represent genetic reference databases used to help design and 
enable content selection for SNP genotyping microarrays. Additionally, these 
genetic reference panels indirectly enhance the information obtained from 
SNP genotyping experiments through a process called imputation. Imputation 
allows for the statistical inference of genotypes not directly measured. As a 
result, SNP genotyping followed by imputation yields datasets mimicking 
whole-genome sequencing experiments, but at a fraction of the cost.

While direct genotyping of SNPs throughout the genome provides a snapshot 
of the genetic variation per individual, it by no means is a comprehensive 
evaluation. Imputation of genotypic data is a commonly employed technique 
for bolstering the amount of genetic information that can be gleaned from 
a SNP genotyping experiment. A fundamental principle of imputation is the 
occurrence of non-random association of alleles at different locations within 
the genome, termed linkage disequilibrium (LD). Because of linked allelic 
information, direct measurement of all genetic markers is not necessary. 
Imputation leverages the direct measurement of carefully selected genetic 
variants in regions of little recombination, known as LD or haplotype blocks. 
Measurement of selected variants coupled with knowledge of associated 
alleles allows one to infer information about the genetic variants not directly 
assayed. The most informative markers constitute a core ‘backbone’ of 
genetic variants used for imputation in this context. The backbone is based on 
commonly utilized reference panels so that the remainder of genetic variants 
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can be inferred from large population databases of whole-genome sequence 
data.

The technique of imputation has become an essential tool for geneticists 
performing genome-wide association studies. Imputation increases the 
power of genome-wide association scans by enhancing the number of genetic 
variants for association testing. Furthermore, imputation is particularly useful 
when aggregating genetic data obtained from different genotyping platforms 
comprised of other SNP markers, a persistent occurrence in the era of modern 
association studies. The studies described in chapters 4 and 5 were reliant 
upon genotype imputation.

Creating trustworthy technologies and accurate methods for interrogating 
regions of genetic variation is pivotal for obtaining reliable genotypes. Opposed 
to generating numerous reads per base in whole-genome sequencing (i.e., 
coverage depth), any given marker on a genotyping array is usually only 
measured once unless probes for a particular variant exist in replicate. Thus, 
the array design and experiment chemistry must be robust to provide accurate 
results. Fortuitously, pioneering biotechnology companies, such as Affymetrix 
(now part of Thermo Fisher Scientific), Illumina, and others, have devoted years 
of scientific expertise to optimizing genotyping solutions. The AIHG has routinely 
employed these products to facilitate large-scale genotyping projects. 
Furthermore, through the NTR-Avera collaborative partnership, scientists have 
worked hand-in-hand with biotechnology companies to design population-
optimized custom genotyping arrays, such as the Axiom-NL array [49] and a 
customized Illumina Global Screening Array (described in chapter 4). These SNP 
microarrays were carefully designed to possess a core imputation backbone 
and additional content related to phenotypes of interest.

Design of a customized SNP genotyping microarray involves providing the array 
manufacturer with a list of targets in the form of genomic coordinates (i.e., the 
chromosome number with start and end base pair positions), SNP reference 
numbers (i.e., rsIDs), or gene regions (i.e., gene names and the number of bases 
upstream/downstream). The user-supplied targets dictate probe design by the 
manufacturer. Probes are short synthetically made DNA molecules, known as 
oligonucleotides, that interrogate a specific molecular region or site through 
complementary binding. Genomic target information is typically entered via 
a web application, which subsequently reports metrics regarding the likely 
predictive performance of each probe given the supplied target. Estimated 
probe performance is a function of the region that flanks the target and how 
difficult it is to design probes that will uniquely and reliably bind.

During array manufacturing, probe sequences complementary to the target 
are spotted or synthesized directly onto an immobilized glass or silicon surface 
(e.g., silica microbeads) using various technologies, including photolithography. 
The resulting product is a SNP microarray that somewhat resembles a 
microscope slide, capable of assaying hundreds of thousands or millions of 
genotypes per individual at once. Often the microarrays are combined into 
a bead chip or plate format, enabling the simultaneous genotyping of many 
individuals (e.g., 24 for Illumina GSA bead chips, 96 for Axiom-NL array plates).

Regardless of the array manufacturer, a SNP genotyping experiment typically 
involves six primary steps. Shown in Figure 1.1 is an example SNP genotyping 
workflow with the Axiom array. In a first step, high-quality DNA is extracted 
and amplified to make copies of the genetic material. Secondly, the whole 
genome amplified DNA is subjected to enzymatic or mechanical fragmentation 
procedures to cleave the DNA into pieces. In a third step, the fragmented DNA 
is precipitated. Fourthly, the precipitated fragmented DNA is resuspended. In 
the fifth step, DNA is hybridized to the microarray containing the probes, or 
complementary oligonucleotides. Washing removes any non-complementary 
DNA that does not bind. Lastly, in a final ligation/extension and staining step, 
DNA successfully hybridizing to the array will emit fluorescent signals that are 
imaged with sophisticated instrumentation. The fluorescent signals are then 
analyzed and converted into raw genotype calls for downstream analysis using 
array-specific, and often proprietary software.

Figure 1.1 - Workflow for the Axiom array (image obtained from https://www.affymetrix.
com/products_services/instruments/specific/axiom_atp.affx)

Several aspects of SNP genotyping and the data obtained from the experiments 
were fundamental to the work presented in this thesis. During the first two years 
of my Ph.D. trajectory, I spent considerable time performing SNP genotyping 
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experiments with the Axiom-NL array on thousands of NTR participants. 
As the principal performer of these genotyping experiments, I gained an 
immense understanding of the SNP genotyping process by troubleshooting 
and optimizing high-throughput strategies. The extensive genotyping effort 
produced substantial datasets that were integral to many elements of this 
thesis. In chapter 2, the genetics of twins are described, in which SNP genotyping 
is discussed as the most reliable strategy for determining the zygosity status of 
same-sex twin pairs. Also, chapter 2 provides an overview of research identifying 
the first genetic variants associated with DZ twinning, which were established 
through SNP genotyping experiments and subsequent imputation. In chapter 
3, SNP genotype data were used to locate genetic regions co-segregating 
with being a mother of DZ twins. In chapter 4, a detailed description of the 
Illumina GSA design and its implementation is provided. Chapter 5 details the 
first genome-wide association study in the ATR and the findings of a GWAMA of 
twin birth weight, which utilized imputed and harmonized SNP genotype data 
on 42,212 twins from eight global population cohorts. Lastly, chapter 6 presents 
an empirical evaluation of ancestry estimation in twins and families based on 
genetic data from three distinct SNP genotyping arrays. The NTR has uniquely 
generated SNP genotype data on both members of a MZ twin pair.

GENOME-WIDE ASSOCIATION STUDIES
Over the years, significant scientific interest has been devoted to identifying 
associations between genotype and phenotype. Ultimately, these studies’ 
underlying goal is to better understand trait or disease etiology to improve 
prediction, prevention, or treatment. Although there is a long history of study 
designs and strategies for elucidating genotype-phenotype associations 
(e.g., candidate gene studies, linkage studies in multi-generation pedigrees 
and sibling pairs), much of the effort in the last 10-15 years can be ascribed 
to genome-wide association studies (GWAS). In part, this is due to what is 
sometimes called the hypothesis-free nature underlying the GWAS design. 
GWAS do not require a priori knowledge or selection of interesting genetic 
variants related to a particular trait. However, they do test the hypothesis 
that a variant or multiple variants are associated with a trait. As opposed 
to candidate-gene driven approaches, a benefit of GWAS is that findings 
can often yield results that otherwise would not have been considered. This 
characteristic of GWAS has made it a popular and astonishingly successful 
study design, with greater than 270,000 trait-variant associations described in 
more than 5,000 publications to date (https://www.ebi.ac.uk/gwas/ ).

Despite the success and remarkable range of discoveries made by GWAS 
in recent years, challenges are still encountered when dealing with intrinsic 

limitations. Methodologically, GWAS utilize large samples of human genetic 
data (millions of SNPs) and phenotypic information to detect association by 
simultaneously testing the effect of genetic variants on a particular phenotype 
[55-58]. In this manner, the practice of performing millions of concurrent 
statistical tests necessitates stringent statistical correction to account for 
multiple testing and the potential for false positives. Thus, an omnipresent 
concern for GWAS is adequate statistical power to account for these corrections 
and the potentially small effects of individual SNPs.

The power to detect the associations between genetic variants and a trait 
depends on the chosen significance level, the experimental sample size, the 
effect size of the variant(s), the measurement of the phenotype, and several 
other factors. A genome-wide significance P-value threshold of 5x10-8 has 
become the standard in GWAS to account for the vast number of statistical 
tests being done [59, 60]. Although widely adopted, even more stringent 
thresholds have been suggested for studies using lower frequency genetic 
variants [61]. Thus, increasing sample sizes can enhance the power for 
detection. One sensible approach is to aggregate relevant data from as many 
resources as possible. In doing so, concerns are raised regarding systematic 
differences in allele frequencies that can occur by incorporating individuals 
from various (sub)populations, leading to spurious results and false positives. 
This phenomenon is termed population stratification and represents an 
important source of confounding that must be appropriately addressed in 
any GWAS [62].

GWAS and the essential concepts underlying their design represent a 
substantial portion of the work presented in this thesis. Broadly, the idea of 
population data aggregation for achieving adequate statistical power in a 
GWAS is empirically evaluated in chapter 4. Furthermore, a meta-analysis of 
GWAS results on birth weight in twins from worldwide twin registers is described 
in chapter 5. Chapter 6 utilizes genetic data to compare estimates of genetic 
ancestry, which are commonly employed steps in association studies and 
important indicators of population structure.

PRINCIPAL COMPONENTS ANALYSIS
In genetic association studies, principal component analysis (PCA) is an 
important method for summarizing genetic variation. PCA is a very general 
mathematical approach commonly utilized for dimensionality reduction of 
large data sets. PCA works by transforming many variables into a smaller 
group of uncorrelated variables containing all the information in the original 
data. The (much) smaller set of variables preserve most of the variation in the 
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data and are called principal components (PCs). In general, PCA summarizes 
the most prominent patterns of variation in a data set containing numerous 
measurements.

In genetics, PCA condenses many individuals’ genetic variation (typically tens 
or hundreds of thousands of genetic markers) into a relatively small number 
(often around 10) of PCs. The patterns of variation defined by PCA from genetic 
datasets of global populations have been shown to reflect ancestry differences 
and correlate with geography [63]. However, if implemented incorrectly, the 
validity of these relationships can be biased [64]. Regardless, PCA has been 
increasingly utilized to infer population (sub)structure from genetic data since 
its first adaptation for human genomic data in 1963 [65]. PCA is valuable in 
GWAS for adequately accounting for population structure. In practice, the PCs 
summarizing ancestry and other variation in the genotype data are used as 
covariates in association models.

In this thesis, PCA was instrumental for the work presented in several chapters. 
In chapter 4, PCA of Australian, Dutch, and Midwestern American individuals 
genotyped at the AIHG on the Illumina GSA was performed to visualize and 
compare population structure. PCA was also utilized to project study samples 
onto PCs calculated by a global reference set acquired from the Human 
Genome Diversity Project. The projection procedure allowed for a broader 
resolution assessment of the genetic similarity of the populations of interest. 
Chapter 5 utilized PCA and PCs to correct for cohort-specific metrics (e.g., 
genetic ancestry, genotyping platform, genotyping batch) in each GWAS of 
birth weight that contributed to the overall meta-analysis. Genomic PCs were 
also used as covariates in the predictive model of birth weight with polygenic 
scores. Chapter 6 applied PCA as a primary method for inferring genetic 
ancestry, in which comparisons of the resultant PCs were evaluated within 
twins and family members.

HYPOTHESES AND OBJECTIVES OF THE DISSERTATION
This dissertation broadly examines the genetics of the twinning phenomenon, 
twins, global twin-family populations, and the representativeness of twins in 
GWAS by employing various analytical approaches and study designs.

The second chapter of this thesis provides background information on the 
biology and genetics of twins. This chapter describes what is well understood 
and what remains mysterious regarding our scientific understanding of the 
twinning process. Key distinctions are made between the two types of twins, 
monozygotic (MZ) and dizygotic (DZ). The chapter’s central theme is the unique 

characteristics of MZ and DZ twins, specifically differentiating their respective 
biology, epidemiology, genetics, and incidence. Moreover, twins and the 
processes underlying twinning have been extensively studied for years, yet a 
complete understanding of the mechanisms and contributory factors is still 
lacking. With that in mind, substantially more is known about the etiology of 
DZ twinning in part due to recent advances in molecular technologies and the 
illuminating power of gene discovery afforded by genetic association studies. 
Despite these developments and numerous scientific efforts, the processes 
underlying MZ twinning remain largely unresolved. Regardless of the lingering 
uncertainties, twins remain a precious resource for studying genetics and 
complex traits, especially in the ‘omics’ era [66].

In chapters 3 through 6, specific scientific questions related to twinning and 
the broader field of human genetics are addressed with data from twins, their 
families, and the populations they represent. The feasibility of these studies was 
contingent on the availability of sizable genotypic data sets from worldwide 
twin and family cohorts.

The focus of chapter 3 is the genetic influences of DZ twinning. Throughout 
many years’ worth of twin studies on behavioral traits, many researchers 
realized the strong tendency for DZ twinning to run in families. This recognition 
prompted many segregation and pedigree analyses to illuminate the 
genetics of DZ twinning. Here, we expand upon these studies by identifying a 
multigenerational pedigree with many mothers of DZ twins to further uncover 
genetic factors associated with DZ twinning. The study’s objective was to use 
pedigree-based genotypic and sequence data to identify genetic variants 
influencing a mother’s propensity to conceive DZ twins. The project intended 
to discover novel rare/structural variants extending beyond the common 
variants with established DZ twinning associations. We hypothesized that we 
could identify large genetic regions of interest co-segregating in mothers of 
DZ twins by analyzing genetic data from available family members through 
linkage analysis. Furthermore, we expected that the common areas would 
harbor rare variants of large effect and that substantially influence DZ twinning. 
More broadly, determining whether the identified variants are pedigree specific 
or possessed by a larger group of mothers of DZ twins necessitated evaluation 
against population-matched controls.

Chapter 4 leverages the vast amount of information contained within 
genotypic data to evaluate the genetic similarity of global populations. First, 
I provide a detailed description of the design of a genotyping microarray 
that facilitated the work in this chapter and much of the remaining thesis 
content. Implementation of the microarray enabled the generation of a wealth 
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of genotypic data representative of individuals from three globally distinct 
populations, namely Australian, Dutch, and Americans from the Midwestern 
region of the United States. We hypothesized to find comparable estimates of 
genetic similarity between the populations since they each have ancestral 
origins from Europe. Comparisons were augmented with worldwide reference 
data and an auxiliary genetic dataset generated from the same microarray 
obtained from a Nigerian population.

Chapter 5 builds on the findings of the previous chapter in that genetic data 
from European ancestry-based populations were aggregated to investigate 
the genetics of birth weight in twins. Birth weight is an important indicator of 
overall health, and critical links between low birth weight and higher risks of 
perinatal morbidity and mortality have been established [67-71]. Furthermore, a 
wealth of evidence has demonstrated an impact of birth weight and diseases 
in adulthood [72], including type 2 diabetes [73], cardiovascular disease [74, 
75], high blood pressure [76-79], psychological distress [80], and body mass 
index [81, 82]. For these reasons, birth weight has been studied extensively 
and is known to be influenced by genetic and environmental factors [83]. 
Genetically, variation in birth weight is complicated by the effects of fetal and 
maternal genes [84-86]. Although complex, most of what is understood about 
birth weight genetics has been established by studies of singletons. Twins are 
often excluded due to their, on average, lower birth weight and the uncertainty 
of differing genetic influences when compared to singletons. There has only 
been one published GWAS of the genetics of birth weight in twins, precisely 
4,593 female twins from the United Kingdom, in which one genome-wide 
significant signal was identified [87]. While the findings provided the first insight 
into the genetic factors influencing birth weight in twins, much remained to be 
determined concerning how the genetic component of birth weight compares 
in twins and singletons. While differences in average birth weight between 
twins and singletons exist, we hypothesized that the common genetic effects 
influencing birth weight are similar between the groups. We additionally aimed 
to identify novel genetic variants associated with birth weight in twins by meta-
analyzing GWAS results supplied by eight twin cohorts. An indication of the 
genetic overlap was determined by comparing meta-analysis results to those 
previously reported for singletons.

Chapter 6 analyzes genetic information from NTR twins and family members 
to examine estimates of genetic ancestry. Ancestry inference is pivotal 
in association studies since systematic differences between groups can 
confound real association signals leading to spurious results. Therefore, 
ancestry estimation strategies are routinely employed to mitigate or eliminate 
the effects of population stratification by including ancestry-specific covariates 

in the association models or excluding outliers. Another method for diminishing 
the impact of population stratification is to employ a family-based design in 
which genetic relatedness is accounted for, and ancestry is essentially under 
control. However, remaining ambiguities surround this approach in that a 
comprehensive assessment of genetic ancestry estimation has not been 
performed within families and between sets of twins. We utilized genotypic data 
of many NTR participants to address this uncertainty, including independently 
genotyped MZ twins, DZ twins, siblings, and parents to estimate genetic 
ancestry within families. For this project, genotypic data was supplied by three 
different microarrays (Affymetrix 6, Affymetrix Axiom-NL, and Illumina GSA), 
enabling additional evaluation as a function of the genotyping platform. This 
aspect of the study is particularly relevant in studies where data are combined 
across study cohorts and genotyping platforms. The array differences have 
the potential to impact ancestry estimates. We aimed to address this concern 
by estimating genetic ancestry using standard algorithmic (i.e., PCA) and 
model-based approaches. Both methods have their inherent benefits and 
limitations, and the resulting estimates reflect different parameterizations of 
genetic ancestry. The hypothesis that genetic ancestry estimates would show 
fewer differences between more closely related family members, independent 
of the genotyping array, was thoroughly tested in this manner.

Chapter 7 summarizes the main findings of the preceding chapters and 
provides overall conclusions of the work. In what follows, I present my 
perspective on the future of twin studies and population genetics. Finally, in 
chapter 8, I offer concise summaries of the studies presented in chapters 2-6.
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ABSTRACT
This chapter summarizes what is known and what remains unknown about 
the human twinning process. The interest of this chapter is a description of 
the processes underlying twinning, with a specific focus on the biological and 
genetic aspects. While the mechanisms and contributory factors to dizygotic 
twinning are becoming well established, much remains unknown about the 
etiology of monozygotic twinning. Here we provide an overview of the incidence 
of twinning across the globe and present what is known about the influences 
of twinning based on the findings of historical, epidemiological, and more 
recent molecular studies.

Keywords
•	 Dizygotic twins
•	 Monozygotic twins
•	 Genetics
•	 Assisted reproductive technologies
•	 Twinning rates

Definitions
1.	 Zygosity – The number of zygotes that become fertilized leading to a 

multiple birth, or the genetic makeup of the pregnancy.
2.	 Dizygotic twins – Non-identical or fraternal twins that are the result of two 

independent ova that are fertilized by two separate spermatozoa.
3.	 Monozygotic twins – Identical twins that arise from a single fertilized ovum.

Learning Objectives
1.	 Define and differentiate between the biological mechanisms that give rise 

to monozygotic and dizygotic twins.
2.	 Compare and contrast the composition of fetal membranes of monozygotic 

and dizygotic twins.
3.	 Describe the genetic and non-genetic factors that are associated with 

spontaneous dizygotic twinning events.
4.	 Explain the strengths and weaknesses of zygosity assessment methods.
5.	 Describe the differences in rates of monozygotic and dizygotic twins.
6.	 Introduce the first genome-wide association study of dizygotic twinning.

INTRODUCTION
Twins and higher-order multiples have piqued the interest of humankind for 
many centuries. The remarkable similar resemblance often ascribed to twins 
has been observed in many literary texts and philosophical works. Twins with 
similar outward appearances but with noticeable personality differences have 
been well characterized throughout history. Observations of twins are noted as 
far back in time as the Biblical accounts of Jacob and Esau, by philosophers 
Augustine of Hippo and Aristotle, and by poets like Shakespeare (e.g., The 
Comedy of Errors and Twelfth Night).

From a scientific perspective, it was in the nineteenth century that the Scottish 
obstetrician J Matthews Duncan recognized and documented that two types 
of twins existed, now commonly referred to as identical and fraternal (non-
identical) twins [1]. Sir Francis Galton was the first the recognize the value of 
studying twins to elucidate the genetic contribution to variation in human traits 
[2]; however, he was not aware of the distinction between monozygotic (MZ 
or identical) and dizygotic (DZ or fraternal) twins. Even in the early twentieth 
century, the existence of two types of twins was debated. The famous 
statistician Sir Ronald Fisher (who was the second of twins himself) proved 
mathematically that it was highly unlikely that there was more than one type 
of twin [3]. Nevertheless, the idea put forth by Galton was to compare trait 
concordance in twins in an attempt at disentangling the genetic (nature) 
and environmental (nurture) influences. Galton’s proposal laid the foundation 
for modern era twin studies aimed at discerning the genetic contribution of 
complex traits and etiology of disease.

The theoretical basis of quantitative genetics proved to be fundamental to 
the creation and application of the classical twin design, which builds on the 
– by now firmly established – differential genetic relatedness of MZ and DZ 
twin pairs. Realizing the enormous potential of quantitative genetic theory to 
studies that apply the classical twin design for studying human traits, large 
twin registries were established in the 1950s [4], although studies of twins had 
already been done in Russia [5-7] and elsewhere. The first scientific studies of 
twins in medicine were by Poll [8] and Siemens, who investigated the different 
levels of similarity between MZ and DZ twins for mole counts. Findings from their 
work suggested that MZ twin pairs were nearly genetically identical, whereas DZ 
twin pairs shared on average 50% of their genetic variation; this was reflected 
in the twice as large resemblance for mole counts in MZ than in DZ twin pairs. 
By now, twin registries are increasingly popular and have proven strengths in 
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longitudinal data collection and inclusion of biological samples to evaluate 
the genetic variation in susceptibility to disease.

Remarkably, despite the rapid gain in knowledge about the importance of 
genetic variation due to advancements in genotyping technology combined 
with the development of powerful linkage and genetic association studies, 
there is no comprehensive understanding of the twinning process. For example, 
there are no estimates for the heritability of twinning. A number of factors 
influencing the DZ twinning process are well described, and the first genetic 
factors for DZ twinning have been characterized [10]. However, the heritability 
of DZ twinning remains unknown, and the knowledge regarding the etiology 
of MZ twinning is even more limited.

This chapter summarizes the current body of knowledge surrounding the 
epidemiological, biological, and genetic aspects of human twinning. Included 
are explanations of the biological mechanisms of twinning, descriptions of the 
underlying genetic contributions to the twinning process, and details on the 
frequency of twinning within populations.

ZYGOSITY, CHORIONICITY, PLACENTATION OF TWINNING
Zygosity refers to the genetic makeup of the pregnancy or the number of 
zygotes that become fertilized leading to a multiple birth. Twins, in rarer cases, 
triplets, quadruplets (four), quintuplets (five) arising from a single fertilized 
ovum are termed monozygotic (MZ). The first identical quintuplets known to 
have survived their infancy were the Canadian Dionne quintuplets, all five of 
which survived to adulthood (Fig. 2.1). Alternatively, twins or multiples originating 
from two or more ova that are fertilized by separate spermatozoa are called 
dizygotic (DZ) [11] or trizygotic in the case of triplets. Nowadays, higher-order 
births of non-identical twins often are the result of assisted reproductive 
technologies (ART).

Figure 2.1 - The Dionne quintuplets. The Dionne quintuplets, born May 28, 1934, outside of 
Callander, Ontario, Canada. Despite being born 2 months premature, all five quintuplets 
survived to adulthood. (Source: https://commons.wikimedia.org/wiki/File:Dionne_quin-
tuplets.jpg)

Multiple gestation pregnancies are inherently high risk to both the mother and 
the developing fetuses. Certain twin pregnancies, specifically those possessing 
a single chorion (monochorionic), exhibit an even higher risk for numerous 
pre- and perinatal complications. Therefore, information about the status of 
the developing fetal membranes is helpful for monitoring and improving the 
outcome of a multiple gestation pregnancy.

In early-stage human development, the membranes of the placenta begin 
to form around day 4. Examination of placental membranes by ultrasound 
imaging serves as a non-invasive method for determining zygosity/twin 
status [12-15]. According to the traditional models of twinning (Fig. 2.2), DZ twins 
have distinct placentas and fetal membranes and are therefore dichorionic 
diamniotic, although fused membranes are possible. Approximately two-thirds 
of all MZ twins share one placenta with monochorionic diamniotic membranes, 
while roughly one-third have completely distinct placentas and membranes 
(dichorionic diamniotic). Only about 1% of MZ twins have one set of membranes 
and one placenta, making them monochorionic monoamniotic. The latter case 
poses the highest risk for pre- and perinatal morbidity and mortality.

2



42 43

BIOLOGY AND GENETICS OF TWINSCHAPTER 2

Fig. 2.2 - The traditional model of twinning. The formation of the two main types of twins 
according to the traditional model of twinning. DZ twins are the result of two distinct 
fertilization events and are dichorionic and diamniotic. MZ twins result from the post-
zygotic splitting of a single embryo early in gestation with varying numbers of fetal 
membranes depending on the timing of embryo splitting. (This figure was obtained 
from McNamara et al. [16])

The placenta and membranes of a multiple gestation pregnancy represent 
the first means of identifying some MZ twins due to the presence of a single 
chorion. Although MZ twins will be of the same sex, not all same-sex twins 
are MZ. Therefore, for all same-sex twin pairs, DNA typing is the most useful 
and reliable method for determining zygosity [17]. Challenging the assumption 
that a single chorion indicates monozygosity, it is also possible for DZ twins to 
possess monochorionic diamniotic placentas. Thus, the dogma of a single 
chorion being synonymous with monozygosity is no longer proper due to 
chimeric DZ twins [18], a phenomenon in which one individual is composed of 
cells from two or more zygotes.

In normal embryogenesis, the chorionic membrane begins to form at about 
day 3. It is believed that if zygote separation takes place early, typically 
between day 1 and day 3, the result is MZ twins with separate placentas and 
membranes (dichorionic diamniotic). Alternatively, monochorionic diamniotic 
MZ twins result after the chorion has formed (day 3) but before the amnion has 
formed (typically between day 6 and day 8). Therefore, postzygotic splitting 
resulting in monochorionic diamniotic MZ twins typically occurs between day 
3 and day 8. MZ twins with monochorionic monoamniotic membranes likely 
arise by splitting between day 8 and day 13. Conjoined twins are thought to 
arise after the beginning of the formation of the primitive streak, likely after 
day 14. However, the timing and mechanism(s) are not clear and empirical 
evidence is rare.

ZYGOSITY DETERMINATION
Physical Appearance
For research purposes, twin zygosity is often and most easily determined from 
questionnaires regarding the similarity of physical characteristics. For instance, 
twins that are equal on most physical features and frequently confused for 
one another are typically judged to be MZ. Alternatively, twins that differ on 
two or more physical characteristics and/or are not often mistaken for one 
another are often classified as DZ. As a whole, zygosity assessment from survey 
responses of physical traits corresponds rather well with zygosity determination 
through DNA typing [19, 20]. Apart from DNA testing, other basic rules routinely 
employed for zygosity determination are if the twins are opposite-sex – DZ, of 
discordant blood groups – DZ, or possess a single, non-fused, placenta – MZ 
(please note the presence of two placentas does not imply DZ).

Placentation
Placental examination of a twin birth is common to establish the type of chorion 
and infer zygosity. DZ twins, except for chimeric twins, have two placentas 
with two chorions and two amnions. Thus, most DZ twins have dichorionic 
diamniotic placentation. Although the placentas of DZ twins can sometimes 
appear fused, yet they are functionally independent and with no inter-placental 
communication. Placentation in MZ twins is thought to vary depending on the 
timing of postzygotic splitting following a single fertilization event. Dichorionic 
diamniotic MZ twins (~33%) are formed if the split occurs early, on days 1–3, up 
to the morula stage. Monochorionic diamniotic MZ twins (~66%) result if the 
split happens between days 3 and 8, during which blastocyst hatching starts. 
Monochorionic monoamniotic MZ twins (~1%) occur if the split occurs between 
days 8 and 13. If no split has occurred by day 13, conjoined twins form [11, 16]. 
Examples of varying numbers of fetal membranes are also observed in triplets 
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and higher-order multiples, as shown in Fig. 2.3 (images adapted from Lamb 
et al. [21]).

Fig. 2.3 - Ultrasound images of triplets with varying numbers of fetal membranes. a 
Monochorionic and therefore monozygotic triplets at 12 weeks of gestational age. The 
arrow indicates the meeting point of three amniotic membranes. Numbers indicate 
the three fetuses. b Trichorionic triplets at 12 weeks gestational age. The arrowheads 
indicate the separation between each fetus. These three fetuses do not share their 
placentas. This set of triplets can be trizygotic, dizygotic (one identical pair), or monozy-
gotic. Numbers indicate the three fetuses. c. Dichorionic, triamniotic triplets at 13 weeks 
gestational age. The arrowhead indicates the separation of the chorionic membranes, 
which proves that this fetus does not share a placenta with fetuses 2 or 3. The arrow 
indicates the amniotic membranes of fetuses 2 and 3, which are a monozygotic pair. 
At this point in time, it is unsure if fetus 1 shares zygosity with fetuses 2 and 3. Numbers 
indicate the three fetuses. (This figure was adapted from Lamb et al. [21] with written 
permission from Cambridge University Press)

DNA Typing
The most robust and reliable way of determining zygosity is by DNA typing. The 
advent of cost-effective DNA genotyping has allowed for the opportunity to 
accurately determine zygosity through quantitative measures of allele sharing 
between twins when biological samples are available [22, 23]. Genetically, 
MZ twins will share (close to) 100% of their alleles, and on average, DZ twins 

will share 50% of their alleles: similar to the allele sharing pattern of siblings. 
The recommended minimum number of single nucleotide polymorphisms 
(SNPs) needed to assess zygosity is around 50 [23]; however, utilization 
of approximately 20,000–30,000 SNPs bolsters confidence in zygosity 
determination. Procedurally, after genotyping and quality control, an optimal 
number of SNPs are selected, and allele sharing in all pairs is determined. 
Sharing is reported as a proportion of markers for which a pair shares zero 
alleles (Z0), one allele (Z1), and two alleles (Z2). From the proportions, total allele 
sharing (represented by 𝜋̂) is calculated with the following formula: 𝜋̂ = Z2 + 0.5 
* Z1. MZ pairs are identified by finding pairs with a 𝜋̂ > 0.90, allowing for some 
measurement error. DZ pairs are defined as pairs with a 𝜋̂ and Z1 between ~0.30 
and ~0.70 [22].

ETIOLOGY OF TWINNING
Genetic Causes of MZ Twins
There have been several reports of families in which MZ twinning occurs more 
frequently than expected [24-29], although there is no compelling evidence 
to support an underlying genetic contribution to MZ twinning. Instances of 
familial MZ twinning from both maternal and paternal lineages have been 
documented, yet it has also been suggested that independent of the sex of the 
parent transmitting the gene, a single gene is responsible for MZ twinning [28, 
30]. Additional evidence suggests that there is no paternal effect on familial 
MZ twinning [31].

More recently, a gene thought to likely play a role in MZ twinning is PITX2. The 
PITX2 gene was found as a candidate for monozygotic twinning in a molecular 
screening of an “experimental twinning” model in chickens [32]. PITX2 encodes 
a protein that acts as a transcription factor, regulating the expression of genes 
involved with the formation of the embryonic axis.

Generation of MZ Twins
The universally accepted model of MZ twinning, frequently referred to as the 
“fission model,” rests on the hypothesis of postzygotic splitting of the conceptus 
within the first 2 weeks of development [16]. As exemplified by the model, the 
number of fetuses, chorions, and amnions results from the timing of embryo 
division. An alternative model of MZ twinning, sometimes called the “fusion 
model,” challenges the traditional postzygotic splitting conjecture. The fusion 
model has been suggested due to criticisms of the traditional model lacking 
scientific evidence and the lack of specification of cleavage initiating factors 
[33]. The proposed alternate theory is based on two premises: (1) – MZ twinning 
occurs during the first cleavage division, resulting in twin zygotes, and (2) – the 
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structure of the fetal membranes is dependent on the various modes of fusion 
of the fetal membranes within the zona pellucida. Despite the two theories, the 
embryological processes that govern MZ twinning are still largely unknown 
and up for debate [34].

Genetic Causes of DZ Twins
DZ twinning is a complex trait that is likely under the influence of multiple 
genes. In the last decade, astonishing progress in characterizing the genes 
responsible for DZ twinning has been made. However, a comprehensive 
understanding of the genetic factors underlying the human tendency to 
conceive DZ twins is still lacking. Bearing this in mind, there are a number 
of genes with known roles in ovulation, female fertility, and DZ twinning in 
humans [35]. For example, mutations resulting in amino acid changes of the 
follicle-stimulating hormone receptor (FSHR) protein have been shown to 
influence DZ twinning [36]. Additionally, a variant within the promoter region 
of the FSHR gene was found to segregate with DZ twinning in a large family 
[37]; however, other studies have not replicated the involvement of this gene 
[38]. Several other candidate gene studies have provided evidence suggesting 
the involvement of other genes in the DZ twinning process, namely, serpin 
family A member 1 (SERPINA1) commonly referred to as alpha-1-antitrypsin [39, 
40], peroxisome proliferator-activated receptor gamma (PPARG) [41], and the 
fragile X “premutation” (FRAXA) [42, 43], although results were not replicated 
in future studies.

Linkage studies in family-based study designs have not provided evidence 
of enhanced genetic sharing among affected family members over 
chromosomal regions harboring the previously described candidate genes 
[37, 44]. However, linkage studies have indicated chromosomal regions that 
may possess novel candidate genes for DZ twinning [37, 44, 45]. For example, 
a study of 525 Australian and Dutch families of DZ twinning demonstrated the 
presence of new candidate DZ twinning genes on chromosomes 6, 12, and 20 
[37]. The results reaffirmed the notion that DZ twinning is a complex phenotype 
influenced by numerous genes. Mutations in growth differentiation factor-9 
(GDF9) appear to influence DZ twinning in humans, albeit such mutations 
appear to be rare. Screening in large numbers of families with a rich history 
of DZ twinning revealed a two-base deletion in GDF9 in heterozygous form 
resulting in a loss-of-function mutation in three families [46, 47]. It was also 
discovered that overall genetic variation in GDF9 is more prevalent in mothers 
of DZ twins compared to controls [47]. Findings from non-human studies 
(e.g., sheep) of DZ twinning have implicated bone morphogenetic protein 
15 (BMP15) and bone morphogenetic protein receptor 1B (BMPR1B) in the DZ 
twinning process; however, similar effects have not been found when studying 

BMP15 [48] or BMPR1B [49] in humans. Both GDF9 and BMP15 are expressed 
in the oocyte and are essential for follicular development, and have been 
implicated in premature ovarian failure [50]. BMPR1B is expressed in multiple 
cell types of the ovary and is the cognate receptor for BMP15. Surprisingly, 
while heterozygous mutations (one copy present) in GDF9 and BMP15 increase 
twinning rates, homozygous mutations (two copies present) result in female 
infertility.

More recently, genome-wide association studies (GWAS) have made it possible 
to scan the entire human genome for SNPs associated with a trait of interest in 
humans (e.g., twinning). In 2016, the first meta-analysis of GWAS in European-
ancestry populations (Netherlands, Australia, Minnesota [United States of 
America]) identified the first common genetic variants associated with 
spontaneous DZ twinning [51]. Three statistically significant SNPs were found: 
in the upstream region of the follicle-stimulating hormone beta subunit (FSHB) 
gene, within an intron of the mothers against decapentaplegic homolog 3 
(SMAD3) gene, and in an intergenic region on chromosome 1. The two SNPs near 
FSHB and within SMAD3 were replicated in an independent Icelandic cohort. 
The former encodes the beta subunit of FSH, while the gene product of the 
latter is a transcription factor involved in gonadal responsiveness to FSH. Sixty-
three candidate genes of DZ twinning [52] were also tested, but only FSHB was 
associated with DZ twinning in gene-based tests. Interestingly, the replicated 
SNPs associated with twinning were also found to be associated with higher 
serum FSH levels, and with multiple aspects of female fertility, including earlier 
age at menarche, earlier age at first child, higher lifetime parity, earlier age at 
menopause, and later age at last child. Polygenic risk scores for DZ twinning 
were found to be significantly associated with DZ twinning in the independent 
Icelandic cohort, with a higher likelihood of having children, higher lifetime 
number of children, and an earlier age at first child. Together these findings 
corroborate the link between fertility and DZ twinning.

Generation of DZ Twins
Mechanisms leading to dizygotic twins operate on the selection of developing 
follicles within the ovary when instead of one ovum being released mid-
cycle, two follicles mature, and both oocytes are released for fertilization. The 
subsequent fertilization of two eggs by two sperm during a pregnancy results 
in DZ twins. The processes of ovarian folliculogenesis and dominant follicle 
selection are governed by both circulating and intra-ovarian concentrations 
of FSH. Spontaneous DZ twinning tends to run in families and is associated with 
elevated concentrations of FSH in the mother [53]. FSH amounts seem to vary 
with geography, season, ethnic origin, and increasing parity, and are increased 
in tall, heavy, and older mothers with a peak at around 37 years of age [54]. 
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Following this logic, it has been proposed that age-dependent twinning may 
also be due to natural selection favoring double ovulation events in response 
to declining fertility with increasing age [55]. It has also been documented 
that mothers of DZ twins have an increased number of FSH pulses during the 
early follicular phase, without a concurrent luteinizing hormone (LH) pulse [56].

It is well known that improved nutrition is a contributing factor for increases in 
multiple ovulation (i.e., twinning frequency) in other species [57, 58], yet this has 
not been demonstrated in humans. In fact, human twinning rates do not appear 
to reflect the average nutritional status as established from longitudinal studies 
of countries experiencing extended periods of starvation, such as the Dutch 
hunger winter [59]. In general, above a specific yet undetermined threshold, 
nutrition seems to be of minimal importance for twinning and reproduction 
in general.

INCIDENCE OF TWINS
In the early twentieth century, Wilhelm Weinberg postulated a method, referred 
to as the “Weinberg differential rule,” for approximating population estimates 
of the number of MZ versus DZ twins [60]. Weinberg’s proposal assumed that 
all MZ twins and half of DZ twins would be of the same sex, with the other half 
of DZ twins being of the opposite sex. Therefore, he suggested multiplying the 
number of opposite-sex twins by two, which served as an estimate for the total 
number of DZ twins. The excess of same-sex twins would then be the number 
of MZ twins. Thought of in a different way, subtracting the total number of 
opposite-sex twins from the number of same-sex twins would yield an estimate 
of the number of MZ twins. Weinberg’s calculation has been widely adopted 
because it serves as a simple method for estimating twinning frequency in 
populations; however, it rests on the assumption that the frequency of same-
sex twins is the same as that of opposite-sex twin pairs, which may not always 
be the case [61, 62].

The rate of twinning includes stillbirths (≥28 weeks) and live births and is 
defined as the number of twin maternities per 1000 maternities. Differences in 
twinning rates between geographical regions have been studied extensively. 
In the 1970s, Bulmer studied twinning frequencies in three distinct geographical 
regions: Europe/North Africa, Sub-Saharan Africa, and Asia [63]. Bulmer found 
that the highest rate of twinning occurred in Sub-Saharan Africa (~23 per 1000 
maternities), while the lowest rate occurred in Asia (~5–6 per 1000 maternities). 
Twinning rates exhibit considerable temporal and spatial variation (see Fig. 
2.4). Provided that the MZ twinning rate is known to be fairly constant around 

the world, the variation in the overall twinning rate is generally attributed to 
the variation in DZ twinning rates.

Fig. 2.4 - Rates of twinning worldwide. Heatmap showing the number of twins per 1000 
births in 77 countries. Huge variation in twinning rates can be observed across the 
different regions of the developing world. (The figure was adapted from Smits and 
Monden [64] by Veronika Odintsova to include 2011 Russian twinning rates.)

Global twinning rates have predominantly been reported from Western 
countries, with less known about twinning rates in Eastern countries. In 2017, 
data received from open resources of national statistics of the Ministry of 
Health of the Russian Federation reported a multiple birth rate of 12.27 births per 
1000 deliveries (alive or stillbirth) as seen in Table 2.1 [65]. The overall twinning 
rate during this time was reported to be 12.09 per 1000, and the rate of higher-
order multiples occurred at a rate of 0.18 per 1000.
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Table 2.1 - Multiple births in Russian Federation in 2017

Total number Proportion in all 
deliveries

Birth rate per 1000

All 
deliveries, 
including 

born 
outside 

clinic
Multiple 

(all) Twins

Triplets 
and 

higher 
order

Multiple 
(all) Twins

Triplets 
and 

higher 
order

Multiple 
(all) Twins

Triplets 
and 

higher 
order

Russian 
Federation

1,649,782 20,239 19,938 301 1.23 1.21 0.02 12.27 12.09 0.18

Table 2.1 was created and provided by Veronika Odintsova based on Russian national 
statistics [65].

Incidence of MZ Twins
Worldwide and across all races, MZ twin birth rates occur at a constant rate of 
approximately 4 in every 1000 pregnancies [66]. The remarkable consistency 
in MZ twinning rates among all populations suggests that identical twinning 
is an occurrence that is not influenced by genetics. Unlike DZ twinning, the 
incidence of MZ twins is independent of maternal age, height, weight, or parity 
[67]. Although MZ twinning appears to be a sporadic event, instances of familial 
MZ twinning of varying modes of inheritance have been reported, with one 
report of autosomal dominant inheritance with variable penetrance [68]. The 
introduction of assisted reproductive technologies (ART) greatly enhances 
rates of DZ twinning and, to some extent, MZ twinning [69]. The increase in MZ 
twinning rates due to ART has been attributed to mechanical forces affecting 
the zona pellucida or to the effects of incubation media and late implantation 
in in vitro fertilization procedures [70-72].

Incidence of DZ Twins
DZ twinning is common, yet large regional differences in DZ twinning rates 
exist around the world. The rate of DZ twins ranges from approximately 6 per 
1000 maternities in Asia to 10–20 per 1000 in Europe and the United States, to as 
high as 40 per 1000 in certain regions of Africa [11]. DZ twinning rates also vary 
substantially over time. In the United States, the observed incidence of twin 
births increased by a factor of 1.9 between 1971 and 2009 [73]. A considerable 
portion of the increase is attributable to fertility treatments, with an estimated 
36% of all twins born in the United States in 2011 resulting from ART [73, 74]. 
DZ twinning rates peaked in the mid-2000s, following the number of ART 
pregnancies. In developed countries, with technological advancements and 
careful monitoring, DZ twinning rates due to ART have dropped substantially. 
In contrast to MZ twinning, spontaneous (i.e., no ART) DZ twinning is also very 

dependent on many maternal factors, including age, nationality, parity, height, 
weight, and family history [35, 54].

Triplets and Higher-Order Multiples
The pattern of variation in triplet rates across the world is remarkably similar 
to that observed for twin births. That is, rates of triplet births are highest in 
African countries, intermediate in European populations, and lowest in Asian 
countries. More generally, the rate of triplets is in accordance with Hellin’s law 
[75], which states that there is on average one twin maternity per N singleton 
maternities and that there is one X-tuplet maternity per N(X–1) [76, 77]. Thus, if the 
number of twin maternities is one in N singleton maternities, then the number 
of triplets is one in N(3-1). It follows that quadruplets (see Fig. 2.5) would occur at 
a rate of N(4-1). According to this logic, if there is one twin in every 80.05 births, 
this predicts that triplets occur at a rate of about 1 in every 6408 births, which 
is only 4% higher than the incidence actually observed [64].

Fig. 2.5 - Painting of Dutch quadruplets. “Vierling Costerus” – Painting of quadruplets 
born on June 9, 1621, in Dordrecht, the Netherlands. Remarkably, the birth of the first 
(Pieter) and the last (Maria) was separated by 53 hours, indicating an extremely difficult 
birthing process. Prior to the quad birth of one boy and three girls as pictured here, 
the parents mentioned the birth of twins 7 years before. Sadly, due to the high infant 
mortality rate in the seventeenth century, about 40–50% of children did not reach the 
age of 18, and the chance of survival was even smaller for multiple births. In the case 
of the quadruplets pictured here, one died an hour and a half after birth (Elisabet), and 
two others deceased within the first year. (This figure was obtained by written permission 
from the Dordrecht Museum. The Noordbrabants Museum in ‘s-Hertogenbosch received 
this painting as a gift in 1925 and presented it on loan to the Dordrechts Museum in 
1986. Painter and client are unknown.)
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FACTORS AFFECTING TWINNING
Many of the risk factors for DZ twinning are rather well established and include 
assisted reproductive technologies (ART), higher maternal age, parity, body 
composition, and smoking [11, 35, 78]. For MZ twinning, there is little to no 
agreement regarding the involved risk factors and/or causes [79]. Given 
that the two types of twinning are biologically distinct phenomena, it is not 
surprising that many of the factors involved in DZ twinning are not, or to a 
lesser extent, found in MZ twinning. Below we describe established risk factors 
involved in multiple pregnancy and multiple birth.

Assisted Reproductive Technologies (ART)
Assisted reproductive technologies, especially in vitro fertilization (IVF) and 
ovulation induction (OI), are well-established risk factors for DZ and, to some 
extent, MZ twinning [79]. Ovulation-inducing agents such as clomiphene citrate, 
human pituitary gonadotropins, and human menopausal gonadotropins 
are known to increase ovulation rate and hence the probability of multiple 
pregnancy [80]. In the case of IVF, increased multiple pregnancy and multiple 
birth are due to the transfer of multiple embryos [11, 81]. Although less well 
understood, there is also a slight increase in MZ twinning after IVF and other 
ART, with estimates ranging from a two- to 12-fold increase in MZ twinning 
rate after ART procedures [79] and a two- to fivefold increase in MZ twinning 
following IVF [82, 83]. Notably, OI agents are often used in concert with IVF; thus, 
the increased chance of multiple pregnancy following IVF cannot be merely 
attributed to multiple embryo transfer [35].

Other Risk Factors
Higher maternal age is another well-established risk factor for DZ twinning 
[35, 63]; however, conflicting reports have been made for MZ twinning [63, 84, 
85]. Paradoxically, while fertility decreases with age, the spontaneous twinning 
rate increases. Both polyovulation and embryonic survival rates increase 
with maternal age, suggesting that increased ovulation rate and decreased 
spontaneous abortion of potentially unhealthy offspring could act together as 
an insurance system to produce one last round of reproduction, with twinning 
being merely a by-product [55, 86]. Additionally, increased parity (the number 
of maternities prior to twin pregnancy) is associated with a higher risk of DZ, 
but not MZ twinning [11, 87], independent of maternal age [35, 88]. Moreover, 
maternal body composition has been reported rather consistently in relation to 
DZ twinning, with both obesity and tall stature increasing the risk of DZ twinning 
[53, 85, 89]. Furthermore, an unexpected relation between maternal smoking 

and a higher probability of DZ twinning is sometimes observed, although the 
mechanism behind this observation remains unclear [78, 90, 91].

ENDOCRINOLOGY OF DZ TWINNING
Mothers of spontaneous DZ twins have a predisposition to multiple ovulation 
events due to interference with the selection of a single dominant follicle. 
Multiple follicle growth and subsequent multiple ovulation events have 
been observed in mothers of hereditary dizygotic twins [92, 93]. Follicular 
recruitment, selection, and dominance is controlled by a complex regulatory 
network within the hypothalamic-pituitary-ovarian axis (Fig. 2.6). The two main 
pituitary-derived hormones essential for reproductive function are FSH and 
LH and are secreted in response to the pulsatile secretion of gonadotropin-
releasing hormone. FSH is the main hormone controlling follicular growth, 
and its secretion is controlled by the main secretory products of the large 
dominant follicle(s), namely, estradiol and inhibin. Circulating concentrations 
of FSH, other intra-ovarian factors (e.g., GDF9 and BMP15), and their cognate 
receptors physiologically regulate ovarian folliculogenesis and ovulation 
quota. Transcriptional regulators of FSH, such as SMAD3, also regulate gonadal 
responsiveness to FSH. Ongoing development of a single follicle takes place 
when a certain threshold level of plasma FSH is marginally exceeded [94, 
95]. When FSH levels are much higher than the threshold level or exceed the 
threshold for an extended duration, multiple follicle growth can result [96]. In 
accordance with the endocrine model of dizygotic twinning [97], high levels 
of pituitary gonadotropins (i.e., FSH) are responsible for increased multiple 
ovulation in mothers of DZ twins. A number of studies, but not all [92], have 
shown increased levels of plasma gonadotropins in mothers of DZ twins [56, 
98-100].

Fig. 2.6 - Hormonal feedback and endocrine regulation of female reproductive phys-
iology. + signs denote positive feedback, whereas blunted arrows indicate negative 
feedback. (This figure was obtained by written permission from the lecture materials 
of Dr. Kathleen Eyster (University of South Dakota, United States))
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NON-HUMAN TWINNING
Studies of non-human species have revealed several genes that contribute 
to DZ twinning. For example, in sheep, which are typically uniparous, certain 
breeds have higher incidences of multiple births [101]. Several genes, namely, 
GDF9, BMP15, and BMPR1B, have been confirmed to influence twinning rates in 
sheep by increasing follicle development and oocyte maturation [49, 102-104]. 
Major genes that increase ovulation rate and litter size in sheep and humans 
have been shown to have implications in other species. Evidence exists for 
genetic effects on twinning in cattle [105], the marmoset monkey [106], and 
hormone-induced ovulation rate in mice [107].

Genes specific to MZ twinning remain elusive. Animal studies (originally in rabbit 
and roe deer) have suggested that MZ twinning results from disturbances to 
developmental thresholds and that delayed fertilization/implantation play a 
role [63]. These hypotheses have been further tested in nine-banded armadillos 
(Dasypus novemcinctus), which bear obligate MZ quadruplets each and every 
time they breed [108-111].

SEX RATIO
The sex ratio is defined as the ratio of males to total births. For DZ twins 
and singletons, the ratio is 0.514, meaning a slight excess of males [63, 112]. 
For spontaneous MZ twins, triplets, and quadruplets, the sex ratio is lower 
(0.496) due to a slight excess of females [62, 112]. The value is even lower for 
monoamniotic twins, including conjoined twins, with a sex ratio of 0.2 [112]. 
There does not seem to be an excess of males in aborted twins. Dichorionic 
MZ twins exhibit the smallest increase in females, whereas monochorionic 
diamniotic MZ twins show the largest increase; thus, the rise may be due to 
later twinning events. Monochorionic monoamniotic twins and conjoined twins 
show an even greater increase in the number of females.

DISCUSSION AND CONCLUSION
Twinning is a common and multifactorial phenomenon, and elements of the 
twinning process remain poorly uncharacterized. Improved understanding 
of the underlying biological and genetic aspects of MZ and DZ twins and of 
the twinning process as a whole has been enhanced by the development of 
molecular and cytogenetic techniques. The influences on DZ twinning are well 
studied, including contributions of numerous maternal (age, height, weight, 
parity, family history), environmental (ART), and associated genetic factors 

(most notably common variants near FSHB and within SMAD3). However, 
despite the robust associations with DZ twinning, the ability to predict DZ 
twinning events remains imprecise due to the myriad of genetic and non-
genetic contributions. Likewise, comprehensive models of MZ twinning lack 
compelling evidence and are challenged by instances of atypical twinning. 
MZ twinning is likely influenced by some equivocal combination of non-
genetic and genetic factors that likely result in delayed fertilization, embryo 
development, implantation, or some form of mechanical disruption of the early 
embryo. Further elucidation of the mechanisms by which twinning processes 
occur will have significant merit for predicting, managing, and improving the 
outcomes of multiple gestation pregnancies.

Review Questions
1.	 What are the etiological similarities and differences of monozygotic and 

dizygotic twins?
2.	 What is the role played by assisted reproductive technologies in the 

incidence of twinning over time?

Multiple-Choice Questions
1.	 What is the most conclusive method for determining the zygosity status 

of twins?
(a) Examination of placentation
(b) Sex status (same or opposite sex)
(c) Evaluation of survey responses
(d) DNA testing
(e) Assessment of outward physical appearance

Answer: (d). Although the other methods are convenient and relatively 
robust approaches for determining the zygosity status of twins, only DNA 
testing provides a quantitative and accurate assessment of allele sharing 
for all twins, including same-sex twin pairs.

2.	 What is another term for dizygotic twins?
(a) Identical twins
(b) Fraternal twins
(c) Typical twins
(d) Atypical twins

Answer: (b). Dizygotic, or non-identical twins, develop from separate ova and 
are therefore genetically distinct. Thus, because their genetic relatedness 
is the same as other sibling pairs, dizygotic twins are commonly referred 
to as fraternal twins.
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3.	 The rarest form of monozygotic twins (with the exception of conjoined twins) 
exhibit which of the following fetal membrane states?

(a) Dichorionic diamniotic
(b) Dichorionic monoamniotic
(c) Monochorionic diamniotic
(d) Monochorionic monoamniotic

Answer: (d). Monochorionic monoamniotic monozygotic twins represent 
about 1% of all twin pregnancies. Approximately 66% of monozygotic twins 
are monochorionic diamniotic, whereas 33% are dichorionic diamniotic.

4.	 Genome-wide association studies have identified common genetic variants 
associated with spontaneous dizygotic twinning and female fertility in 
which genes?

(a) FSHB and SMAD3
(b) GDF9 and BMP15
(c) BMP4 and WFIKKN1
(d) FSHR and BMPR1B

Answer: (a). Single nucleotide polymorphisms near FSHB and within SMAD3 
are significantly associated with a higher rate of spontaneous dizygotic 
twinning and several other aspects of female fertility (e.g., earlier age at 
menarche, earlier age at first child, and higher lifetime parity).

5.	 In order of highest to lowest incidence, which of the following captures the 
large regional differences observed for dizygotic twinning?

(a) Asia, Africa, Europe
(b) Africa, Europe, Asia
(c) Europe, Asia, Africa
(d) Europe, Africa, Asia

Answer: (b). Whereas monozygotic twinning rates are relatively constant 
worldwide (~3 per 1000 births), large regional differences exist in dizygotic 
twinning rates with the highest incidence in African populations (~40 per 
1000 births), followed by European populations (~10–20 per 1000 births), and 
the lowest incidence in Asian populations (~6 per 1000 births).

6.	 Which of the following is not a known non-genetic risk factor for spontaneous 
dizygotic twinning?

(a) Parity
(b) Maternal age
(c) Nutritional status
(d) Smoking status
(e) Body mass index
(f) Height

Answer: (c). Spontaneous dizygotic twinning is associated with parity, as well 
as increased maternal age, increased body mass index, increased height, 
and smoking status prior to pregnancy. Nutritional status is not known to be 
a direct contributor to dizygotic twinning, as longitudinal studies in countries 
that experienced periods of starvation demonstrated consistent rates of 
twinning (e.g., Dutch hunger winter [59]).
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ABSTRACT
Spontaneous human dizygotic (DZ) twinning runs in families and is known 
to be influenced by numerous genetic and non-genetic factors, though the 
physiological pathways and complete genetic origin are unknown. Genetic 
data from large trait-rich pedigrees may enhance the ability to identify novel 
variants associated with DZ twinning. In this manner, we analyzed whole-
genome genotype and sequence data from selected members of a large 
multigenerational pedigree with a rich history of DZ twinning to identify rare/
functional variants underlying the trait. Non-parametric linkage analysis was 
performed to define genomic regions co-segregating with being a mother 
of DZ twins, but no strong linkage peaks were observed. Haplotypes were 
estimated and combined with genetic variants from whole-genome sequence 
data of selected mothers of DZ twins revealing large shared genomic regions 
on chromosomes 1, 3, 6, 11. We hypothesize that these areas are regions of 
interest containing rare variants with substantive effects on DZ twinning. 
Whether the variants are pedigree-specific or characteristic of a larger 
cohort of population-matched mothers of DZ twins will necessitate screening 
and further examination. In addition to contributions of common variants 
associated with DZ twinning, rare variant identification has the potential to 
elucidate novel genetic biomarkers indexing fertility and the prediction of DZ 
twinning.

Keywords: dizygotic twinning, whole-genome sequencing, genotyping, 
pedigree analysis

INTRODUCTION
Human spontaneous dizygotic (DZ) twinning occurs when two or more oocytes 
are released and fertilized during a single pregnancy. DZ twinning is considered 
a complex trait influenced by environmental and genetic factors. DZ twinning is 
common, affecting approximately 1-4% of women worldwide, and tends to run 
in families [1]. In addition to family history, increased parity and gravidity also 
increase the risk of spontaneous DZ twinning [2, 3]. Mothers of DZ twins (MoDZT) 
are taller, have increased BMI, are often overweight, and smoke more frequently 
before the twin pregnancy [4]. Rates of DZ twinning vary considerably with 
geographic location and time. Regionally, large prevalence differences exist, 
with the lowest and highest rates reported in Asia (~5-6 per 1000 maternities) 
and Sub-Saharan Africa (~23 per 1000 maternities), respectively [2, 3, 5, 6]. 
Together, these observations suggest DZ twinning is a heritable trait with an 
underlying polygenic inheritance. Over the years, many have attempted to 
illuminate the genetic basis of DZ twinning through hormone and ultrasound 
studies, segregation and pedigree analyses, candidate-gene approaches, 
and linkage projects [reviewed in ref 7]. In the end, only portions of the genetic 
complexity of DZ twinning have been explained, providing the opportunity to 
explore its genetic origin with innovative study designs.

Bulmer initially postulated that DZ twinning was due to a recessive gene with 
low penetrance and a gene frequency of 50% [2]. Results from subsequent 
pedigree-based analysis contradicted the recessive model, stating 
that the phenotype of ‘having DZ twins’ is consistent with an autosomal 
monogenic dominant model with a gene frequency of 3.5% and a female 
lifetime penetrance of 10% [8]. Subsequent linkage scans for DZ twinning 
parameterized their models accordingly and, in the end, concluded that the 
mode of inheritance is more complex than originally expected [9]. Further 
evidence for complex inheritance was demonstrated by expanded linkage 
efforts of affected sister pairs (at least two sisters who were both mothers of 
spontaneous DZ twins) from over 500 families from Australia, New Zealand, 
Utah, and the Netherlands, which did not return any strong linkage signals 
[10]. Others have added that various non-genetic factors also influence DZ 
twinning [3, 4], fostering additional support for the hypothesis that the mode 
of inheritance of DZ twinning is likely complex and unlikely to be a simple 
dominant or recessive trait.

The ongoing search for common genetic variants explaining DZ twinning 
inheritance was propelled forward by the feasibility of quantifying genetic 
variation at a large scale with SNP microarrays. A landmark meta-analysis 
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of genome-wide association studies of 1,908 mothers of DZ twins and 12,953 
controls identified and replicated an association of DZ twinning with common 
genetic variants in FSHB and SMAD3 [11]. Since, additional efforts have 
demonstrated replication of these associations and have extended the search 
to uncover the genetics of multiple births [12]. Still, identification of rare and low-
frequency genetic variants with substantial effect, accounting for more than a 
tiny fraction of variation in DZ twinning, has remained elusive [13]. Opposed to 
the common genetic variation captured by microarrays and imputed datasets, 
one approach for rare variant identification is to analyze whole-genome 
sequence data. Sequence data obtained from large informative pedigrees 
can be examined to search for possible highly penetrant driver variants.

Here, we employed such a design to identify rare and/or functional variants 
associated with DZ twinning using combined within-family linkage information 
and whole-genome sequence data. We identified a large pedigree with a rich 
history of DZ twinning, containing 18 MoDZT. With DNA extracted from samples 
provided by 17 individuals (4 males, 13 females [11 of which are MoDZT]), we 
performed genotyping and whole-genome sequencing experiments to 
generate datasets for linkage analysis and variant identification. We reasoned 
that large genetic regions shared by the most distantly affected MoDZT contain 
novel variants with considerable effect, leading to an enhanced understanding 
of biological pathways important for the DZ twinning process.

METHODS
Pedigree description
A large Dutch pedigree with a rich history of spontaneous DZ twinning (i.e., no 
use of assisted reproductive technologies) was ascertained. There are 21 sets 
of DZ twins and 18 MoDZT spanning multiple generations (Figure 3.1). Samples 
were collected from 17 individuals (4 males and 13 females). Of the four male 
samples, two were part of a same-sex DZ twin pair. Of the 13 females, 11 are 
MoDZT, one of which is part of an opposite-sex DZ twin pair. Two of the MoDZT 
gave birth to two sets of DZ twins. DNA was extracted in the Netherlands and 
sent to the Avera Institute for Human Genetics (AIHG) for SNP genotyping and 
sequencing.
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Sample quality control and genotyping
Briefly, DNA purity was assessed with a Nanodrop spectrophotometer. DNA 
quantity was measured with a double-stranded DNA dye method using 
a Qubit Fluorometer. All samples were of sufficient quality and quantity for 
downstream genotyping and were normalized to a concentration of 50ng/uL. 
SNP genotyping was done on the Illumina GSA according to the manufacturer’s 
protocol. Input for sample target preparation was 200ng of high-quality 
genomic DNA. Genotype calls were made with GenomeStudio2.0 and exported 
in PLINK file format for downstream analysis.

We observed more than expected allele sharing between individual 305 and 
many of the genotyped MoDZT from the far left-hand side (paternal side 
from proband) of the pedigree. Individual 305 is related to the individuals in 
that cluster only through a marriage of individuals 302 and 301, so would be 
expected to show minimal allele sharing with any member of that cluster, akin 
to the allele sharing of two unrelated individuals. We extracted a subset of 
SNPs from the whole-genome sequence data of individual 305 to re-calculate 
genome-wide IBD sharing. The same pattern of allele sharing was observed.

Linkage analysis
Analysis was performed with Merlin software [18] with a grid size of 0.1. SNPs with 
Mendelian inconsistencies, minor allele frequency (MAF)<0.01, and substantial 
deviation from Hardy-Weinberg Equilibrium (p<0.00001) were excluded prior 
to analysis. Genotypes for key individuals for which samples were unavailable 
were set to missing. Mothers without twins were assigned an unknown status 
rather than unaffected because it is possible that these mothers possess the 
genetic regions of interest but did not (yet) express the trait. For this reason, 
mothers without twins could not definitively be specified as unaffected.

In the pedigree, two subfamilies were defined with respect to the proband 
(sample number 501 marked by the black triangle in Figure 3.1). The first cluster 
contained individuals 202, 201, 302, 301, 308, 309, 306, 307, 313, 314, 401, 403, 404, 
405, 402, 406, 407, 501. The second cluster was represented by individuals 416, 
417, 514, 503, 502, 515, 504, 608, 147, 603, 604. Sample 305 was omitted because 
of absent genetic relations with individuals on the left side of the pedigree.

Whole-genome sequencing
Pilot study: two samples (individuals 501 and 612) were sequenced as a 
part of a pilot study to validate the performance of a sequencing library-
preparation kit initially designed for cell-free DNA (DNA fragments) and that 
had not previously been used at the AIHG. The two samples were selected 
strictly based on having abundant high-quality genomic material available. 

The samples were sequenced to evaluate sequencing quality with the library 
preparation kit. The two samples were included on an available lane of a flow 
cell as part of another sequencing project. Though low read coverage (~5X) 
was expected, quality could still be assessed.

Sample selection - Four MoDZT were selected for whole-genome sequencing. 
Individuals 608, 504, 405, and 305 were selected based on being the most 
distantly affected in the pedigree. Sequencing experiments were designed to 
obtain quality data of sufficient coverage (~30X) for rare variant identification.

Sample preparation – DNA was first fragmented via sonication to a 300 base-
pair (bp) target size with a Covaris M220 Focused ultrasonicator. DNA fragment 
size was confirmed with an Agilent 2100 Bioanalyzer.

Library preparation – Sequencing libraries were generated from the fragmented 
DNA with ThruPLEX Plasma-seq chemistry (Rubicon Genomics). Positive and 
negative controls were included, in the form of a known reference genomic 
DNA sample and a non-template control (water in TE buffer), respectively. 
Index read sequencing primers of 6bp were included for multiplex sequencing. 
Compatibility of indices was determined with Illumina Experiment Manager. 
Libraries were purified with Agencourt AMPure XP beads. Prepared libraries were 
then assessed via Agilent 2100 Bioanalyzer to verify the addition of sequencing 
adaptors and indices (~140bp increase).

Library pooling – Libraries were pooled, purified, and quantified via quantitative 
polymerase chain reaction (PCR) with a KAPA Library Quantification Kit. Libraries 
were then denatured with 0.1 N NaOH and diluted to 15 pM for optimal cluster 
generation. Flow cell clustering was performed with an Illumina cBot 2 system.

Sequencing – Pooled libraries were sequenced on an Illumina Hi-Seq 2500 
instrument using a high-output, 2x101 paired-end sequencing run with 1% PhiX 
spike-in serving as a control to aid in experiment troubleshooting.

Whole-genome sequence analysis
Sequence data were analyzed locally on a Linux workstation (OS: Ubuntu, 
Intel Core i7 6900 8 Core, 128 GB RAM) at AIHG in a stepwise manner. Initial 
quality was assessed with MultiQC [19] on raw FASTQ files. Pre-processing and 
variant discovery and identification of germline short variants (SNPs, insertions, 
deletions) were performed with the germline best practices workflow of the 
Genome Analysis Toolkit (GATK version 3.8) [15, 20, 21] (Figure 3.2). Reads were 
mapped to the reference human genome (GRCh37) with BWA-mem (v0.7.17). 
All reference variant databases were obtained from the GATK resource 
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bundle. Duplicated alignments were marked with Picard tools (v2.14.1) (http://
broadinstitute. github.io/picard/). Alignment scores were recalibrated with 
the Base Quality Score Recalibration (BQSR) module in GATK. Variants were 
called with HaplotypeCaller in GVCF mode for each sample and were then 
consolidated for joint calling to obtain raw variants. Variant quality scores were 
recalibrated with the Variant Quality Score Recalibration (VQSR) module.

Figure 3.2 - Complete GATK best practices workflow (https://gatk.broadinstitute.org/
hc/en-us).

Identification of shared genomic regions
Shared genomic regions were identified with Olorin [22], a Java package 
designed to combine within-family linkage analysis with sequence data 
(Figure 3.3). Olorin integrates patterns of gene flow estimated by Merlin to 
identify genomic regions shared by selected (i.e., affected) individuals in 
large pedigrees. This information can then be combined with whole-genome 
sequence data (single VCF file) to analyze variants within the shared regions. 
Variants can further be refined with filtering tools in Olorin. For example, a user 
may define the minimum number of individuals required to share a segment, 
enabling the search for variants of incomplete penetrance. We adjusted this 
option to search for variants possessed by two, three, or all four selected MoDZT. 
Additionally, Olorin supports the processing of ‘consequence’ strings in the 
information field of the VCF file for predicting variant effects. Consequence 
information can be obtained from Variant Effect Predictor (VEP).

Figure 3.3 - Diagram of the Olorin workflow

RESULTS
Linkage
The DZ twinning pedigree (Figure 3.1) was previously analyzed by Dr. Hamdi 
Mbarek with custom identity-by-descent (IBD) mapping programs written in 
Wolfram Mathematica software. The pedigree was split into three clusters, two 
on the paternal side of the proband and one on the maternal side. Numerous 
large (>1Mb) shared regions were identified, depending on the selected 
individuals included in the analysis. A 1Mb region on chromosome 12 was 
shared by 11 MoDZT and one grandmother of DZ twins from the maternal and 
paternal sides of the proband. IBD regions shared by seven of the MoDZT on 
the paternal side of the proband were on chromosomes 15, 16, and 17.

Due to the complexity of the phenotype and uncertainty of the mode of 
inheritance, we employed non-parametric linkage analysis with an affected-
only model to test for the co-segregation of chromosomal regions and being a 
MoDZT. Under the null hypothesis, the average Logarithm of Odds scores (LODs) 
should be zero in non-parametric linkage analysis. Negative non-parametric 
LODs imply less than expected allele sharing among the group of individuals 
and suggest that linkage is less likely. An excess of negative LODs indicates 
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that the data contain genotyping errors and/or misspecification of familial 
relationships. Positive non-parametric LODs indicate excess allele sharing 
among affected individuals and favors the presence of linkage. By convention, 
LODs greater than 3 are considered strong evidence of linkage since they 
represent 1000 to 1 odds that a trait gene is linked to a genetic marker. LODs 
less than -2 are generally considered evidence to exclude linkage.

The goal of the non-parametric analysis was to identify large, shared regions 
indicated by broad peaks or plateaus in LODs plots. Per chromosome LODs are 
shown in Figure 3.4. The top hit was found on chromosome 5 (maximum LOD 
score=1.21, p=0.009). Maximum LOD scores were positive for all chromosomes, 
except for chromosome 21 (maximum LOD score=-0.01, p=0.6).

Aside from the complexity of the pedigree structure and the absence of 
genetic data for key individuals, issues related to impossible recombination 
were experienced in Merlin. Impossible recombination patterns resulted in 
one of the three family clusters being discarded. The origin of this issue is 
an obligate recombination event between two markers that are mapped to 
the same position, or very close to each other, or that have a recombination 
probability of zero given the genetic recombination map used. Another reason 
for this may be a possible point mutation or genotype error. A subset of markers 
(N=18,555) was excluded in the quality control step before analysis to resolve 
issues caused by the impossible recombination patterns.

Whole-genome sequence data quality and analysis
Pilot study: The initial library preparation and sequencing of samples 501 
and 612 demonstrated that high-quality sequence data could be generated 
with the ThruPLEX Plasma-seq chemistry, originally designed for fragmented, 
cell-free DNA. The pilot study results confirmed the application of this library 
preparation kit for the whole-genome sequencing experiment on selected 
MoDZT.

Whole-genome sequencing was performed on four of the most distantly 
affected MoDZT in the pedigree. The sequence data from the four selected 
MoDZT were of high quality. The high output run yielded 343.63Gbp of data, 
with an average raw error rate of 0.301%. The average cluster density was ~790 
K/mm2 per flow cell lane (samples were pooled across all eight lanes). A vast 
majority of bases (94.21%) had Phred Quality Scores above Q30, indicating a 
base call accuracy of 99.9% for those bases. The mean GC content of reads 
for each sample was roughly normally distributed and was consistent with the 
mean value in the human genome of 41% [14].
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Although the sequence data were of high quality, the yield (343.63Gb) was 
less than projected for obtaining the desired ~30X coverage for confidently 
identifying rare variants. Sequencing instruments (identical instruments 
within the same lab or between labs) are known to vary in sequencing yield, 
provided a given input library concentration. Historical data from sequencing 
projects on the Illumina Hi-Seq 2500 at the AIHG suggested 15 pM as the 
optimal concentration for clustering and achieving the desired coverage. 
Lower data output can be due to over- or under-clustering. Over-clustering 
tends to result in poor image resolution, lower Q30 scores, and reduced data 
output. Alternatively, under-clustering usually maintains data quality but with 
lower overall data output. Given the robust quality results, the under-clustering 
scenario most likely reflects the lower-than-expected average coverage depth 
of 18.60X (range 17.37X to 19.51X) for the four sequenced samples following 
alignment and initial quality control.

A summary of the variants identified by GATKv3.8 is shown in Table 3.1. The 
results are shown for all four selected MoDZT. For a whole-genome sequencing 
experiment, roughly 4.4 million variants per individual are expected for human 
germline data (estimates from GATKv4). In total, nearly 7 million total variants 
were identified. We expected fewer total variants given the small number of 
sequenced individuals, the degree of relatedness amongst them, and strict 
variant filtering to avoid false positives. Our results were consistent with the 
known effects of sample size, filtering strictness, sample ethnicity, and state 
of the variant calling algorithm on variant discovery and identification with 
GATKv3.8.

The transition/transversion (Ti/Tv) ratio of 2.05 falls in line with a reported ratio 
of 2.0-2.2 for humans across the entire genome [15], indicating very few false 
positives and no bias due to artifactual variants. The bias avoidance is also 
supported by the insertion/deletion ratio of 0.83 (expected to be ~1) for common 
SNPs (https://gatk.broadinstitute.org/hc/en-us/articles/360035531572-
Evaluating-the-quality-of-a-germline-short-variant-callset).

Table 3.1 - Summary of variants after filtering

Category dbSNP (b37) Novel Total

Ti/Tv Ratio 2.10 1.88 2.05

SNPs:

 N (% total) 4,793,188 (80.07%) 1,192,935 (19.93%) 5,986,123

Insertions:

 N (% total) 238,787 (54.29%) 201,013 (45.71%) 439,800

Deletions:

 N (% total) 287,568 (52.05%) 264,927 (47.95%) 552,495

Insertion/Deletion Ratio 0.83 0.76 0.80

Ti/Tv is the transition to transversion ratio.

Identification of shared genomic regions
Estimated haplotypes were first generated in Merlin with SNP genotype data. 
The gene flow output was used to identify shared genomic regions of MoDZT. In 
the form of a VCF file, analyzed sequence data were then combined to identify 
variants within the shared segments. Individuals with sequence information 
were specified with the interactive features of Olorin and the information in the 
required pedigree file (Figure 3.5).

Figure 3.5 – Pedigree as defined in Olorin

Additional filtering was performed to identify shared genomic segments in 
two, three, or four sequenced MoDZT. The results are shown in the ideograms 
in Figure 3.6. Any two MoDZT shared large regions of all chromosomes. Regions 
shared by all four MoDZT were found on chromosomes 1-7, 10, 11, 16, 17 and were 
variable in size. The largest continuous regions were on chromosomes 11, 1, 3, 
and 6, respectively. Of the regions shared by all four MoDZT, none contained the 
previously identified and replicated SNPs near FSHB (rs11031006; Chr11; GRCh37 
position 30,226,528) and within SMAD3 (rs17293443; Chr15; GRCh37 position 
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67,437,863) [11]. The closest segment to rs11031006 was 18.2Mb upstream. No 
segments shared by all four MoDZT were found on chromosome 15. The shared 
regions did not overlap with an identified but not replicated intergenic SNP, 
rs12064669 (Chr1, GRCh37 position 230,688,643). The closest shared segment 
was 2.4Mb downstream. Assessment of the largest segments shared by three 
MoDZT revealed a region on chromosome 11 containing the FSHB associated 
SNP rs11031006. The region was rather large, spanning 30.9Mb (17,663,444 start; 
48,581,765 end), and was shared by individuals 305, 608, and 504. Individual 
305 possessed 14 of the 15 largest shared segments possessed by any 3 MoDZT.

Figure 3.6 – Ideograms of shared genomic segments
Banding patterns of chromosomes are shown in grayscale, with the centromere colored 
in red. Note: segments smaller than ~50kb are extremely difficult to visualize due to their 
size relative to each chromosome. For example, on chromosome 4, the first segment 
shared by 3 mothers has a small gap, corresponding to a 4,677 base-pair region shared 
by 4 mothers.

CONCLUSIONS AND FUTURE DIRECTIONS
The enduring objective of this project is to use whole-genome sequencing 
as a follow-up approach to previous linkage and association studies of DZ 
twinning to identify new genetic biomarkers related to fertility measures and 
for the prediction of DZ twinning.

Based on previous work, variants affecting multiple ovulation rates (i.e., DZ 
twinning events) are most likely to occur in genes and pathways that control 
the synthesis and release of Follicle Stimulating Hormone (FSH), pathways in 
the ovary that control response to FSH, or pathways involved in growth and 
development of the dominant follicle. Results from whole-genome sequencing 
may implicate new pathways or novel routes for regulating known pathways, 
ultimately enabling new opportunities for treating infertility or fine-tuning 
assisted reproductive strategies.

We have identified genomic regions of interest with combined genotype and 
whole-genome sequence data, but considerable effort is still required to 
pinpoint specific (rare) variants with meaningful biological effects. In a first 
step, preliminary results of Olorin can be further analyzed to determine the 
functional consequence of particular variants, which will require analyzing the 
currently available VCF with Variant Effect Predictor (VEP) to obtain functional 
consequence information. The resulting VCF can then be reanalyzed in Olorin 
with subsequent filtering to help prioritize variants for further investigation.

Another useful strategy for evaluating the results is to screen the shared 
segments/variants possessed by the MoDZT from the pedigree against the 
genomes of 46 MoDZT from the Genome of the Netherlands project. This 
strategy will highlight and differentiate between variants possessed only 
by mothers in the pedigree and variants prevalent among all MoDZT from a 
population-matched cohort. Given global differences of DZ twinning [5, 6], it 
would be of further interest to investigate variants across MoDZT from diverse 
populations as sequence data become available.

Varying the unaffected status for specific individuals in the pedigree to an 
unknown status may also aid in identifying promising candidate regions in 
linkage analysis. However, these modifications and subsequent interpretation 
will need to be done with extreme and deliberate care.

Attention should also be given to the reference genome/resource bundle used 
for variant discovery and identification. The developers of GATK have recently 
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transitioned all tool development and support to GRCh38 since retiring the 
GRCh37 resource bundle. The GRCh38 assembly is an improved version of the 
human genome reference [16], so it would be diligent to repeat all analyses 
employing this reference. This idea is supported by a recent study that found 
significant variant calling discrepancies due to the intrinsic differences 
between GRCh37 and GRCh38 [17]. Implementation of the GRCh38 reference 
would necessitate that genotype coordinates be converted (i.e., lifted over) to 
a consistent build for reanalysis with Olorin.

Overall, the overlapping portions represent regions of interest for identifying 
rare and highly penetrant variants or deleterious mutations. Rare variant 
identification for DZ twinning may elucidate novel genetic biomarkers for 
fertility and improve the ability to predict twinning events. Findings from 
this work have the potential to improve the outcomes of multiple gestation 
pregnancies and the reproductive capacity of infertile couples.
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ABSTRACT
Twin registries often take part in large collaborative projects and are major 
contributors to genome-wide association (GWA) meta-analysis studies. In 
this article, we describe genotyping of twin-family populations from Australia, 
the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin 
Register), as well as a sample of mothers of twins from Nigeria to assess the 
extent, if any, of genetic differences between them. Genotyping in all cohorts 
was done using a custom-designed Illumina Global Screening Array (GSA), 
optimized to improve imputation quality for population-specific GWA studies. 
We investigated the degree of genetic similarity between the populations using 
several measures of population variation with genotype data generated from 
the GSA. Visualization of principal components analysis (PCA) revealed that 
Australian, Dutch, and Midwestern American populations exhibit negligible 
interpopulation stratification when compared to each other, to a reference 
European population, and to globally distant populations. Estimations of 
fixation indices (FST values) between the Australian, Midwestern American, and 
Netherlands populations suggest minimal genetic differentiation compared 
to the estimates between each population and a genetically distinct cohort 
(i.e., samples from Nigeria genotyped on GSA). Thus, results from this study 
demonstrate that genotype data from Australian, Dutch, and Midwestern 
American twin-family populations can be reasonably combined for joint-
genetic analysis.

Keywords: Genetic similarity assessment, genotyping microarray, population 
genetics, population structure, principal component analysis, twin

INTRODUCTION
Scientific investigations aimed at disentangling the contribution of genetic 
factors underlying complex and polygenic traits have demonstrated the 
necessity of large sample sizes [1, 2]. Only when sample sizes are vast is it 
possible to estimate the contribution of each locus influencing a complex trait 
[3-5]. It is both difficult and financially challenging for a single site to accrue 
large enough sample sizes to achieve adequate statistical power. Therefore, 
one pragmatic approach for obtaining the large numbers of samples required 
is to aggregate samples collected by different groups, either through meta- 
or mega-analysis. Currently, twin registers from around the world routinely 
employ this strategy for genotypic and phenotypic data [6, 7]. This approach 
is powerful if genetic heterogeneity (e.g., as a result of dissimilar population 
ancestry and demographic histories) is not an issue or is appropriately 
accounted for. Here, we explore the degree of genetic similarity between 
multiple twin cohorts and indicate whether it is appropriate to combine data 
from these cohorts for joint-genetic analysis.

In 2006, a study by Sullivan et al. empirically showed that samples from 
Australian and Netherlands Twin Registers could be reasonably combined for 
joint-genetic analyses by estimating the proportion of total genetic variability 
attributable to the genetic difference between cohorts [8]. The calculation of 
the genetic variability attributable to genetic differences between cohorts, 
measured by Wright’s fixation index (FST value), was estimated using analysis 
of molecular variance on 359 short tandem repeat polymorphism markers. 
The estimated FST between Australia (N=519) and the Netherlands (N=549) 
was found to be 0.30%, a value smaller than between many other European 
groups. The FST estimates suggested that it is reasonable to combine samples 
from Australian and Dutch cohorts but admittedly based on calculations 
in samples of modest size. Here we evaluate the genetic similarity in larger 
numbers of samples and augment the comparison by adding a third cohort 
of samples obtained from the Avera Twin Register (ATR), a representative 
population sampling of the Midwestern region of the United States. In this 
study, we test the genetic variation within and between three populations of 
interest - Australian, Dutch, and Midwestern American - by employing genomic 
data from a custom-designed genome-wide single nucleotide polymorphism 
(SNP) array. To further explore the genetic similarity across the cohorts under 
study, we incorporated genetic data from a globally and genetically distinct 
population - samples from Nigeria genotyped on the Global Screening Array 
(GSA) at the Avera Institute for Human Genetics (AIHG).
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In collaboration with the Netherlands Twin Register [9-12], the AIHG (Sioux Falls, 
SD, USA) created the ATR in May 2016 [13]. The goal of the ATR is to study the 
genetic and environmental influences on health, disease, and complex traits 
by harnessing the power of longitudinal biological sample collection and 
survey correspondence. Participants have enrolled from across all regions of 
the USA, the great majority coming from Midwestern states, including South 
Dakota, North Dakota, Minnesota, Iowa, and Nebraska. In addition to serving as 
a prime research model for studying health and disease in a regional setting, 
another important role of the ATR is to contribute to consortia-driven large-
scale genetic studies focusing on the genetic underpinnings of complex traits. 
Therefore, it is of interest to recognize the degree of genetic similarity between 
the Midwestern Americans comprising the ATR and the cohorts for which the 
genetic data are to be combined.

As long-established twin registers, the Netherlands and Australian Twin 
Registers have served as models for newly formed twin registers from around 
the world. As is the case for the ATR, the Netherlands and the Australian Twin 
Registers are population-based, with recruitment focused on the presence 
of twins or higher-order multiples in the family. Through this collaborative 
initiative, we included 100 saliva samples from Nigerian mothers of twins to 
use as a genetic contrast group to Australian, Dutch, and Midwestern American 
populations. The incorporation of genetically distinct samples further enhances 
the cross-ethnic comparisons that we describe here.

The AIHG recently joined the Illumina-initiated GSA consortium. Broadly, the 
goal of the consortium is to enable a variety of genotyping applications for 
biobanks, disease research, translational research, consumer genomics, and 
population genetic studies. Specifically, the GSA has been optimized for high-
throughput population-scale studies at a lower cost than previous genotyping 
platforms. Participation of the AIHG in the GSA consortium has allowed for 
the unique opportunity to design a customized high-density SNP genotyping 
microarray. A similar strategy for designing population-specific arrays for 
genome-wide association (GWA) testing has already been described, albeit 
for a different genotyping platform [14].

Here, we report on the design and initial validation of the array, as assessed 
by the evaluation of concordance, coverage, and imputation quality of the 
core backbone against the Genome of the Netherlands (GoNL) reference set 
[15, 16]. Additionally, we provide evidence to suggest that the custom-selected 
content generally enhances imputation quality and provides robust genotype 
calls for population- and disease-relevant SNPs. Furthermore, we demonstrate 

that the GSA can be utilized to generate high-quality SNP data from multiple 
tissue sources, namely blood, buccal epithelial brushings, and saliva.

With high-density SNP genotype data obtained from the GSA run at AIHG, we 
assessed the level of genetic similarity across population cohorts of interest: 
Australian, Dutch, and Midwestern American. To facilitate the assessment 
of population genetic structure, we leveraged the power of state-of-the-art 
software capable of ingesting genome-wide SNP data obtained from the 
GSA. Population genetic variation was summarized by uncorrelated principal 
components (PCs) through principal components analysis (PCA) and 
estimations of FST values. Furthermore, we projected the PCs estimated from 
the samples onto data from the Human Genome Diversity Project (HGDP) [17]. 
Projection of calculated PCs onto the diverse populations comprising the HGDP 
fostered a global illustration of genetic relatedness between the populations 
of interest.

MATERIALS AND METHODS
Participants and Sample Collection
Australian subjects were from the QIMR Berghofer Medical Research Institute 
(N=1922) [18, 19]. Other subjects were registered participants of the Netherlands 
(NTR, N=10,226) [10] and Avera (ATR, Sioux Falls, SD, USA, N=602) [13] Twin 
Registers, and the Nigerian Twin and Sibling Registry (NTSR, N=100) [20] (see 
Table 4.1).

Table 4.1 - Characteristics of samples genotyped on GSA per cohort and tissue

Cohort Country of 
Origin

Sample

N Female 
(%)*

Composition Unrelated 
Individuals

Tissue

Avera Twin 
Register

USA 602 66.4 MZ, DZ, parents, sibs 238 Buccal

NTR Netherlands 1135
55.4

MZ, DZ, parents, sibs
6139

Blood

NTR Netherlands 9091 MZ, DZ, parents, sibs Buccal

Australian Australia 1922 100 MODZT 1448 Blood

Nigerian Nigeria 100 100 MOSDZ 96 Saliva

Total 12,850 7921

GSA = Global Screening Array; NTR = Netherland’s Twin Register; N = number of 
samples; MZ = monozygotic twins; DZ = dizygotic twins; MODZT = mothers of DZ twins; 
MOSDZ = mothers of opposite-sex dizygotic twins; sibs = siblings; parents = parents of 
twins. *Percentage of female samples is reported from the unrelated set.
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Representative samples of the Midwestern American population were obtained 
from the ATR. Enrolled participants include twins, multiples, siblings, and their 
parents. Participants complete surveys and questionnaires and provide 
a cheek swab (buccal brushing) for zygosity testing and genotyping. The 
majority of the enrolled participants are located in the Midwestern region of 
the United States, with most being from South Dakota, Minnesota, and Iowa.

Samples from the QIMR Berghofer Medical Research Institute (Australia) are 
a combination of a number of different studies, conducted in many countries 
over many decades, focused on the genetics of dizygotic twinning [21]. Samples 
from mothers of dizygotic twins (MODZT) were collected from Australia and New 
Zealand and were shipped to the AIHG for genotyping on the GSA regardless 
of if they were ungenotyped or previously genotyped on an earlier SNP array. 
Included in the shipment were two small cohorts of special interest: (1) a 
Belgian sample of 40 MODZT from 14 multiplex families collected in the 1990s; 
(2) a sample of 10 MODZT from two multiplex families from the Utah Mormon 
Database collected in 1994. For the purposes of the study presented here, 
samples from Belgium and Utah were excluded from the Australian cohort.

The Nigerian sample in the present study was drawn from the NTSR, which 
included over 3000 adolescent monozygotic and dizygotic twins, their 
parents, and siblings collected mainly from public schools in Lagos State and 
Abuja, Federal Capital Territory in Nigeria. Participants of the NTSR completed 
questionnaires and provided saliva or buccal samples for genotyping. The 
sample used in the present study consisted of 100 mothers of opposite-sex 
twins attending public schools in Lagos State, collected for the purpose of 
a pilot study to understand the genetic underpinnings of dizygotic twinning. 
Lagos State is located in the southwestern geopolitical zone of Nigeria and is 
one of the most populous urban areas in Nigeria. Although residents of Lagos 
State are ethnically diverse, they are mainly members of the Yoruba group.

Participants from the NTR included twins, their parents, and other relatives 
(mainly siblings of twins). NTR participants take part in surveys and other 
research projects and provide blood or buccal samples for DNA isolation and 
genotyping.

DNA Extraction and Genotyping
DNA was isolated from whole blood, buccal epithelial cells [22], and saliva 
using standard protocols for downstream SNP genotyping. High-density SNP 
genotyping for all samples was done at the AIHG (Sioux Falls, SD) using a 
custom-designed Illumina GSA according to the manufacturer’s protocol.

Design of a Customized Genotyping Array and Generation of Genotype 
Data
The GSA employed for this study was designed following a previously defined 
strategy for designing population-specific customized genotyping arrays 
[14]. Specifically, the GSA was custom-designed to contain a core imputation 
backbone (approximately 660,000 markers) based on commonly utilized 
reference panels, such as the GoNL [15] and the 1000 Genomes Project [23]. 
In addition to the core backbone, the array includes approximately 30,000 
additional markers for fine mapping to further enhance imputation quality 
and 8000 markers of interest associated with a variety of conditions, disorders, 
and traits, including neuropsychiatric disorders, drug metabolism, fertility, and 
twinning (Table 4.2). In total, the GSA contains 697,486 markers.

Table 4.2 - Content and marker selection categories of the custom-designed Illumina GSA

Marker Type Number of SNPs (N=697,486)

GSA Core Backbone Total ~660,000

Sex Chromosomes 17,880 X; 1480 Y; 578 PAR

ADME Genes/Exons 6668; 2787

ClinVar 17,020

MHC 9797

Ancestry Informative 3212

Fine Mapping Content (candidate genes and 
additional markers for imputation)

Total ~30,000

Custom Markers Total ~8000

Fertility and Twinning

Body Stature (height, BMI) and Sports and Exercise Behavior

Mental State and Health (happiness, depression, schizophrenia)

Chromosome X (imputation)

Educational attainment

Pharmacogenomics

GSA = Global Screening Array; ADME = Absorption, distribution, metabolism, excretion; 
BMI = body mass index; ClinVar = NCBI archive for interpretations of clinical significance 
of genetic variants; MHC = major histocompatibility complex; PAR = pseudoautosomal 
region

Prior to the design of the array, initial validation of the GSA content for imputation 
was assessed by checking concordance, coverage, and imputation quality 
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using an extracted subset of markers resembling the GSA (683,937 markers). 
In brief, a dataset mimicking the content on the GSA was curated from 249 
unrelated female individuals of the GoNL project. Males from the GoNL were 
excluded as the tools used for assessment of genotyping array coverage could 
not properly handle a homozygous X chromosome. GSA-mimicked markers 
were quality controlled and retained if minor allele frequency (MAF) was >0.01, 
missingness per individual was <10%, missingness per SNP was <5%, and if there 
was no statistically significant deviation from Hardy-Weinberg Equilibrium (p 
> 10-5). Quality control and filtering reduced the number of markers to 617,340. 
Extracted and quality-controlled markers were then selected if they were 
present in the 1000 Genomes (1000G) reference panel [23] (616,961 markers). 
The extracted set was phased with SHAPEIT [24] and imputed against the 1000G 
reference panel phase 3 using IMPUTE2 [25]. For the ~12.1 million overlapping 
markers, concordance was calculated in PLINK [26, 27] by comparing the 1000G 
best-guess genotypes to the original GoNL genotypes.

Genotype calls from the GSA were made using Illumina GenomeStudio2.0 
and custom-curated cluster files. In short, cluster positions were defined 
using genotype data on 1254 samples run on GSA at AIHG by a variety of 
technicians and across many batches (i.e., reagent and bead-chip lots) 
to account for as much sample variation as possible. Initial assessment of 
sample-dependent and sample-independent controls, preliminary call rates, 
and percentile distributions of GenCall scores (a quality metric indicating the 
reliability of genotype calls) yielded a final sample set of 1199 samples for 
defining cluster positions. Samples were grouped into males and females so 
that Y chromosome (1480 markers) and X chromosome (17,880) clusters could 
be generated using subsamples of the appropriate sex. Due to the behavior 
of the GenomeStudio clustering algorithm, only male samples were used for 
defining Y chromosome clusters. Similarly, only female samples were used 
for generating X chromosome clusters since males are not expected to be 
heterozygotes for X-linked markers. Therefore, X and Y markers were clustered 
and evaluated, taking gender into account. All samples were used to cluster 
autosomal SNPs (670,744 markers), including XY and mitochondrial markers.

Following initial clustering, cluster positions were evaluated and edited based 
on a sequential assessment of several cluster metrics. Cluster positions 
were zeroed (resulting in no genotype calls for a locus) based on low cluster 
separation (≤0.27), low call frequency (<0.96), low mean normalized intensity 
values for the heterozygote genotypes (≤0.2), extreme mean normalized theta 
values of the heterozygote cluster (<0.2 or >0.825), Mendelian inconsistencies, 
ambiguous clusters, excessive numbers of reproducibility errors, and excessive 
heterozygote calls relative to expectations based on Hardy-Weinberg 

Equilibrium (>0.2). Markers on X and Y chromosomes were manually evaluated 
and edited on a per-marker-basis.

Data Management, Quality Control, and Relationship Inference
Individual samples were removed if they had a missing rate greater than 10% 
or excess genome-wide inbreeding levels/heterozygosity (as calculated in 
PLINK, F coefficient <-0.10 or >0.10). Reported sex was compared with inferred 
sex from the genotype data. Sex mismatches were investigated, resolved, and 
subsequently replaced in the dataset.

From each population sample, we selected the largest group of unrelated 
individuals (shown in Table 4.1). Unrelated individuals were identified with 
KING software [28] using the ‘--unrelated’ option. In brief, related individuals 
(estimated kinship coefficient <0.088) were clustered into families. Within each 
connected group, individuals were ranked according to the count of unrelated 
family members, corresponding to an estimated kinship coefficient <0.022. A 
set of unrelated individuals was then made by selecting the individuals with 
the largest count of unrelated individuals within the respective family group. 
Additional unrelated individuals were obtained by taking the individuals with 
the next most unrelated family members, only if that individual was not related 
to any of the previously selected unrelated individuals. The final selection 
contained no pairs of individuals with a 1st or 2nd-degree relationship, reducing 
the sample size to 7921 subjects. Following quality control, the number of 
samples was reduced to 7782.

SNP Quality Control and 1000G Alignment
All autosomal SNPs that passed quality control and filtering were analyzed. 
PLINK was used to perform quality control. A selection of high-performing 
markers (N=564,020) was used for subsequent quality control and analyses. 
Specifically, SNPs were removed if they were not in the 1000G reference panel 
(phase 3 version 5) or if they were palindromic SNPs with an allele frequency 
of 0.40-0.60. Polymorphic SNPs with more than two alleles were also excluded. 
SNP marker names were adjusted for congruity with 1000G, and strand flip 
issues were resolved. SNPs were removed if their call rate was less than 95% 
and if they differed significantly from Hardy-Weinberg Equilibrium (p < 10-5).

Principal Component Analysis
PCA was performed with smartpca of the EIGENSOFT package [29] with 
its default parameter settings. PCA was used to compute 10 PCs for the 
populations under study. Initial ancestry outliers were determined by merging 
each independent dataset with 1000G data to project ethnicity with smartpca. 
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Ancestry outliers, based on non-European ancestry, were visually identified 
and subsequently removed.

Cleaned and 1000G aligned data for each population were filtered to retain 
SNPs having a MAF >0.05, linkage disequilibrium (LD) pruned and filtered to 
exclude confounding SNPs in long-range LD, as previously described [30, 
31]. Filtering and exclusion of long-range LD regions reduced the number of 
autosomal SNPs from 564,020 to 109,702 SNPs. This number of SNPs was used 
for comparisons between samples genotyped on GSA, namely those from 
Australian, Midwestern American, Dutch, and Nigerian cohorts.

We also calculated if there were statistically significant pairwise differences 
between the Australian, Dutch, and Midwestern American populations and 
representative European populations from the HGDP using smartpca. For each 
pair of populations, ANOVA statistics along each eigenvector were summed 
across all 10 eigenvectors.

HGDP Data Management and Projection
To establish genetic similarity on a global scale, PCs of the Australian, Dutch, 
Midwestern American, and Nigerian populations were projected onto samples 
obtained from the HGDP [17, 32]. The HGDP data comprises genotypes (660,918 
SNPs) from 1,043 fully consenting individuals representing 54 global populations 
from sub-Saharan Africa, North Africa, Europe, the Middle East, Central and 
South Asia, East Asia, Oceania, and the Americas and provide a representative 
sampling of worldwide genetic variation (available at: https://www.hagsc.org/
hgdp/files.html).

Raw genetic data from the HGDP (sample call rate > 98.5%) were reformatted 
for PLINK using command line tools. Markers with greater than 5% missingness 
were removed. Following the same procedures as previously described, 
unrelated individuals were identified in the HGDP dataset and retained using 
the program KING. Removal of related individuals reduced the sample size 
from 1,043 to 857. To be consistent with GSA, HGDP data were converted from 
Build 36.1 coordinates to Build 37/hg19 using the University of California, Santa 
Cruz (UCSC’s) batch coordinate conversion tool, liftOver [33, 34]. Overlapping 
markers between HGDP and GSA (prior to MAF filter, LD pruning, and exclusion 
of long-range LD) were identified in the variant information files (.map) using R 
[35]. Of the 133,833 common markers between the datasets, there were 21,667 
multi-allelic variants due to strand inconsistencies. Strand flips were resolved, 
and data from the HGDP were merged with cleaned and filtered GSA data 
using PLINK. The merged set was filtered to remove markers with a MAF < 0.05, 

pruned for LD, and excluded SNPs in long-range LD. Quality control and filtering 
reduced the final number of markers to 54,820.

Ten principal components were calculated using smartpca within EIGENSOFT 
with default parameters. All HGDP populations were specified as reference 
populations for the PC projection.

Case-Control GWA Study
We performed a case-control GWA study (GWAS) between Midwestern 
American, Australian, and Dutch populations to gain insight into the degree 
of genetic relatedness between them. To avoid false positives, we excluded 
variants with a MAF < 0.10 in the quality-controlled and filtered data on unrelated 
individuals. Simple association testing was done in PLINK with the ‘--assoc’ 
command. Two GWASs were performed, both with the Midwestern American 
population defined as cases and with Dutch and Australian samples serving 
as controls. Manhattan plots and quantile-quantile (QQ) plots were created to 
visualize regions of the genome that appeared statistically significant.

Calculation of FST Estimates
To quantify measures of structure in populations, we estimated FST values 
between Midwest American, Australian, Dutch, and Nigerian cohorts. Weir 
and Cockerham [36] and Hudson [37] estimators were calculated using two 
different software programs: popstats [38] and scikit.allel [39], implemented 
in Python.

RESULTS
Validation of the GSA
Imputation quality metrics, quantified by R2 values, are presented in Table 4.3. 
For all 1000G imputed autosomal SNPs, including those present in African and 
Asian populations, the median R2 values for the GSA are 0.02 for MAF>0.000-
0.001, 0.69 for MAF>0.001-0.01, 0.97 for MAF>0.01-0.05, and 0.99 for MAF>0.05. For 
the selection of autosomal SNPs that were present in both the GoNL and 1000G 
reference data, indicative of true genetic variants in the Dutch population, the 
results demonstrate improved imputation quality compared to all SNPs present 
in 1000G. The median R2 values of the SNPs in the GoNL and 1000G reference 
set are for 0.04 MAF>0.000-0.001, 0.80 for MAF>0.001-0.01, 0.97 for MAF>0.01-0.05, 
and 0.99 for MAF>0.05. Here, the improved imputation quality, captured by 
both median and mean scores, is mainly the result of the exclusion of a large 
number of rare SNPs (i.e., SNPs in African and Asian populations - captured by 
the full 1000G set), which are likely absent from the Dutch population.
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Table 4.3 - Imputation quality metrics per minor allele frequency bin for the GSA

Selected SNPs Chr MAF range N SNPs Median R2 Mean R2 SD

1000G All SNPsa 1-22 >0.000-0.001 21,373,838 0.02 0.05 0.08

>0.001-0.01 6,853,643 0.69 0.64 0.28

>0.01-0.05 2,863,052 0.97 0.91 0.13

>0.05 6,974,825 0.99 0.96 0.08

GoNL and 1000Gb 1-22 >0.000-0.001 1,003,022 0.04 0.08 0.10

>0.001-0.01 2,736,096 0.80 0.74 0.24

>0.01-0.05 2,461,024 0.97 0.92 0.12

>0.05 5,874,328 0.99 0.97 0.07

GSA = Global Screening Array; Chr = chromosome; MAF = minor allele frequency; N 
SNPs = number of SNPs; SD = standard deviation; GoNL = Genome of the Netherlands.
a Denotes full 1000G imputation with Asian/African/other SNPs not present in the Dutch 
population
b Denotes overlapping SNPs between GoNL and 1000G.
 All monomorphic SNPs were excluded, thus only polymorphic SNPs were selected for 
each comparison.

Concordance of the genotyped GoNL SNPs that were reimputed with a 1000G 
imputation reference panel was high for most SNPs in the genome, as can be 
seen in Table 4.4. In the imputed data, of the 12,074,470 polymorphic variants 
with a MAF>0, up to 62.2% can be reimputed with very high quality. At lower levels 
of quality (below 80% concordant), 1.95% of the genome is not well covered.

Table 4.4 - Genotype concordance for GSA-mimicked, genotyped GoNL SNPs that were 
reimputed with 1000G reference panel

Concordance (%) N SNPs Percent

> 99 7,506,660 62.17

> 95-99 3,470,030 28.74

> 80-95 861,745 7.14

> 50-80 221,831 1.84

≤ 50 14,204 0.11

Note: Total number of 1000G SNPs that were reimputed, polymorphic and present in 
GoNL = 12,074,470.
GSA = Global Screening Array; GoNL = Genome of the Netherlands; N SNPs =number 
of SNPs

Principal Component Analysis
We performed a fine-scale PCA of unrelated subjects from Australian, Dutch, 
and Midwestern American populations to investigate the degree of genetic 
relatedness of these populations independent of other global populations. 
The PCA utilized 109,702 autosomal SNPs after stringent quality control, filtering, 
pruning, and exclusion of long-range LD regions. As seen in Figure 4.1, results of 
the PCA suggest that the Midwest American, Australian, and Dutch populations 
are not genetically distinct from one another since the clusters moderately 
overlap. The Midwest American cluster partially superimposes both Australian 
and Dutch clusters, which themselves also show a small degree of overlap. 
Visualization of PCs from the PCA on Australian, Dutch, and Midwestern 
Americans demonstrates the commonality of population clusters, thereby 
suggesting a high degree of genetic similarity between these populations.

Figure 4.1 - Genetic ancestry of Midwestern American, Australian, and Dutch subjects.
Shown are the results from PCA using autosomal genotyped SNPs after quality control, 
filtering, pruning, and exclusion of long-range LD (109,702 markers). Ancestry outliers 
were removed prior to performing PCA. PC1 and PC2 represent the first and second PCs 
and account for 18.864% and 11.919% of the variation, respectively.
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Provided the unique opportunity to genotype Nigerian mothers of twins on the 
GSA, a PCA was performed with the inclusion of these globally distinct samples 
to serve as a genetic contrast group to the populations under study. Thus, to 
enhance the investigation of the genetic similarity of Australian, Dutch, and 
Midwestern American populations on a broader scale, we performed a PCA on 
all samples genotyped on GSA at AIHG, including those from Nigeria. The results 
of the PCA are depicted in Figure 4.2. The inclusion of a geographically and 
genetically distant population resulted in the distinct separation of European-
ancestry-based populations and the Nigerian cohort, indicative of population 
stratification and genetic dissimilarities.

Figure 4.2 - Genetic ancestry of Midwestern American, Australian, Dutch, and Nigerian 
subjects.
Shown are the results from the PCA using all autosomal genotyped SNPs after quality 
control, filtering, pruning, and exclusion of long-range LD (109,702 markers). Ancestry 
outliers were removed prior to performing PCA. PC1 and PC2 represent the first and 
second PCs and account for 67.765% and 6.568 % of the variation, respectively.

Projection of PCs from all samples genotyped on GSA onto those from the 
HGDP allowed for visualization of populations on a globally diverse scale. 
Results of the PCA using the HGDP as reference populations showed clear 
layering of the Australian, Dutch, and Midwestern American populations on 
the representative European HGDP cohort (Figure 4.3). The HGDP European 
population is comprised of samples collected from France, Italy, Italy-Bergamo, 
Orkney Islands, Russia, and Russia-Caucasus. At the global level, the Australian, 

Dutch, and Midwestern American samples showed strong distinction from 
African and Asian populations. Alternatively, the PCs of the cross-ethnic 
comparison demonstrated strong overlap between the Nigerian samples and 
the representative African population from HGDP. The HGDP African population 
was made up of samples obtained from Angola, Botswana, Central African 
Republic, Congo, Kenya, Lesotho, Namibia, Nigeria, Senegal, South Africa, and 
Sudan. The results suggest that global genetic diversity can be observed by 
plotting PCs and that Australian, Dutch, and Midwestern American populations 
show nearest genetic relatedness to European populations.

Figure 4.3 - Projection of PCs for Midwestern American, Australian, Dutch, and Nigerian 
subjects onto HGDP populations.
Shown are the results from the PCA using autosomal genotyped SNPs that were in 
common with HGDP after quality control, filtering, and exclusion of long-range LD 
(54,820 markers). Ancestry outliers were removed prior to performing the PCA. PC1 and 
PC2 represent the first and second PCs and account for 38.048% and 28.811% of the 
variation, respectively.

In order to provide a quantitative estimate of relationships between populations 
in a pairwise fashion, we used smartpca to sum ANOVA statistics across all 
eigenvectors (parameter default of 10 eigenvectors). The results of the pairwise 
comparisons of Australian, Dutch, and Midwestern Americans are shown in 
Table 4.5. Statistically significant differences were observed for each pairwise 
comparison, suggesting the existence of population stratification.
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Table 4.5 - Statistical significance of differences between populations

Population 1 Population 2 Chi-square P-value

Midwestern American Netherlands 457.171 6.169x10-92

Midwestern American Australian 660.324 2.053x10-135

Australian Netherlands 7121.469 0

Note: For each pair of populations, ANOVA statistics along each eigenvector were 
summed across eigenvectors. Degrees of freedom are equal to 10, the default number 
of eigenvectors.

To put in context the genetic differences between Australian, Dutch, and 
Midwestern Americans, we tested for significant differences between them, 
the samples obtained from Nigeria, and all HGDP populations, including 
representative European populations (Supplementary Materials Tables 4.1 and 
4.2). All comparisons between Australian, Dutch, and Midwestern American and 
HGDP European populations were statistically significant, with the comparison 
between Australian and the Orkney Islands populations being least significant. 
More generally, for each cohort, the statistical comparison with the Orkney 
Islands resulted in the least significant difference.

Case-Control GWAS
We performed two case-control GWAS between Midwestern American (cases) 
and Australian (controls) and Dutch (controls) populations using only common 
variants. A MAF filter (MAF>0.10) was employed to avoid false positives due to 
minor allele frequencies. The GWAS between Midwestern American (227 ‘cases’) 
and Australian (1354 ‘controls’) utilized 228,166 variants after MAF filtering. 
Results of the case-control GWAS between the two populations are visualized 
in a Manhattan plot (Figure 4.4c). Four chromosomal regions exhibited 
genome-wide significant differences (p<5x10-8). The dbSNP ID numbers for 
the significant SNPs are: rs6420020 (chromosome 5, p=1.571x10-15), rs10817415 
(chromosome 9, p=3.832x10-15), rs11599284 (chromosome 10, p=5.387x10-14), 
rs78611721 (chromosome 20, p=2.164x10-14). The frequency of these SNPs was 
much greater in Australians than in American individuals. The QQ-plot (Figure 
4.4d) of genome-wide p-values showed a modest deviation from the null 
hypothesis of no association. The overall GWAS genomic control statistic (λ) 
was 1.153, indicating slight inflation due to population structure, driven by a 
small number of polygenic variants, between the Midwestern American and 
Australian populations.

The second case-control GWAS was performed between Midwestern American 
(227 ‘cases’) and Dutch (6139 ‘controls’) using 228,025 common variants after 

MAF>0.10 filtering. The results of the case-control GWAS between the two 
populations are presented in the Manhattan plot in Figure 4.4a. No statistically 
significant variants exceeded the genome-wide significance threshold (p<5x10-

8). The QQ-plot (Figure 4.4b) shows slight genomic inflation across the entire 
range of p-values. The GWAS genomic control statistic (λ) was 1.159, again 
indicating slight inflation due to population structure differences between the 
Midwestern American and Dutch populations.

Figure 4.4 - Results of the case-control GWAS between Midwestern American (cases), 
Australian (controls), and Dutch (controls) populations.
(a) Manhattan plot of the case-control GWAS of Midwestern Americans (227 cases) and 
Dutch (6139 controls) using 228,025 variants after MAF>0.10 filter. (b) QQ plot of observed 
vs. expected p-values of the association results between Midwestern American and 
Dutch populations (λ= 1.159). (c) Manhattan plot of the case-control GWAS of Midwestern 
Americans (227 cases) and Australians (1581 controls) using 228,166 variants after 
MAF>0.10 filter. (d) QQ plot of observed vs. expected p-values of the association results 
between Midwestern American and Australian populations (λ= 1.153). Shown in each 
Manhattan plot is a blue line depicting a suggestive level of statistical significance 
(p=1x10-5). In panel (c), the red line represents a genome-wide level of statistical 
significance (p = 5x10-8). The rs numbers point to the chromosomal region that reached 
the genome-wide significance level. Variants with a MAF<0.10 were excluded. All related 
individuals and ancestry outliers were removed prior to performing the associations.

FST Estimates
FST values were calculated as a measure of genetic differentiation between 
populations. We generated FST values using two approaches, namely Weir 
and Cockerham [36] and Hudson [37] estimators. As demonstrated in 2013 
by Bhatia et al., the Weir and Cockerham estimator is dependent on the ratio 
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of sample sizes comprising each population [40]. Therefore, an alternative 
approach is to use the Hudson estimator, which can be implemented as a 
strategy independent of sample sizes, even when FST is not uniform across 
populations. The result produced by the Hudson estimator is a simple average 
of the population-specific estimators originally defined by Weir and Hill [41]. 
Ultimately the Hudson estimator was recommended by Bhatia et al. for 
estimating FST for pairs of populations with unequal sample sizes.

The FST estimates from both the Weir and Cockerham and Hudson estimators 
are shown in Table 4.6 and are relatively close to previously reported estimates 
from the HapMap consortium [42] and GoNL project (see Supplementary Table 
5 of ref[16]). Regardless of the estimator, smaller FST estimates are observed 
between Australian, Dutch, and Midwestern American populations than 
between each population compared to the Nigerian cohort. Consistent with 
the work of Bhatia et al., it is important to note that the choice of the estimator 
made an impact on the resulting FST estimate.

DISCUSSION
To gain insight into the routine practice of aggregating genomic datasets from 
twin registers from around the world, we investigated interpopulation genetic 
variation with genome-wide data generated on GSA from Australian, Dutch, 
and Midwestern American populations. Here, we report on the inception and 
initial validation of a custom-designed Illumina GSA and its implementation 
in studying population genetic variation. Through quantitative measures and 
visualization of PCs, results of work presented here suggest a high level of 
genetic similarity between the Australian, Dutch, and Midwestern American 
populations, albeit with small yet statistically significant differences existing 
between them.

The custom-designed GSA provides a genotyping platform initially optimized 
for imputation containing a core imputation backbone supplemented with 
additional fine-mapping content to bolster imputation quality and genome-
wide coverage. Also featured on the GSA are custom-selected markers specific 
to phenotypes of interest, notably for fertility and twinning.
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With the use of the GoNL reference set and a selection of markers mimicking 
the GSA, we demonstrated that we can reimpute genotypes with a high degree 
of confidence. Exceptions are made for rare alleles (MAF<0.0001), which are 
never well imputed [43]. A limitation to the validation of the GSA is that we 
utilized the sequences of only 249 samples; therefore, the imputation and 
presence of alleles with a MAF<0.01 was likely less than ideal. However, by 
comparing the validation results of the Illumina GSA to other commercially 
available genotyping platforms, the imputation quality of the GSA is well in line 
with other genotyping products (refer to Table 1 and Table 2 in [14]). Additionally, 
the method of testing the coverage using two reference datasets to check 
concordance between genotyped and reimputed SNPs utilizes SNPs in union 
with both reference panels. Thus, we inherently assume that SNPs specific to 
a population – for example, those SNPs only appearing in GoNL – are covered 
and imputed in such a manner. Nevertheless, the GSA has been instrumental 
in generating high-quality genotype data from cohorts around the world for 
use in population genetic studies of complex traits.

PCs often show a remarkable correlation with geography, a manifestation 
of decreasing genetic similarity with increasing geographic distance. 
Thus, we performed PCA and visualized PCs to elucidate the degree of 
genetic resemblance between Australian, Dutch, and Midwestern American 
populations. Visualization of PCs for the three populations under study shows 
a high degree of overlap between PCs 1 and 2. The similarity observed between 
Midwestern American and Dutch populations is consistent with estimates of 4.1 
million Americans (1.28% of the USA population in 2017) claiming total or partial 
Dutch heritage [44]. In large part, the majority of inhabitants of Midwest America 
have ancestral origins rooted in Northwestern Europe because of common 
migratory routes. Lending additional support to the Midwestern American and 
Dutch similarity is the fact that the majority of the Dutch Americans reside in 
Michigan, California, Montana, Minnesota, New York, Wisconsin, Idaho, Utah, 
Iowa, Ohio, West Virginia, and Pennsylvania. Together, it is apparent that there 
is strong Dutch influence and saturation in the Midwestern region, which is 
reflected in the genetic profiles of these populations.

Broad-scale comparison to diverse populations from around the world, such as 
those represented by the HGDP, further portrayed similarity between Australian, 
Dutch, and Midwestern American and with European populations more 
generally. The close resemblance of Australian and European populations is 
consistent with prior empirical results [45] and the fact that immigrants from 
Northern Europe colonized Australia (mainly from Britain and Ireland) and 
America. Incorporation of genotype data from a globally distinct population 

(i.e., Nigerian samples genotyped on GSA) facilitated the projection of the PCs 
onto the HGDP and recapitulated worldwide genetic diversity.

Quantitative measures of population similarity, as measured by summed 
ANOVA statistics over eigenvectors, revealed small yet statistically significant 
differences between Australian, Dutch, and Midwestern American populations. 
Additional comparisons of each population to individual HGDP European 
cohorts further demonstrated significant differences suggestive of population 
stratification. Likewise, patterns of FST estimations were consistent with the 
geographical clustering observed in PCA and with previous FST estimates 
of global population genetic differentiation. Altogether, it is likely that the 
observed population genetic dissimilarities are due to systematic allele 
frequency differences resulting from migration, adaptation, drift, and selection.

In general, large GWAS efforts aimed at discerning the genetic contributions to 
complex traits typically rely on meta-analyses of multiple cohorts of relatively 
homogeneous populations. Thus, to assess the level of homogeneity between 
Midwestern American, Australian, and Dutch cohorts, we performed case-
control association testing between populations. Case-control GWAS of 
Midwestern American and Australian populations yielded results to suggest 
that only small genetic differences exist between the populations under study. 
We hesitate to interpret the few differences observed between the Australian 
and Midwestern American populations, although we note that it is possible 
that the genome-wide significant SNPs (rs6420020, rs10817415, rs78611721, and 
rs11599284) could be implicated in the dizygotic twinning phenotype given that 
the genotyped Australian group consisted of MODZT. Between Australian and 
Midwestern American populations, genomic inflation appeared to be primarily 
driven by a small number of highly polymorphic SNPs, while the remainder of 
the genome appears comparable. In a similar fashion, the results of the GWAS 
of Midwestern American and Dutch populations suggested moderate genetic 
differences between the two populations without genome-wide significant loci.

Twin families are major contributors of phenotype and genotype data to 
collaborative research initiatives. Twins are often motivated to take part 
because of information on their zygosity [46]. The results from work presented 
here are encouraging for ongoing collaborative projects, including the genetics 
of twinning. Collaborative efforts of the Australian, Netherlands, and other twin 
registers have contributed to many landmark genetic studies, including the 
identification of two genetic variants associated with dizygotic twinning [47]. 
Participation of twin cohorts and their families from geographically distinct 
regions such as Nigeria will undoubtedly help facilitate the elucidation of 
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additional genetic variants underlying complex traits, including dizygotic 
twinning, due to the large regional differences in twinning rates [48-50].
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SUPPLEMENTARY MATERIALS
Supplementary Table 4.1 - Population codes and sampling information for HGDP and 
study populations

Population 
Code

Population Name Sampling Location Geographic Region Of 
Population

3 MidwestAmerican MidwestAmerica MIDWESTAMERICA

4 NTR Netherlands NETHERLANDS

5 Australian Australia AUSTRALIA

6 Nigerian Nigeria NIGERIA

20 Orcadian OrkneyIslands EUROPE

21 Adygei Russia-Caucasus EUROPE

22 Russian Russia EUROPE

24 Basque France EUROPE

25 French France EUROPE

27 Italian Italy-Bergamo EUROPE

28 Sardinian Italy EUROPE

29 Tuscan Italy EUROPE

34 Mozabite Algeria-Mzab MIDDLE_EAST

36 Bedouin Israel-Negev MIDDLE_EAST

37 Druze Israel-Carmel MIDDLE_EAST

38 Palestinian Israel-Central MIDDLE_EAST

50 Balochi Pakistan CENTRAL_SOUTH_ASIA

51 Brahui Pakistan CENTRAL_SOUTH_ASIA

52 Burusho Pakistan CENTRAL_SOUTH_ASIA

54 Hazara Pakistan CENTRAL_SOUTH_ASIA

56 Kalash Pakistan CENTRAL_SOUTH_ASIA

57 Makrani Pakistan CENTRAL_SOUTH_ASIA

58 Pathan Pakistan CENTRAL_SOUTH_ASIA

59 Sindhi Pakistan CENTRAL_SOUTH_ASIA

71 Melanesian Bougainville OCEANIA

75 Papuan NewGuinea OCEANIA

81 Colombian Colombia AMERICA

82 Karitiana Brazil AMERICA

83 Surui Brazil AMERICA

86 Maya Mexico AMERICA

87 Pima Mexico AMERICA

Supplementary Table 4.1 (continued)

Population 
Code

Population Name Sampling Location Geographic Region Of 
Population

430 BantuSouthAfrica Angola AFRICA

430 BantuSouthAfrica BotswanaOrNamibia AFRICA

430 BantuSouthAfrica Lesotho AFRICA

430 BantuSouthAfrica SouthAfrica AFRICA

441 BantuKenya Kenya AFRICA

457 Nilote Sudan AFRICA

464 Mandenka Senegal AFRICA

465 Yoruba Nigeria AFRICA

488 BiakaPygmy CentralAfricanRepublic AFRICA

489 MbutiPygmy Congo AFRICA

494 San Namibia AFRICA

601 Han China EAST_ASIA

602 Han-NChina China EAST_ASIA

606 Dai China EAST_ASIA

607 Daur China EAST_ASIA

608 Hezhen China EAST_ASIA

611 Lahu China EAST_ASIA

612 Miao China EAST_ASIA

613 Oroqen China EAST_ASIA

615 She China EAST_ASIA

616 Tujia China EAST_ASIA

617 Tu China EAST_ASIA

618 Xibo China EAST_ASIA

619 Yi China EAST_ASIA

622 Mongola China EAST_ASIA

625 Naxi China EAST_ASIA

629 Uygur China CENTRAL_SOUTH_ASIA

677 Cambodian Cambodia EAST_ASIA

684 Japanese Japan EAST_ASIA

699 Yakut Siberia EAST_ASIA

4



112 113

POPULATION GENETIC SIMILARITYCHAPTER 4

Supplementary Table 4.2 - Statistical significance of differences between populations. 
For each pair of populations, the ANOVA statistics are summed across eigenvectors. 
The result is approximately chisq with degrees of freedom equal to the number of 
eigen vectors.

pop1 pop2 chisq p-value

3 4 749.816 1.26E-154

3 6 6156.44 0

5 3 429.224 5.62E-86

5 4 8857.501 0

5 6 22000.876 0

6 4 67639.754 0

20 3 63.894 6.59E-10

20 4 173.691 4.77E-32

20 5 20.734 0.0230255

20 6 1547.751 0

21 3 1852.742 0

21 4 6332.92 0

21 5 3420.913 0

21 6 2075.942 0

22 3 1460.048 1.07E-307

22 4 3904.679 0

22 5 2256.011 0

22 6 2150.141 0

24 3 1254.616 2.38E-263

24 4 2703.947 0

24 5 1662.729 0

24 6 2225.43 0

25 3 463.033 3.46E-93

25 4 1022.616 2.51E-213

25 5 438.795 5.12E-88

25 6 2132.711 0

27 3 876.529 7.16E-182

27 4 1597.523 0

27 5 1095.659 4.55E-229

27 6 1645.343 0

28 3 2907.991 0

28 4 9829.624 0

28 5 5965.776 0

28 6 2745.004 0

29 3 822.826 2.55E-170

29 4 1440.327 1.95E-303

Supplementary Table 4.2 (continued)

pop1 pop2 chisq p-value

29 5 983.13 8.05E-205

29 6 1455.056 1.28E-306

34 3 4139.525 0

34 4 36146.567 0

34 5 14510.285 0

34 6 2149.688 0

36 3 4010.109 0

36 4 33415.963 0

36 5 14381.805 0

36 6 2129.977 0

37 3 4597.353 0

37 4 20079.444 0

37 5 10717.317 0

37 6 2979.874 0

38 3 4779.207 0

38 4 24397.496 0

38 5 12236.738 0

38 6 2860.238 0

50 3 3860.641 0

50 4 22453.506 0

50 5 10992.391 0

50 6 2305.417 0

51 3 3975.99 0

51 4 23144.328 0

51 5 11360.598 0

51 6 2426.446 0

52 3 4479.567 0

52 4 26946.201 0

52 5 12402.601 0

52 6 2344.274 0

54 3 3076.783 0

54 4 25022.76 0

54 5 9306.791 0

54 6 1954.409 0

56 3 5192.329 0

56 4 31342.826 0

56 5 14830.511 0

56 6 2486.114 0

4



114 115

POPULATION GENETIC SIMILARITYCHAPTER 4

Supplementary Table 4.2 (continued)

pop1 pop2 chisq p-value

57 3 3335.635 0

57 4 20108.585 0

57 5 9648.131 0

57 6 2109.805 0

58 3 3950.296 0

58 4 20866.105 0

58 5 10379.845 0

58 6 2219.71 0

59 3 4167.409 0

59 4 24455.961 0

59 5 11762.972 0

59 6 2249.503 0

71 3 5364.411 0

71 4 44101.355 0

71 5 16727.68 0

71 6 2239.247 0

75 3 6307.217 0

75 4 68348.873 0

75 5 22851.259 0

75 6 2411.932 0

81 3 4503.517 0

81 4 38298.986 0

81 5 14528.519 0

81 6 1764.309 0

82 3 4622.311 0

82 4 36008.124 0

82 5 14049.373 0

82 6 1813.536 0

83 3 3780.704 0

83 4 24068.937 0

83 5 10410.769 0

83 6 1466.692 0.00E+00

86 3 5221.223 0

86 4 59233.304 0

86 5 19676.868 0

86 6 2246.835 0

87 3 5026.309 0

87 4 44523.395 0

Supplementary Table 4.2 (continued)

pop1 pop2 chisq p-value

87 5 16322.743 0

87 6 1972.15 0

430 3 2964.017 0

430 4 33881.662 0

430 5 10520.31 0

430 6 302.222 5.27E-59

441 3 2899.047 0

441 4 33603.643 0

441 5 10584.149 0

441 6 335.485 4.78E-66

464 3 4456.269 0

464 4 46124.527 0

464 5 15217.264 0

464 6 73.328 1.01E-11

465 3 4810.955 0

465 4 49644.327 0

465 5 16405.907 0

465 6 22.846 0.0113302

488 3 5880.655 0

488 4 58992.567 0

488 5 20445.876 0

488 6 1311.773 1.10E-275

489 3 5613.946 0

489 4 54929.362 0

489 5 19602.729 0

489 6 1298.928 6.52E-273

494 3 4513.962 0

494 4 37823.504 0

494 5 14633.924 0

494 6 1037.472 1.58E-216

601 3 5536.788 0

601 4 56925.041 0

601 5 19025.951 0

601 6 2317.258 0

602 3 3685.594 0

602 4 33528.694 0

602 5 11589.288 0

602 6 1388.798 2.60E-292
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Supplementary Table 4.2 (continued)

pop1 pop2 chisq p-value

606 3 4229.327 0

606 4 37671.301 0

606 5 13638.214 0

606 6 1701.07 0

607 3 3925.066 0

607 4 32743.208 0

607 5 11813.288 0

607 6 1561.917 0

608 3 3448.338 0

608 4 29294.408 0

608 5 10473.989 0

608 6 1264.536 1.72E-265

611 3 3504.831 0

611 4 28452.012 0

611 5 10623.786 0

611 6 1354.066 8.19E-285

612 3 4160.859 0

612 4 36172.518 0

612 5 13036.093 0

612 6 1560.632 0

613 3 3785.704 0

613 4 34250.576 0

613 5 12199.557 0

613 6 1447.572 5.30E-305

615 3 4078.076 0

615 4 34889.792 0

615 5 12620.541 0

615 6 1486.517 2.05866e-313

616 3 4036.471 0

616 4 35419.931 0

616 5 12586.382 0

616 6 1491.838 1.46004e-314

617 3 3288.939 0

617 4 31307.943 0

617 5 10636.539 0

617 6 1243.201 6.90E-261

618 3 3232.679 0

618 4 30324.36 0

Supplementary Table 4.2 (continued)

pop1 pop2 chisq p-value

618 5 10469.472 0

618 6 1330.962 7.95E-280

619 3 3582.878 0

619 4 33312.243 0

619 5 11452.352 0

619 6 1337.158 3.65E-281

622 3 3293.957 0

622 4 31949.858 0

622 5 10962.64 0

622 6 1311.818 1.08E-275

625 3 3257.196 0

625 4 28526.449 0

625 5 10033.39 0

625 6 1184.153 3.77E-248

629 3 2447.635 0

629 4 19025.266 0

629 5 7116.367 0

629 6 1571.626 0

677 3 3738.917 0

677 4 33689.003 0

677 5 12256.31 0

677 6 1595.084 0

684 3 4778.618 0

684 4 48812.379 0

684 5 15973.221 0

684 6 1998.414 0

699 3 4371.196 0

699 4 51285.367 0

699 5 16835.329 0

699 6 2275.401 0
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ABSTRACT
Birth weight (BW) is an important predictor of newborn survival and health and 
has associations with many adult health outcomes, including cardiometabolic 
disorders, autoimmune diseases, and mental health. On average, twins have 
a lower BW than singletons as a result of a different pattern of fetal growth 
and shorter gestational duration. Therefore, investigations into the genetics of 
BW often exclude data from twins, leading to a reduction in sample size and 
remaining ambiguities concerning the genetic contribution to BW in twins. 
In this study, we carried out a genome-wide association meta-analysis of 
BW in 42212 twin individuals and found a positive correlation of beta values 
(Pearson’s r = 0.66, 95% confidence interval [CI]: 0.47–0.77) with 150 previously 
reported genome-wide significant variants for singleton BW. We identified 
strong positive genetic correlations between BW in twins and numerous 
anthropometric traits, most notably with BW in singletons (genetic correlation 
[rg] = 0.92, 95% CI: 0.66–1.18). Genetic correlations of BW in twins with a series 
of health-related traits closely resembled those previously observed for BW 
in singletons. Polygenic scores constructed from a genome-wide association 
study on BW in the UK Biobank demonstrated strong predictive power in a 
target sample of Dutch twins and singletons. Together, our results indicate 
that a similar genetic architecture underlies BW in twins and singletons and 
that future genome-wide studies might benefit from including data from large 
twin registers.

Keywords: Birth weight, genome, twins, genetics, genome-wide association 
study, biobanks

INTRODUCTION
Birth weight (BW) is a powerful predictor of infant and newborn survival, with 
lower-weight infants being at higher risk of mortality [1-3]. BW is also associated 
with a wide array of health-related variables in later life [4], with varying effect 
sizes, including adult body mass index (BMI) [5, 6], cardiovascular disease [7, 
8], type 2 diabetes [9], hypertension [10-12] and psychological distress [13]. Our 
knowledge of the biological pathways underlying BW is growing with the rapidly 
increasing number of genetic variants identified in genome-wide association 
(GWA) studies. Yet, these investigations mainly focus on BW in singletons and 
tend to exclude data from twins in the discovery analysis. Therefore, knowledge 
about the genetic overlap between BW in singletons and twins is limited, and 
it is not clear to what degree findings in singletons can be generalized to twins 
and to what extent data from twins can contribute to gene discovery for BW. 
This knowledge would be useful as a considerable genetic overlap would 
indicate that data from singletons and twins could be combined for attaining 
larger sample sizes.

BW is a complex and multifactorial trait [14, 15]. Maternal and fetal genomes 
conjointly determine fetal size, making estimations of the heritability of BW 
challenging as offspring and maternal genomes are not independent. In twins, 
BW is different from BW in singleton births because of their lower gestational 
age. The main factor explaining lower gestational age is uterine overdistension 
[16]. Still, twin and family studies suggest similar heritability estimates for BW, 
ranging from 10% to 40% [17-20], indicating a moderate contribution of genetic 
factors to BW variation. Of interest for our quest is a study from the Netherlands 
in which heritability was estimated from data on parents and their singleton 
offspring and from data on mono- and dizygotic twins [19]. The heritability 
estimates for BW and height were all around 0.3 and highly comparable in 
both groups.

The number of genetic variants identified for BW is growing based on findings 
from GWA studies (GWAS). In a 2010 study by Freathy et al. [21], two variants, in 
ADCY5 and near CCNL1, were found to influence variation in BW in singletons. 
The number of associated variants increased to seven in 2013 with an expanded 
meta-analysis study of over 69000 European individuals [22]. In a multi-
ancestry GWA meta-analysis (GWAMA) by Horikoshi and colleagues [23], BW 
and genotype data were collected for 153781 singletons. The result of this effort 
was the identification of 59 independent signals, capturing approximately 
15% of the variance in BW. Beaumont and colleagues [24] also examined 
the contribution of fetal versus maternal genetic effects and identified ten 
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maternal loci influencing offspring birthweight. Additional GWA efforts have 
been undertaken to ascertain the maternal and fetal genetic effects on BW and 
their relation to cardiometabolic risk, in which 190 independent associations 
were discovered [25]. To date, only one GWA study has been performed on 
BW in twins (4593 female twins from the UK), which identified one variant on 
chromosome 9, close to the NTRK2 gene [26].

The Developmental Origins of Health and Disease (DOHaD) hypothesis is based 
on observations that adverse influences early in development, particularly 
in the intrauterine environment, result in permanent physiological and 
metabolomic changes leading to increased risk of disease in adulthood [27-29]. 
One hypothesis, postulated by Barker in the 1990s, proposed that intrauterine 
growth restriction, low BW, and premature birth have a causal relationship to 
hypertension, coronary heart disease, and non-insulin-dependent diabetes 
in later life. Barker and colleagues traced infant mortality rates in England 
during the early 1900s and found strong geographical relations between infant 
death and high rates of mortality resulting from coronary heart disease years 
later [27]. They postulated that the geographic associations of infant mortality 
and adult death rates ‘reflects variations in nutrition in early life, which are 
expressed pathologically on exposure to later dietary influences’ (p.1081). At 
the time, the typical certified cause of death in newborn babies was low BW. 
Thus, the hypothesis was that low BW babies surviving infancy suffered from 
fetal undernutrition, exhibiting non-communicable changes in metabolism 
and physiology, in turn increasing coronary heart disease risk in adulthood 
[30]. Low BW can serve as a proxy for a suboptimal intrauterine environment 
and is not only associated with cardiovascular disease [31] but also with 
respiratory disease [32], various psychiatric disorders [33], as well as mental 
health, cognitive and socioeconomic outcomes [34].

In general, the DOHaD and the Barker hypotheses are environmentally based. 
That is, the existence of an adverse intrauterine environment leads to decreased 
BW and long-term cardiometabolic sequelae in offspring. Alternatively, strong 
genetic correlations between low singleton BW and indicators of metabolic 
and cardiovascular health, as described in the meta-analysis by Horikoshi and 
colleagues [23], correspond more closely to the Fetal Insulin Hypothesis [35]. In 
this context, the correlations between BW and cardiometabolic disorders are 
driven by the transmission of maternal genes to the offspring. However, genetic 
correlations between BW and the cardiometabolic traits could be driven 
through the fetal and/or the maternal genome. The latter is broadly consistent 
with the DOHaD/Barker hypothesis since the maternal genome defines the 
intrauterine environment, whereas the former more likely reflects mechanisms 
of the Fetal Insulin Hypothesis [36]. Recent studies have investigated these 

differences in hopes of disentangling the relative contributions of fetal and 
maternal effects on BW and later life cardiometabolic disease [25, 37].

On average, twins have lower BW than singletons since twin pregnancy is 
characterized by a shorter gestational duration [16] and because fetal growth 
slows down after approximately 32 weeks of gestation [38-41]. Therefore, 
investigations into the genetic architecture of BW and other birth-related 
characteristics often exclude twins, even though this may lead to a significant 
decrease in sample size. Concerning the DOHaD hypothesis, there is no 
evidence that the relation between BW and later-life disease differs between 
twins and singletons as demonstrated for blood pressure or anti-hypertensive 
drug use [42-44] and diabetes [45, 46].

This study aimed to search for common genetic variants underlying BW in 
twins by carrying out a meta-analysis of genetic association studies in twins 
and comparing the results to those for BW in singletons. To this end, four 
approaches were employed: 1) A meta-analysis of combined GWA results 
from five European twin cohorts, UK Biobank, one Australian twin cohort, and 
one twin cohort from the Midwestern region of the United States of America. 
2) An assessment of the genetic correlations between BW in twins and BW 
in singletons. 3) The evaluation of the genetic correlations between BW in 
twins and a range of traits and diseases in later life, including anthropometric 
and neuropsychiatric characteristics. 4) An assessment of the predictive 
performance of BW polygenic scores in twins and singletons.

RESULTS
Meta-analysis
We carried out a GWAMA for BW in 42212 twins. The meta-analysis QQ-plot, 
showing the expected distribution of genome-wide P-values compared to 
the observed values across SNPs, can be found in Supplementary Material, 
Figure 5.1. The Manhattan plot for the meta-analysis is shown in Figure 5.1. 
There were no genome-wide significant SNPs at the defined minimum P-value 
for lead SNPs (P<5x10-8); however, two lead SNPs had an association signal 
of P<5x10-7. These SNPs were located on chromosome 1 (rs10800682, hg19 
position 1:200198946, P=2.92x10-7) and chromosome 3 (rs3845913, hg19 position 
3:123100606, P=2.93x10-7). rs10800682 is independent (>12Mb, EUR r2<0.05) of all 
genome-wide significant loci found by Horikoshi and colleagues [23]. rs3845913 
is an intronic variant of ADCY5 and is ~31kb downstream of rs11719201 (EUR r2 
0.154), one of 60 loci previously associated with BW [23].
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Figure 5.1 - Manhattan plot from the genome-wide association meta-analysis for BW.
The association P-value (on -log10 scale) for each of up to 7,692,335 SNPs (y-axis) is 
plotted against the genomic position according to NCBI Build 37 (x-axis). For plotting 
purposes, overlapping data points are not drawn for filtered SNPs with a P-value≥1x10-5.

Replication of previous association results
Though no genome-wide significant SNPs were identified, we evaluated the 
performance of SNPs in the current study with the genome-wide significant 
SNPs signals (P<6.6x10-9) recently identified by Warrington et al., 2019 [25] in a 
GWAS of own BW. Of the significant SNPs, 150 overlapped with the current study 
after retention of markers present in greater than 70% of all study participants. 
As shown in Figure 5.2, following the alignment of effect alleles, the beta 
estimates between overlapping markers are highly correlated (Pearson’s 
r=0.66, 95% CI: 0.47-0.77). Summary statistics of the 150 overlapping variants 
are presented in Supplementary Material, Table 5.1. Overall, the positive linear 
relationship indicates that the previously reported significant variants behave 
in a similar fashion between singletons and twins.

Additionally, since gestational age was not available in all cohorts, we 
assessed heterogeneity of the overlapping SNPs mentioned above (i.e., 150) 
using METAL (implemented as Cochran’s Q-test). No significant heterogeneity 
in allelic effects was observed after Bonferroni correction (P>0.00033). The 
smallest reported P-value of heterogeneity statistics in the current study was 
0.002, which is in line with the smallest reported P-value of the genome-wide 
significant variants reported in Warrington et al., 2019 of 0.004 (Supplementary 
Material, Table 5.1).

Figure 5.2 - Scatter plot of the beta estimates from the overlapping SNPs between the 
current study and those reported in Warrington et al., 2019 (25) for the GWAS on own 
BW (P<6.6x10-9).
Of the significant SNPs, 150 overlapped with the current study.

Genetic correlations
The results from the genetic correlation analyses of BW in twins can be found 
in Figure 5.3 and Supplementary Material, Table 5.2. In general, the strongest 
genetic correlations were with anthropometric traits, specifically BW-related 
phenotypes. Previous studies have investigated and attempted to partition 
maternal and fetal genetic effects on BW, allowing for comparisons to individual 
and parental effects in this study.

The strongest genetic correlation was with ‘child birth weight’ (i.e., the 
individual’s own genetic effect on their BW) (genetic correlation [rg]=0.98, 
95% confidence interval [CI]: 0.62-1.33) based on a discovery GWAS of 26836 
European individuals [22]. Similarly, robust positive correlations were found with 
other phenotypes of the individuals own genetic effect on their BW, including 
UK Biobank birth weight (data field 20022) (rg=0.95, 95% CI: 0.71-1.19), ‘own birth 
weight’ (rg=0.92, 95% CI: 0.66-1.18) derived from an expanded GWAS of 286870 
European individuals [25], and ‘birth weight’ (rg= 0.91, 95% CI: 0.65-1.17) in 143677 
European individuals [23]. It is important to note that genetic correlations 
referenced above are from three studies that are not entirely independent. 
Sequential studies (in chronological order, references [22, 23, 25]) used a core 
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set of samples obtained by the Early Growth Genetics Consortium (EGG), which 
were expanded upon with new releases of the UK Biobank.

Figure 5.3 - Genetic relationships between BW in twins and 57 other phenotypes.
SNP-based genetic correlations (rg) between BW in twins and a range of other traits and 
diseases using LD Score regression. The bars represent 95% confidence intervals. The 
genetic correlation estimates are color-coded according to their respective category. 
HbA1C=hemoglobinA1C, HOMA-IR=homeostatic model assessment of insulin resistance, 
HOMA-B=homeostatic model assessment of beta cell function, PGC=Psychiatric 
Genetics Consortium, BMI=body mass index. PubMed reference numbers (PMID) for 
each trait are listed in Supplementary Material, Table 5.2.

A positive correlation was also observed with ‘offspring birth weight’ (i.e., the 
maternal genetic effect on offspring BW), as measured in 216611 mothers [25] 
(rg=0.76, 95% CI: 0.49-1.03). Of the genetic correlations with other phenotypes, six 
additional anthropometric traits exhibited strong positive genetic correlations, 

including offspring birth weight (maternal genetic effect on offspring BW after 
adjusting for the correlated offspring’s genotype) (rg=0.92, 95% CI: 0.66-1.19), 
own birth weight (individuals own genetic effect on their own BW after adjusting 
for the correlated maternal genotype) (rg=0.69, 95% CI: 0.45-0.93), child birth 
length (rg=0.57, 95% CI: 0.30-0.83), extreme height (rg=0.38, 95% CI: 0.19-0.57), 
height (rg=0.35, 95% CI: 0.19-0.51), and hip circumference (rg=0.32, 95% CI: 0.17-
0.47).

Glycemic traits were all negatively associated with BW, whereas cognitive 
characteristics, measured by intelligence, correlated positively (rg=0.20, 95% 
CI: 0.02-0.37). Genetic correlations of BW in twins with autoimmune disorders, 
psychiatric disorders, reproductive traits, and smoking behavior yielded mixed 
results.

The SNP heritability (h2) was calculated using LD Score regression. The h2 was 
estimated to be 0.0407 for BW in twins. For BW in singletons, the heritability 
estimates from three studies were h2=0.1139, h2=0.0985, and h2=0.1016 for ‘child 
birth weight’ [22], ‘own birth weight’ [25], and ‘birth weight’ [23], respectively. 
The heritability estimate of UK Biobank birth weight was h2=0.1006.

PolyGenic Score prediction
The PGS, based on summary statistics from GWA analyses of BW in UK Biobank, 
robustly predicted BW in NTR twins and singletons. The PGS, including the 
fraction of SNPs with a P-value selection threshold of 0.01, was the best predictor 
for BW in twins (β=68.19, p=2.10x10-51, PGS R2=0.02) and singletons (β=108.18, 
p=6.94x10-57, PGS R2=0.03), as shown in Table 5.1.

5



128 129

GWAMA OF TWIN BWCHAPTER 5

Table 5.1 - Results of the PGS prediction in NTR twins and singletons

Twins (N=10487) Singletons (N=6892)

Prop βPGS SEPGS PPGS PGS R2 βPGS SEPGS PPGS PGS R2

0.001 18.89 4.66 5.04E-05 0.00 34.28 6.87 6.09E-07 0.00

0.003 19.94 4.57 1.26E-05 0.00 38.67 6.72 8.77E-09 0.00

0.005 54.19 4.72 1.86E-30 0.01 75.01 6.75 1.13E-28 0.02

0.01 68.19 4.52 2.10E-51 0.02 108.18 6.81 6.94E-57 0.03

0.05 60.35 4.50 5.39E-41 0.01 101.71 6.88 1.73E-49 0.03

0.1 58.48 4.50 1.26E-38 0.01 99.71 6.88 1.52E-47 0.03

0.2 57.25 4.50 4.46E-37 0.01 98.45 6.89 2.24E-46 0.03

0.3 56.83 4.50 1.43E-36 0.01 98.10 6.89 4.96E-46 0.03

0.5 56.53 4.50 3.23E-36 0.01 97.77 6.89 1.01E-45 0.03

INF 55.39 4.53 2.09E-34 0.01 90.48 6.98 1.92E-38 0.02

Note: Prop (proportion) is the P-value threshold for SNP inclusion in the polygenic score 
(PGS), β is the regression coefficient for each term with standard error (SE) and P-value 
(P). PGS R2 is the phenotypic variance explained by the PGS.

As shown in Figure 5.4A, a comb-like distribution of raw BW was observed in 
singletons, corresponding to even ~500g increments, reflecting the assessment 
of BW in this group.

BW category was also evaluated as the response variable (histograms in Figure 
5.4B). The evaluation was done in all target samples (twins and singletons) 
by including twin status and interaction of PGS and twin status as predictors 
in the model (Table 5.2). As before, the PGS, including the proportion of SNPs 
with a P-value selection threshold of 0.01, represented the best predictor 
of BW category (β=0.18, p=1.68x10-49, PGS R2=0.02). Together, the results of 
PGS prediction analyses suggest that BW PGS constructed from a large 
representative discovery population predict BW similarly in a target population 
of twins and singletons.

Figure 5.4 - Histograms of raw and categorical BW for NTR twins and singletons.
Panel A shows histograms for raw BW in grams. Panel B portrays the distributions for 
BW categories 1-6 as described in the text. N=10487 twins; 6892 singletons. It is of note 
to point out the peaks corresponding to ~500g increments in the singletons in panel A, 
which simply may reflect the assessment of BW measures in this group.
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Table 5.2 - Results of the PGS prediction of BW category for NTR twins and singletons 
(N=17379)

Prop βPGS SEPGS PPGS βTS SETS PTS βINT SEINT PINT PGS R2

0.001 0.06 0.01 2.06E-06 -1.07 0.02 <0.001 -0.03 0.01 0.09 0.00

0.003 0.06 0.01 2.69E-07 -1.07 0.02 <0.001 -0.02 0.01 0.09 0.00

0.005 0.12 0.01 3.74E-23 -1.07 0.02 <0.001 -0.03 0.01 0.06 0.01

0.01 0.18 0.01 1.68E-49 -1.07 0.02 <0.001 -0.06 0.01 6.24E-05 0.02

0.05 0.17 0.01 1.48E-42 -1.07 0.02 <0.001 -0.06 0.01 3.23E-05 0.01

0.1 0.17 0.01 6.58E-41 -1.07 0.02 <0.001 -0.06 0.01 3.09E-05 0.01

0.2 0.17 0.01 7.29E-40 -1.07 0.02 <0.001 -0.06 0.01 2.98E-05 0.01

0.3 0.17 0.01 1.44E-39 -1.07 0.02 <0.001 -0.06 0.01 2.83E-05 0.01

0.5 0.17 0.01 2.68E-39 -1.07 0.02 <0.001 -0.06 0.01 2.83E-05 0.01

INF 0.15 0.01 3.21E-33 -1.07 0.02 <0.001 -0.05 0.01 <0.001 0.01

Note: Prop (proportion) is the P-value fraction for SNP inclusion in the polygenic score 
(PGS), β is the regression coefficient for each term with standard error (SE) and P-value 
(P) for the PGS, twin status (TS), and the interaction term (INT) of TS and PGS. PGS R2 is 
the phenotypic variance explained by the PGS.

DISCUSSION
We performed a genome-wide meta-analysis of BW in twins and compared 
the genetic architecture of BW between twins and singletons. Our results, 
particularly the genetic correlation and PGS analyses, provide compelling 
evidence for considerable genetic overlap between BW in twins and singletons.

The genetic correlation between BW in twins and the most recent reported 
results in singletons was very strong (rg=0.92, 95% CI: 0.66-1.18), indicating a 
large overlap in the genetic variants influencing BW in the two groups. The 
genetic associations with health-related traits, when comparing the size and 
direction from our genetic correlation analyses with the results from Horikoshi 
and colleagues [23], showed remarkably similar results. This similarity suggests 
that the differential pattern of fetal growth between twins and singletons does 
not affect the relation between BW and later-life disease.

We evaluated the predictive performance of PGS derived from a GWAS on 
BW from a large representative population from the UK Biobank in a large 
target sample of NTR twins and non-twins. The PGS calculated from the 
proportion of SNPs with a P-value selection threshold of 0.01 demonstrated 

robust prediction in both singletons (p=6.94x10-57) and twins (p=2.10x10-51). While 
the proportion of variation explained by the best predicting PGS was small 
for twins at 2% and non-twins at 3%, despite moderate heritability estimates, 
such PGS represents common genetic architecture underlying BW in twins 
and singletons even though there are clear differences in BW between the 
two groups. Smaller heritability estimates were also observed for BW in twins, 
potentially indicating a form of sibling competition. That is if one twin grows 
and occupies the growing space of the co-twin, the genes that increase the 
BW of the larger twin may also limit the growth of the co-twin. Consistent with 
our results, sibling competition would result in a dampened effect of the PGS 
and would be reflected in lower heritability estimates in twins.

The results of the GWAMA did not yield SNPs significantly associated with BW 
in twins. Two lead SNPs, rs10800682 and rs3845913, had association signals of 
P<5x10-7. rs10800682 was not near (>2Mb away) and was independent (r2<0.05) 
of all genome-wide significant loci found by Horikoshi and colleagues [23], 
making it a potential candidate for future twin studies. rs3845913 is an intronic 
variant of ADCY5, which, along with CCNL1, were two of the first genes to be 
robustly associated with fetal growth and BW [21]. Additionally, rs3845913 is 
~31kb downstream and is in LD (r2=0.154) with rs11719201 (an intronic variant of 
ADCY5), one of 60 loci previously associated with BW [23]. To pinpoint exactly 
how and through which gene(s) rs10800682 and rs3845913 may exert an effect 
on BW, additional and functional follow-up studies are necessary. Previously 
associated alleles at ADCY5 were found to be BW lowering and risk increasing 
for type 2 diabetes, consistent with the fetal insulin hypothesis [35].

The results from this study strongly suggest that BW data from twins and 
singletons may be meta-analyzed together in GWAMA, despite the limited 
sample size of the discovery GWAMA in twins (N=42212). Another limitation is 
that we corrected for birth order, gestational age, and maternal age at birth in 
a majority of cohorts but could not do so for all cohorts due to data availability. 
This information should ideally always be included when BW data are collected.

Additionally, we report genome-wide estimates of shared genetic effects 
based on common genetic variation (SNPs with MAF>0.01 per default settings 
in LDHub). Suppose the effects of rare variants are not shared similarly to the 
effects of common variants for each phenotype comparison. In that case, the 
genetic correlation estimates could be misleading. However, in terms of their 
shared influences on pairs of phenotypes, there is not a theoretical reason to 
expect systematic differences in the effects of rare and common variants. Rare 
variants with larger effects would not preclude carrying far more numerous 
common variants with smaller effects. Thus, the genetic correlations presented 
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in this study may provide reasonable estimates based on common genetic 
variation; however, to validate these findings, rare variant studies are needed. 
Future studies may also expand upon our genetic correlation estimates by 
utilizing non-European populations, greater sample sizes (for discovery and 
trait-specific phenotypes as they become available), and increased density 
across the genome.

Concerning the results of the PGS prediction, we note that the P-value selection 
threshold of the most predictive PGS is a function of the effect size distribution, 
the statistical power of the discovery GWAMA and the NTR target data, the 
genetic architecture of BW, as well as the fraction of associated markers.

Follow-up research may aim to get a better understanding of BW as it is 
influenced by direct fetal and indirect maternal genetic influences through 
the intrauterine environment. The amount of variance in BW explained by the 
maternal genotype has been estimated as substantially smaller than the fetal 
genetic contribution [47]. Recent work suggests that fetal size measurements 
at birth are predominantly determined by the fetal genome, whereas the 
gestational duration is primarily dictated by the maternal genome [48]. 
A better understanding of the genetic architecture of BW and fetal growth, 
more generally, will aid in the elucidation of immediate health outcomes (e.g., 
preterm birth, fetal growth restriction) and reveal relationships with later-life 
health outcomes (e.g., cardiovascular disease, type-2 diabetes).

To conclude, we show that based on genetic correlation and PGS analyses, 
the genetic architecture of BW in twins and singletons is similar. Of course, 
it is known that mean differences in BW between twins and singletons exist; 
however, the findings of this work strongly suggest that the genetic causes of 
variation are the same. Bearing this in mind, the results of this work indicate that 
it is appropriate to meta-analyze twins and singletons for genetic studies of 
BW. However, careful consideration of analytical strategies will be needed since 
details specific to twins may not apply to full-term singletons. Small groups of 
twins might still need to be excluded, for example, the highly discordant BW 
pairs due to the possibility for twin-to-twin transfusion syndrome (TTTS). Also, 
in full-term singletons, a typical gestational age cut-off for exclusion (e.g., born 
before 37 weeks) is often applied, which will not be applicable with the inclusion 
of twins due to shorter gestational duration [16] and delayed fetal growth after 
32 weeks [38-41]. One approach to address these issues would be to perform 
separate GWAS on standardized BW in each group with appropriate exclusion 
criteria and covariates specific to twins and non-twins with subsequent meta-
analysis of P-values since beta estimates and intercepts will be affected by 
raw differences in BW.

MATERIALS AND METHODS
Samples
Eight population-based twin registers supplied data: the Netherlands Twin 
Register (NTR) [49, 50], Queensland Institute of Medical Research (QIMR – 
comprised of the Queensland Twin Registry [51] and the Australian Twin Registry 
[52, 53]), Danish Twin Registry (DTR) [54], Finnish Twin Cohort Study (FinnTwin) 
[55, 56], Twins Early Development Study (TEDS) [57], Child and Adolescent Twin 
Study in Sweden (CATSS) [58-60], Avera Twin Register (ATR) [61, 62], and the UK 
Biobank (UKB) [63]. In UKB, twins were identified as previously described [64]. 
A detailed description of cohort sample characteristics can be found in Table 
5.3. Information on genotyping and quality control procedures for each cohort 
can be found in Supplementary Material, Table 5.3.

Study-level analyses
Birth weight (BW) measures were z-score transformed ([BWvalue-BWmean]/
BWstandard deviation) before analysis. Each participating study group performed 
the association analyses between each SNP genotype and BW z-scores 
with the following covariates where available: sex, gestational age, year of 
birth, maternal age at birth, birth order, and relevant study-specific metrics 
(e.g., principal components (PCs) correcting for genomic ancestry). For all 
cohorts, except ATR, birth order was available. The analysis was performed 
without adjustment for maternal age at birth and gestational age in the DTR. 
Association analyses were performed in PLINK v1.07 [65] with the Generalized 
Estimation Equation (GEE) package using the R-package plugin to correct for 
family relatedness or according to local best practices (details provided in 
Supplementary Material, Table 5.3). Sample exclusion criteria were phenotypic 
outliers (BW z-score greater than or less than five standard deviations from the 
mean), premature births (gestational age less than 33 weeks), monozygotic 
(MZ) twins with TTTS, including twin pairs with BW more than 35% discordant 
(a group likely including TTTS twins), triplets and higher-order multiple births 
and participants with non-European ancestry.
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Meta-analysis
Summary statistics from each cohort GWA analysis underwent another round 
of standard quality control before meta-analysis. The R-package EasyQC [66] 
was used to perform quality control analyses. Insertions and deletions, SNPs 
with missing or invalid values, markers with Minor Allele Frequency (MAF)<0.01, 
and those with poor imputation quality (<0.30) were excluded. Resulting quality 
controlled summary statistics from each cohort were meta-analyzed using the 
inverse variance-based approach in METAL [67]. Genomic control was applied 
to adjust the statistics generated by each cohort [68]. In the meta-analysis, 
SNPs present in greater than 70% of all participants were retained.

Association tests
FUMA (FUnctional Annotation and Mapping v1.3.6) [69] was used to annotate 
GWAMA results and identify genomic risk loci. These loci were defined as 
independent lead SNPs exhibiting maximum distance between their linkage-
disequilibrium (LD) block. For genome-wide significance in the meta-analysis, 
a P-value threshold of 5x10-8 was adopted. The minimum threshold for defining 
independent significant SNPs was r2≥0.6, which was used to determine the 
borders of the genomic risk loci. The minimum threshold for defining lead SNPs, 
used for clumping the independent significant SNPs, was r2≥0.1. Independent 
significant SNPs closer than 250kb were merged into one genomic risk locus. 
SNPs in LD with the independent significant SNPs were considered candidate 
SNPs and defined the borders of the genomic risk loci. We tested whether 
the signals from our analyses overlap with previously identified loci for BW in 
singletons. In agreement with Horikoshi et al. [23], if a lead SNP mapped >2Mb 
away from, and was statistically independent (LD r2<0.05 based on European 
population reference set) of any of the 60 previously identified loci, it was 
considered novel. We calculated the r2 between the signals with the web-based 
application LDmatrix contained within the LDlink (v3.8) [70] suite of tools.

Genetic correlations
To quantify the degree of shared genetic contribution between BW in twins 
and BW in singletons and to correlate BW in twins to other individual-level 
health-related traits and diseases, we employed LD Hub (v1.9.3) (http://ldsc.
broadinstitute.org/ldhub/) [71]. LD Hub is a centralized database of summary-
level GWA study results facilitating the calculation of genetic correlations [72] 
between user-supplied summary statistics and a variety of user-selected traits 
using LD score regression [73]. HapMap3 SNPs from summary statistics of the 
GWAS for each trait and pre-computed LD scores were used in the analyses 
(available on: https://github.com/bulik/ldsc). LD score regression requires large 
sample sizes and utilizes LD information from an ancestry-matched reference 
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panel; therefore, genetic correlation analyses were constrained to European 
GWA study samples. SNPs with a MAF ≤0.01 were excluded.

For the comparisons with previous genome-wide genetic correlation analyses 
in singletons (7), we selected the following categories of traits: anthropometric 
traits, reproductive traits, glycemic traits, autoimmune disorders, cognitive 
abilities, psychiatric diseases, and smoking behavior. In total, we tested for 
association with 57 traits.

SNP heritability (h2) was calculated in LD Hub with LD score regression to 
evaluate how much of the variation in BW could be ascribed to common 
additive genetic variation.

PolyGenic Score prediction
GWAS results on BW from the UK Biobank (data field 20022) (http://www.
nealelab.is/uk-biobank/) served as the discovery set for calculating polygenic 
scores (PGS) in the NTR target dataset. For the PGS prediction of BW in the NTR, 
participants with complete BW data and maximum information on covariates 
(genomic PCs, sex, year of birth, gestational age, twin status, and genotyping 
platform) were included. When not available, gestational age was imputed 
with the mean gestational age separately for twins (mean=37.38 weeks) and 
singletons (mean=39.89 weeks). Genotyping platform and ten genomic PCs 
were included in the model to account for batch effects (i.e., non-random 
selection of samples genotyped on specific arrays) and residual population 
stratification. The target sample consisted of 17,379 individuals, comprising 
10,487 twins and 6,892 singletons. Summary statistics from the UK Biobank 
GWAS on BW were adjusted for the effects of LD with LDpred [74] using the LD 
structure of European populations in the 1000 Genomes references set [75]. 
Recalculated effect size estimates representing ten thresholds of P-value 
significance (0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, INF (infinitesimal)) 
were used for allelic scoring in PLINK [65].

We used the PGS to predict BW in NTR twins and singletons using GEE methods 
in R [76], taking into account familial relationships. We also evaluated the 
predictive performance of the PGS on categorical BW in the entire target 
sample of twins and singletons by including twin status and an interaction 
term of PGS and twin status in the regression model. Six categories were 
constructed, representing the following BW ranges: <2000 grams, 2000-2500 
grams, 2501-3000 grams, 3001-3500 grams, 3501-4000 grams, >4000 grams. 
Complete regression equations can be found in the Supplementary Material 
- Methods. The phenotypic variance explained, captured by R2, was used to 
evaluate the predictive performance of each PGS. Our main interest was to 

determine how well PGS derived from a large discovery population, reflecting 
general population numbers of twins, could predict BW in a separate target 
population of twins and singletons.

DATA ACCESS
Summary statistics for the GWAMA of BW in twins can be downloaded from the 
GWAS catalog website: https://www.ebi.ac.uk/gwas/.
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SUPPLEMENTARY MATERIALS
Supplementary Methods
Formulas for PGS prediction
PGS were calculated from summary statistics of a UK Biobank GWAS on BW 
(http://www.nealelab.is/uk-biobank/) and were used to predict BW in NTR twins 
and singletons.

The formula below was used to evaluate the prediction in twins and singletons 
separately:

BWraw ~ bGenomic PCs + bSex + bGestational age + bYear of birth + bPGS + bGenotyping platform

The formula below was used to evaluate the prediction in the entire target 
sample (twins and singletons) using BW category as the response. In this 
model, we included a main effect of twin status and an interaction term 
between twin status and the PGS.

For prediction in the full target sample using BW category:

BWcategory ~ bGenomic PCs + bSex + bGestational age + bYear of birth + bPGS + bGenotyping platform + bTwin 

status + bPGS * bTwin status

Supplementary Figure 5.1
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Supplementary Table 5.2 - Genetic correlations with BW in twins. Traits are sorted by 
category and descending rg.

Trait PMIDa Category rg
b SEc zd pe

Child birth weight (Horikoshi 
2013)

23202124 Anthropometric 0.98 0.18 5.38 7.34E-08

UK Biobank birth weight (Field 
20022)

Anthropometric 0.95 0.12 7.64 2.19E-14

Offspring birth weight 
(maternal effect) adjusted for 
offspring genotype

31043758 Anthropometric 0.92 0.13 6.88 6.15E-12

Own birth weight (Warrington 
2019)

31043758 Anthropometric 0.92 0.13 7.03 2.07E-12

Birth weight (Horikoshi 2016) 27680694 Anthropometric 0.91 0.13 6.79 1.12E-11

Offspring birth weight 
(Warrington 2019)

31043758 Anthropometric 0.76 0.14 5.51 3.62E-08

Own birth weight (fetal 
effect) adjusted for maternal 
genotype

31043758 Anthropometric 0.69 0.12 5.71 1.11E-08

Child birth length 25281659 Anthropometric 0.57 0.13 4.21 2.52E-05

Extreme height 23563607 Anthropometric 0.38 0.1 3.92 8.92E-05

Height 20881960 Anthropometric 0.35 0.08 4.34 1.43E-05

Infant head circumference 22504419 Anthropometric 0.34 0.16 2.1 0.0358

Height; Females at age 10 and 
males at age 12

23449627 Anthropometric 0.33 0.12 2.73 0.0062

Hip circumference 25673412 Anthropometric 0.32 0.08 4.23 2.34E-05

Obesity class 3 23563607 Anthropometric 0.29 0.12 2.38 0.0173

Childhood obesity 22484627 Anthropometric 0.27 0.11 2.46 0.0141

Waist circumference 25673412 Anthropometric 0.26 0.07 3.56 0.0004

Overweight 23563607 Anthropometric 0.18 0.07 2.54 0.0112

Body mass index 20935630 Anthropometric 0.18 0.07 2.68 0.0074

Obesity class 2 23563607 Anthropometric 0.14 0.08 1.84 0.0652

Obesity class 1 23563607 Anthropometric 0.14 0.07 2.11 0.0352

Extreme bmi 23563607 Anthropometric 0.06 0.1 0.63 0.529

Difference in height between 
adolescence and adulthood; 
age 14

23449627 Anthropometric 0.05 0.17 0.31 0.756

Waist-to-hip ratio 25673412 Anthropometric 0.01 0.08 0.18 0.854

Sitting height ratio 25865494 Anthropometric 0.01 0.15 0.09 0.925

Difference in height between 
childhood and adulthood; 
age 8

23449627 Anthropometric -0.02 0.15 -0.12 0.905

Extreme waist-to-hip ratio 23563607 Anthropometric -0.16 0.16 -1.02 0.309

Crohns disease 26192919 Autoimmune 0.16 0.1 1.58 0.114

Rheumatoid Arthritis 24390342 Autoimmune 0.11 0.11 1.02 0.307

Inflammatory Bowel Disease 
(Euro)

26192919 Autoimmune 0.09 0.1 0.97 0.332

Ulcerative colitis 26192919 Autoimmune 0.08 0.11 0.7 0.483

Supplementary Table 5.2 - Genetic correlations with BW in twins. Traits are sorted by 
category and descending rg. (continued)

Trait PMIDa Category rg
b SEc zd pe

Celiac disease 20190752 Autoimmune 0.07 0.15 0.46 0.646

Primary biliary cirrhosis 26394269 Autoimmune 0.01 0.12 0.05 0.961

Systemic lupus erythematosus 26502338 Autoimmune -0.1 0.13 -0.77 0.44

Asthma 17611496 Autoimmune -0.34 0.15 -2.25 0.0247

Intelligence 28530673 Cognitive 0.2 0.09 2.21 0.0268

Type 2 Diabetes 22885922 Glycemic -0.02 0.1 -0.21 0.833

HOMA-Bf 20081858 Glycemic -0.08 0.15 -0.51 0.609

HOMA-IRg 20081858 Glycemic -0.09 0.17 -0.53 0.594

Fasting glucose main effect 22581228 Glycemic -0.1 0.11 -0.94 0.349

Fasting insulin main effect 22581228 Glycemic -0.11 0.14 -0.73 0.463

HbA1Ch 20858683 Glycemic -0.23 0.14 -1.72 0.0846

Bipolar disorder 21926972 Psychiatric 0.13 0.1 1.31 0.189

Depressive symptoms 27089181 Psychiatric 0.13 0.09 1.39 0.163

PGCi cross-disorder analysis 23453885 Psychiatric 0.06 0.09 0.64 0.521

Autism spectrum disorder 0 Psychiatric 0.04 0.12 0.3 0.764

Subjective well being 27089181 Psychiatric 0.01 0.1 0.15 0.882

Major depressive disorder 22472876 Psychiatric -0.1 0.15 -0.67 0.505

Anorexia Nervosa 24514567 Psychiatric -0.13 0.08 -1.59 0.113

Number of children ever born 27798627 Reproductive 0.12 0.1 1.24 0.214

Age of first birth 27798627 Reproductive 0.08 0.08 1.01 0.313

Age at Menopause 26414677 Reproductive 0.01 0.1 0.08 0.936

Age at Menarche 25231870 Reproductive -0.04 0.07 -0.59 0.552

Cigarettes smoked per day 20418890 Smoking 
behavior

0.23 0.18 1.28 0.202

Smoking Initiation 30617275 Smoking 
behavior

0.08 0.15 0.5 0.616

Former vs Current smoker 20418890 Smoking 
behavior

0.01 0.17 0.04 0.969

Age of smoking initiation 20418890 Smoking 
behavior

-0.03 0.19 -0.15 0.88

Ever vs never smoked 20418890 Smoking 
behavior

-0.06 0.11 -0.56 0.576

a PubMed reference number
b Genetic correlation
c Standard error of rg
d Z-score
e P-value
f Homeostatic model assessment of beta cell function
g Homeostatic model assessment of insulin resistance
h HemoglobinA1C
i Pyschiatric Genetics Consortium
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6 INFERENCE OF GENETIC ANCESTRY: 
EVALUATION WITHIN FAMILIES AND 
ACROSS GENOTYPING ARRAYS

Based on
Beck, J.J., Ahmed, T., Finnicum, C.T., Zwinderman, K., Ehli, E.A., Boomsma, D.I., 
Hottenga, J.J. (2021)
Inference of genetic ancestry: evaluation within families and across genotyping 
arrays. Submitted for publication.
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ABSTRACT
Inference of genetic ancestry is an essential aspect of population-based 
association studies to account for population heterogeneity and structure. 
A key question is how ancestry estimates compare when family members 
participate in a study and when genetic data are sourced from multiple 
genotyping arrays. In this paper, we analyze genome-wide SNP data to 
compare genetic ancestry estimates between pairs of family members 
across the spectrum of relatedness, from independently genotyped identical 
twins through to unrelated parent pairs, and between individuals genotyped 
on multiple arrays. Genetic ancestry estimates were obtained utilizing two 
conventionally performed tests, principal component analysis (PCA) and a 
model-based approach exemplified by the software ADMIXTURE. We discover 
that Euclidean distances of genetic ancestry estimates between pairs of 
family members are inversely related to the degree of genetic relatedness 
between them irrespective of estimation method and genotyping array, 
confirming that ancestry estimates are more similar in closely related 
individuals. Ancestry estimates of the same individuals genotyped across 
arrays were nearly indistinguishable, and we attribute the slight differences 
to the array-dependent variation in SNPs used for calculation. We also explore 
if non-identical twin offspring of ancestrally diverse parents exhibit more 
appreciable differences in ancestry than those with ancestrally similar parents. 
We uncover that ancestry estimates in offspring of more diverse parents are 
not considerably different than those with ancestry-similar parents. This study 
demonstrates the utility and robustness of current tools used to infer genetic 
ancestry, PCA and ADMIXTURE, even when considering the confounders of 
relatedness and genotyping array.

Keywords: Within-family analysis, genetic ancestry estimation, population 
structure, principal components analysis (PCA), ADMIXTURE

INTRODUCTION
Genetic association studies have become an effective research tool for 
identifying genetic loci related to complex phenotypes and diseases [1]. A 
fundamental step of performing genetic association studies is the detection 
of and correction for population structure. In this paper, we focus on population 
structure created by ancestry divergence and its detection based on genotype 
data. In general, strategies for estimating global ancestry can be categorized 
into two broad groups: algorithmic and model-based approaches. Commonly 
employed, each method has been shown to provide reliable inferences of 
genetic ancestry in unrelated individuals and to elucidate population structure 
from genome-wide data [2].

Algorithmic methods are exemplified by cluster analysis and principal 
component analysis (PCA). Generally, PCA is a method for obtaining low-
dimensional summaries of high-dimensional data, increasing interpretability 
while minimizing information loss. In genetic datasets, PCA is performed to 
identify systematic variation amongst individuals’ genotypes. In this context, 
a large set of variables (individuals’ genotypes) are transformed into a smaller 
group of uncorrelated variables, called principal components (PCs), usually 
with the constraint that each PC successively captures less variation in the 
original data. PCA of genotypic data yields a series of scores per individual 
corresponding to the values of these PCs. Top PCs calculated from genetic data 
typically reflect population structure, allowing inferences of genetic ancestry. 
Over the years, PCA has demonstrated its utility for elucidating genetic 
ancestry from seemingly unrelated samples [2], correcting for confounding 
due population structure [2, 3], and understanding population ancestry 
composition and migration [4-6].

Best practices for implementing PCA have been suggested [7], but applying PCA 
in genetic analysis to capture population structure is not without challenges. 
Care must be taken to ensure that PCs are unbiased and reflect variation in 
ancestry and not some other form of systematic variation present within the 
data. Rather than capturing population structure, some PCs may reflect linkage 
disequilibrium (LD) structure. If PCs capturing LD are included as covariates in 
analyses, the power for detection in association studies is reduced [6, 8-10]. 
The degree of population structure captured by PCA may also be diminished 
by the presence of outlier samples reflecting batch effects or family structure. 
Therefore, commonly employed steps in PCA include determining unrelated 
individuals, pruning genetic markers in LD, and excluding outlier samples that 
may be indicative of poor genotyping quality.
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Model-based approaches, such as those embodied by the programs 
STRUCTURE [11], fastSTRUCTURE [12], FRAPPE [13], and ADMIXTURE [14], present 
alternative methods for elucidation of population structure. These approaches 
provide relative proportions of ancestry, given that the genetic composition 
of an individual is a mosaic of the ancestral populations they represent. 
In general, model-based methods estimate global individual ancestry 
proportions based on parameterized statistical models. Commonly, these 
techniques take Bayesian or maximum likelihood estimation approaches 
to optimize the probability of observed genotypes by alternatively updating 
ancestry coefficient and population allele frequency matrices. The resulting 
individual ancestry proportions are more directly interpretable than PCs and 
can account for population composition in a study.

The two types of methods appear to have little in common at the surface due to 
underlying analytical differences. One involves the explicit definition of a model, 
while the other does not. A link between the approaches has been investigated, 
and strategies for identifying admixture proportions from PCs of PCA have been 
suggested [15-18]. In this context, ancestry proportions interpreted from PCA 
and the results of model-based approaches, like ADMIXTURE, are consistent 
[19, 20]. Given the congruent results, the main interest of the current paper 
was to compare ancestry estimates in realistic situations, where individuals 
in large studies have genome-wide data from different genotyping arrays. 
This situation arises in large cohort studies, where successive generations 
of genotyping arrays were applied across time. Our second interest involves 
study designs incorporating family members. Within families, siblings with the 
same biological parents necessarily should be assigned the same ancestry, 
even when genotyped across different arrays. Here, families with parents 
from two different ancestry backgrounds are of special interest. We compare 
algorithmic and model-based approaches to obtain ancestry estimates as 
a function of genomic relatedness within families, across pairs of individuals 
from monozygotic twins to nominally unrelated parent pairs, and within and 
across genotyping arrays.

One strategy for mitigating concerns of population structure in genetic 
association studies is to employ a family-based design [21, 22]. These designs 
have gained popularity with the increasing availability of large-scale family 
datasets [21-24]. With the inclusion of closely related family members, a 
new set of questions may arise. A key consideration involves the extent to 
which close relatives may have different ancestry distributions. For example, 
when two individuals from diverse populations mate, their offspring will 
be admixed and have ancestry distributions that differ from both parents. 
When a child’s ancestry ‘differs’ from its biological parents, the child and at 

least one parent represent potential population outliers and will be excluded 
from the study. In this example, genetic ancestry estimates between sibling 
offspring of diverse parents may show variation in calculated ancestry due to 
the ‘random’ assortment of inherited alleles. We assess the conditions under 
which such situations can occur by examining ancestry estimates between 
family members and focusing on sibling offspring of more diverse parents to 
determine if they are more dissimilar to each other than those with ancestry-
similar parents.

This study examines genetic ancestry estimates between pairs of family 
members across the spectrum of genetic relatedness, from MZ twins to 
nominally unrelated parent pairs, and across genotyping arrays. We leverage 
data from the 1000 Genomes Project (1000G) [25] and the Genome of the 
Netherlands (GoNL) [26, 27] reference panels as well as multiple large single 
nucleotide polymorphism (SNP) datasets from twin-family participants of the 
Netherlands Twin Register (NTR) [28, 29]. The NTR includes nuclear families, 
mainly two-generation, forming parent, parent-offspring, dizygotic twin and 
sibling, and monozygotic twin pairs, all independently genotyped. The NTR 
also includes SNP datasets of individuals who were genotyped on at least two 
separate genotyping arrays, allowing for assessment of potential platform 
effects on genetic ancestry estimates.

METHODS
An overview of the analytical strategies employed in this study is shown in 
Figure 6.1.

Sample selection and genotyping
All individuals in the study are participants of the Netherlands Twin Register 
(NTR) [28, 29]. The NTR recruits twins, higher-order multiples, and their 
family members, including parents, siblings, and spouses. DNA from NTR 
participants was isolated using standard protocols for obtaining high-
quality DNA suitable for genome-wide SNP genotyping with high-density DNA 
microarrays [30]. Individuals with genotype data obtained from the Affymetrix 
6.0 (AFFY6 Nraw individuals=12779, Nraw variants=905422), Affymetrix Axiom-NTR (AXIOM 
Nraw individuals=3606, Nraw variants=642716) [31], or Illumina GSA-NTR (ILLGSA Nraw 

individuals=14553, Nraw variants=669322) [32] platforms were selected. All genotyping 
was performed at the Avera Institute for Human Genetics (Sioux Falls, South 
Dakota) according to the manufacturer’s protocol.
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Figure 6.1 - Process flowchart of the analytical strategies employed in this study.

Dataset Curation
Three platform datasets were created with the backbone and custom content 
of each array (AFFY6, AXIOM, ILLGSA). Sample and SNP quality control was 
done on each dataset separately. In addition, a harmonized dataset (61,433 
overlapping markers from all three platforms) was created from the cleaned 
platform datasets since family members could be genotyped on different 
arrays. The four datasets underwent the same analytical procedures.

Sample and SNP quality control
Samples were excluded if phenotypic sex did not match the genotypic sex 
(indicating potential sample swap) (N=271; 0.88%), if the Plink heterozygosity 
F value was <-0.10 or >0.10 (N=292; 0.94%), or if the sample call rate was less 
than 90% (N=16; 0.05%). Within families, pairwise identity-by-descent (IBD) 
was estimated with Plink v1.9 [33], and samples were removed if they did not 
match the expected familial relations (indicating potential sample swap) 
(N=312; 1.00%). NTR samples present in GoNL or related to GoNL participants 
were excluded (N=51; 0.16%).

Following sample quality control, SNPs were evaluated in each platform. They 
were excluded if they fit any of the following criteria: minor allele frequency 
(MAF)<0.005, Hardy-Weinberg Equilibrium (HWE) p-value<0.00001, SNP call 
rate<95%, or Mendelian error rate>2%. SNPs were also removed if they were 
palindromic, A/T or C/G alleles, with an allele frequency between 0.40-0.60. 
All platform data were aligned to build 37 of the Human Genome (hg19), and 
alleles were flipped to the plus strand if needed. SNPs were also removed if 
the allele frequencies differed more than 0.10 with the GoNL reference panel 
(AFFY6 N=81 of 640265 [0.01%], AXIOM N=52 of 589258 [0.01%], GSA N=233 of 
497095 [0.05%]).

Final sample composition
Table 6.1 describes the final sample composition after quality control. In a 
first step, familial relationships were identified through IBD sharing. In the 
harmonized dataset, which enabled family relationships across genotyping 
platforms, there were 23,086 unique individuals representing 6,692 unique 
families. Included were 3,406 MZ twin pairs, 8,464 DZ twin or sibling pairs, 16,878 
parent-offspring pairs, and 3,023 parent pairs (unrelated). In the per-platform 
datasets, only relationships where family members were genotyped on the 
same platform were considered. Across all per-platform data, the final sample 
consisted of 21,117 unique individuals belonging to 6,361 unique families. Of the 
total per-platform data (three datasets), there were 3,258 MZ twin pairs and 
7,246 DZ twin or sibling pairs. In total, 13,437 parent-offspring and 2,691 parent 
pairs (unrelated) were identified.

Table 6.1 - Final NTR sample description after quality control and filtering

Genotyping 
Platform

Unique 
families

Unique 
individuals

MZ twin 
pairs

DZ twins/
sibling 
pairs

Parent-
offspring 
pairs

Parent 
pairs

AFFY6 2800 7575 1279 2966 2849 438

AXIOM 734 2593 433 591 2222 448

ILLGSA 3562 11597 1546 3689 8366 1805

Across all 
platforms

6361 21177 3258 7246 13437 2691

Harmonized 6692 23086 3406 8464 16878 3023
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As shown in Figure 6.2, 751 individuals were genotyped on at least two of the 
platforms, 35 of which were genotyped on all three genotyping arrays.

Figure 6.2 - Venn diagram of genotyped NTR individuals according to genotyping platform

Reference Dataset
Unrelated individuals in the 1000G (N=2,487) and GoNL (N=498) reference 
panels were determined with HapMap3 SNPs. Following the alignment of alleles 
between the reference panels, SNPs present in both datasets were identified 
(N=562,607). A final reference set was created with the overlapping markers 
and subsequent exclusion of SNPs with a call rate less than 98% (final marker 
count 562,447).

Principal Components Analysis
Following SNP quality control, the largest set of unrelated NTR participants was 
determined with KING v2.2.0 software [34] with options --unrelated --degree 
2. These individuals had no 1st or 2nd-degree relationships with any other 
individuals. In each set, the unrelated individuals were further filtered to exclude 
samples with a call rate of less than 95% (a more stringent threshold than the 
first round of quality control).

The generation and selection of SNPs for PCA and ADMIXTURE from each 
platform and harmonized datasets was determined with the unrelated 
individual (including parent pairs) datasets. Autosomal SNPs were selected 
and filtered to exclude those with a call rate of less than 95%, MAF<0.01, and 
HWE<0.001. SNPs were pruned for Linkage Disequilibrium (LD) using Plink v1.9 
by removing each SNP with an R2 value greater than 0.5 with any other SNP 
within a 250-SNP sliding window (advanced by one SNP each iteration). Lastly, 
long-range LD regions were removed as previously described [8]. These steps 

resulted in a dataset-specific selection of high-quality, independent SNPs for 
PCA.

Four analysis datasets were generated, corresponding to each genotyping 
platform and the harmonized set. Related individuals were reincluded so that 
PCs could be calculated for all genotyped individuals, but without confounding 
the PC estimates since SNP selection was determined on unrelated individuals. 
The selected SNPs of each dataset were then merged with the final reference 
dataset and filtered to exclude SNPs with a call rate of less than 98% (final 
SNP count per dataset: AFFY6=193,840; AXIOM=215,848; ILLGSA=305,121; 
harmonized=50,030).

For each dataset, 10 PCs were calculated with SMARTPCA software [15], 
where 1000G and GoNL populations were denoted as reference populations. 
Related individuals were present in each dataset, but with a selection of 
SNPs determined from unrelated individuals. PCs were calculated for 27 
total populations (26 global populations represented in 1000G plus the GoNL 
population) and subsequently projected onto all NTR individuals. PCs were 
compared between datasets and genetic relatedness groups using descriptive 
statistics, correlations, and Euclidean distances.

ADMIXTURE analysis
The cross-validation procedure implemented in ADMIXTURE v.1.3.0 [14, 19] 
revealed the optimal number of detectable populations in the merged 1000G 
and GoNL reference data. For this approach, the reference data were filtered 
for MAF<0.01 and pruned for LD (SNPs with R2>0.5 were excluded using a 250 SNP 
window, advanced by one SNP each iteration). The resulting SNP set (N=394,918) 
was analyzed with the cross-validation procedure by increasing the number of 
populations from 3 to 27. The optimal number of distinct ancestral populations 
(denoted as K) was nine (see Results and Figure 6.3).

With K=9 specified as a sensible model parameter for ADMIXTURE, the 
nine populations were projected onto all NTR individuals, including related 
individuals. The projection analysis estimated ancestry proportions (Q1-Q9) 
for each individual in the NTR in each dataset. Admixture proportions were 
compared between genotyping platforms and genetic relatedness groups 
using descriptive statistics, correlations, and Euclidean distances.
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Figure 6.3 - Results of the cross-validation procedure determined by ADMIXTURE using 
the 1000G and GoNL reference datasets

RESULTS
Principal Components Analysis
Supplementary Material Table 6.1 contains descriptive statistics of PCs for all 
genotyped NTR individuals across the three genotyping platforms and the 
harmonized dataset. In general, the PCs between platforms are similar but 
are not identical since the input SNPs of each dataset vary. As a result, mean 
values and ranges exhibited minimal variation.

Visualization of the projected PCs 1-10 can be found in Supplementary 
Material Figure 6.1. For the most part, the scatter distributions of PCs 1-2 across 
platforms are nicely superimposed, reaffirming the similarity of calculated 
PCs independent of the genotyping platform. Although the same analytical 
procedures were applied to each dataset, the set of input SNPs for PCA varied. 
Therefore, the shift of plotted PCs is likely due to differences in input SNPs 
depending on the genotyping platform. Shifts are more pronounced in the 
plots of PC3 vs. PC4 and PC5 vs. PC6. These PCs may be capturing variation 
attributable to platform-specific SNPs included in PCA. For the axes showing 
the most variation, it is plausible that the ILLGSA axes are simply reversed 
compared to AFFY6 and AXIOM.

To examine the relationship of PCs across datasets representing distinct 
genotyping arrays, we calculated correlations of PCs 1-10 within and between 
datasets using results of array-mimicked reference populations as input. NTR 
samples were excluded so that PC values were representative of the 1000G and 
GoNL reference populations and so that PCs within a platform would not be 
correlated with each other. As expected, the correlations of PCs 1-10 within each 
genotyping platform show no correlation, reflecting the inherent statistical 
property of PCs in that they are uncorrelated (Supplementary Material Figure 
6.2). The correlations of the same PC across platforms are near one. Inverse 
correlations become apparent for PC3 and PC4 between AFFY6/AXIOM and 
ILLGSA platforms. Further divergence of correlations is observed between PCs 
6-8, potentially attributable to variation of platform SNPs.

We next investigated PC variation by assessing the differences between MZ 
twin and DZ twin/sibling pairs. Since sibling offspring have the same parents, 
it was expected that the differences in PCs between siblings would be near 
zero. Since MZ twins arise from the same fertilized egg, the expectation for 
their PC differences is zero, with non-random values reflecting measurement 
error. However, we recognize that post-splitting / somatic mutations can 
contribute to differences in DNA sequence between the twins [35]. The results of 
comparisons for MZ twin and DZ twin/sibling pairs are shown in Tables 6.2 and 
6.3. Mean differences in PCs between MZ twins were near zero across all ten PCs 
irrespective of genotyping array. As expected, the mean differences between 
DZ twins/sibling pairs were also near zero across all genotyping platforms. With 
few exceptions, the absolute mean differences in PCs between MZ twins were 
less than DZ twin/sibling pairs across all 10 PCs and genotyping platforms. The 
standard deviation of the PC differences in MZ twins is always smaller than DZ 
twins/siblings, reflecting slightly increased variation in PC estimates between 
non-identical twin siblings.

To further examine PC estimates, we calculated Euclidean distance measures of 
PCs 1-10 within pairs of family members using Formula 6.1. Euclidean distances 
quantify differences in the multidimensional data between individuals with a 
singular metric. Within pairs, differences in respective PCs were squared and 
then summed over all PCs. The Euclidean distance was calculated by taking 
the square root of the summed squared differences. In this manner, smaller 
Euclidean distances represent pairs of more similar individuals across all ten 
PCs, whereas larger Euclidean distances indicate greater dissimilarity across 
all PCs. According to the relatedness group and dataset, distance measures 
are shown in the boxplots in Figure 6.4 (right panel). Euclidean distances were 
log10 transformed to aid in visualization. Euclidean distances across all datasets 
were inversely related to the genetic relatedness between pairs (Supplemental 

6



170

CHAPTER 6

Figure 6.3). That is, highly genetically similar/identical individuals (MZ twin pairs) 
have smaller Euclidean distances than DZ twin/sibling pairs, which on average, 
share 50% of their alleles.

Parent/offspring pairs, expected to be precisely 50% genetically similar, show 
more considerable variation in Euclidean distances than DZ twins/sibling pairs. 
Parent pairs, assumed to be unrelated, have the largest Euclidean distances.

Formula 6.1 – Formula for calculating Euclidean distances between pairs of individuals 
for ten PCs or nine ancestry proportions.

dx,y = Euclidean distance of J between two individuals
x, y = two individuals, representing a pair within a family
J = PCs 1-10 or Q 1-9

Utilizing individuals with genetic data obtained from multiple genotyping 
platforms (N=751; 35 of which were genotyped on all three platforms - see 
Figure 6.1), we calculated Euclidean distances of PCs within individuals across 
genotyping arrays (Figure 6.5 right panel). We expected to see Euclidean 
distances near zero in this manner, similar to the Euclidean distances seen 
between MZ twins. The smallest distance values were obtained for individuals 
with genotypic data from the AFFY6 and AXIOM platforms, both Affymetrix 
products. Larger distances were observed for individuals with data from either 
the Affymetrix-manufactured array (AFFY6/AXIOM) and the Illumina platform 
(ILLGSA). Because the platform SNPs on which the PCs are based are not 
identical, the observed differences can be attributed to input SNP variation.
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Figure 6.5 - Euclidean distances of ADMIXTURE ancestry proportions Q1-Q9 and PC1-PC10 
of individuals genotyped on multiple platforms.

ADMIXTURE analysis
We ran ADMIXTURE analysis to partition global reference genetic variation 
into an optimal number of distinct genetic clusters. Figure 6.3 portrays the 
results of the cross-validation procedure as implemented in ADMIXTURE to 
determine the model parameter, K, with the best predictive accuracy. With the 
1000G and GoNL reference populations as input, the most sensible choice of K 
was determined to be nine since it achieved the lowest cross-validation error 
compared to other tested values of K (cross-validation error=0.41323).

Global representation of the nine identified ancestral populations is illustrated 
in Figure 6.6. Ancestral population 1 represents an amalgam of Colombia, Italy, 
Puerto Rico, and Spain. Population 2 predominantly reflects Chinese regions 
(Beijing and Xishuangbanna) and Vietnam. Population 3 captures the Finnish 
population. Population 4 characterizes Northern and Western European 
populations from England, Scotland, and the Netherlands. Population 5 
embodies Peruvian and Mexican populations. Population 6 reflects the Western 
African populations from Gambia and Sierra Leone. Population 7 symbolizes 
South Asian countries, namely Bangladesh, India, Pakistan, and Sri Lanka. 
Population 8 mirrors African populations from Kenya and Nigeria. Population 
9 represents East Asian countries, primarily from Japan, but also from Beijing, 
China.

Figure 6.6 - World view of the nine populations as determined by ADMIXTURE

To estimate individual ancestry in the NTR samples, we projected them onto 
the population structure (allele frequencies) derived from the 1000G and GoNL 
reference datasets by specifying K=9. Descriptive statistics of ancestry fractions 
(Q1-Q9) from the three platforms and harmonized datasets of NTR participants 
are shown in Supplementary Material Table 6.2. There was minimal variation in 
mean ancestry proportions across datasets. The ancestral population labeled 
Q4 represents the majority ancestry fraction for NTR individuals, indicating that 
most genetic ancestry corresponds to the 1000G and GONL reference data 
obtained from Northern and Western Europeans and the Netherlands.

The stacked bar charts in Figure 6.7 A-D display the ancestry proportion 
estimates of each NTR individual per genotyping platform and in the 
harmonized dataset. Each stacked bar reflects a single individual and their 
ancestry fractions for the nine populations arranged in increasing order 
of population 4 (i.e., Northern and Western European and the Netherlands) 
ancestry proportion. The average proportional population 4 ancestry is 
0.695, 0.687, 0.687, and 0.694 from AFFY6, AXIOM, ILLGSA, and harmonized 
data, respectively. Across all data, there is a modest amount of ancestry 
captured by Population 1 with average estimates of 0.187, 0.191, 0.191, and 0.188, 
correspondingly.
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The ancestral fractions are nearly indistinguishable from each other for all 
NTR individuals across platforms. This finding highlights a relatively similar 
population composition of individuals genotyped on each platform, though it 
is imperative to consider the comparison level since the individuals live in the 
Netherlands. Comparatively, PCs can reveal more fine-grained differences 
between the same individuals, such as North-South clines. Within each 
dataset, a small number of genetically diverse and admixed individuals are 
shown on the left side of each figure. These individuals show stark variation 
in the ancestry proportions relative to the bulk of the NTR sample population, 
indicating more heterogeneous ancestry and deviation from majority Northern 
and Western Europe origin as captured by population 4. Similar admixture and 
population heterogeneity patterns among NTR samples were observed in the 
PCs (Supplementary Material Figure 6.1 F-J).

Correlations of ancestry proportions within and between genotyping 
platforms for all NTR participants are shown in Supplementary Material Figure 
6.4. The estimates are strongly correlated across genotyping arrays within 
each ancestral population, represented as Q1-Q9. For values of Q within the 
genotyping platform, ancestry estimates are mostly negatively correlated 
or not correlated. Between values of Q and between genotyping platforms, 
estimates are also mainly negatively correlated or not correlated at all. 
Exceptions include positive correlations between Q2 and Q7 as well as Q2 and 
Q9, reflecting moderate overlap in South and East Asian populations. There 
were also slightly positive correlations between Q5 and Q8, and Q6 and Q8 
obtained from AXIOM and ILLGSA arrays. The correlation between Q6 and Q8 
correlation is likely due to the overlap of African populations.

We compared the estimates between MZ twins and between DZ twins/
sibling pairs to examine the ancestry proportions in more detail. Results of 
the comparisons are shown in Tables 6.4 and 6.5. Mean differences between 
MZ twins were near zero across all ancestry proportions and genotyping 
arrays. The same was true for DZ twins/siblings. Although within respective 
pair differences are small, the mean differences are nearly always smaller 
between MZ twins than between DZ twins/siblings. Likewise, as measured by 
the standard deviation, the variation of the differences is less between MZ 
twins than between DZ twins/sibling pairs. Except for a few instances, namely 
AFFY6 Q6, Q8, Q9, and ILLGSA Q9, the absolute mean differences in ancestry 
proportions between MZ twins were less than DZ twins/siblings

Consistent with the evaluation of PCs, we calculated Euclidean distances 
over the nine ancestry proportions within family pairs according to Formula 
6.1. Comparable to the Euclidean distances of PCs, the distances in ancestry 

6
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proportions were noticeably smaller in MZ twin pairs than within DZ twins and 
sibling pairs across all datasets (Figure 6.4 left panel). Euclidean distances 
were log10 transformed to aid in visualization.

We also investigated the ancestry proportions of individuals with genotype 
information from multiple platforms. Like the Euclidean distances of PCs 
of individuals genotyped on multiple arrays, the smallest distances were 
observed for those with genetic data obtained from Affymetrix platforms 
(Figure 6.5 left panel). Larger distances were observed between Affymetrix and 
Illumina platforms.

Ancestry outliers - PCA vs. ADMIXTURE
Ancestry outliers in the NTR datasets were identified by defining thresholds 
based on the minimum and maximum PC and ancestry proportion values of 
CEU or GoNL reference populations. For PCA, thresholds were defined within 
each dataset (i.e., platform) since PCA projection was performed per dataset. 
PCs from CEU and GoNL individuals were calculated by platform-mimicked 
datasets. Alternatively, CEU and GoNL platform-specific thresholds were not 
possible for ADMIXTURE since the nine populations were determined with an 
LD-pruned dataset of markers present in both 1000G and GoNL panels. Each 
NTR dataset was projected onto the reference populations.

Ancestry outliers were defined as having PCs or ADMIXTURE proportions less 
than or greater than reference (i.e., CEU or GoNL) minimums or maximums, 
respectively. NTR individuals with values greater than or equal to the reference 
minimum or less than or equal to the reference maximum were considered 
inliers. Outliers were determined for each PC and each value of Q. The total 
number of outliers across all PCs and values of Q was determined by identifying 
unique individuals.

Table 6.6 shows the number of outliers and inliers per dataset with thresholds 
determined by CEU or GoNL reference populations. The number of outliers 
between PCA and ADMIXTURE was very similar when thresholds were defined by 
the larger GoNL reference population (N=498). Larger deviation in outlier counts 
was observed when CEU (N=99) was used for defining boundaries, which is a 
smaller and more ancestrally variable population than GoNL. Regardless of the 
reference population, there is more variation in outlier counts in the harmonized 
dataset, likely due to the smaller number of markers used in the calculations.

Assessment of within-family diversity
Using the calculated PCs and ADMIXTURE ancestry proportions, we also 
assessed if sibling offspring (non-MZ twin) of diverse parents were more 

dissimilar to each other than those with parents of similar ancestry. We found 
very modest positive correlations between Euclidean distances of parent pairs 
(i.e., father and mother) and averaged distances of all DZ twin and sibling 
pairs within a family (ADMIXTURE Spearman’s rho 0.07, P-value=0.005; PCA 
Spearman’s rho 0.04, P-value=0.122). Euclidean distances of non-identical 
twin offspring were averaged within a family to avoid inflating the number of 
comparisons in families with multiple offspring. The results are plotted in Figure 
6.8, showing log10 transformation of Euclidean distances to aid in visualization. 
Though negligible correlation was observed, the Euclidean distances 
calculated from PCs are smaller in magnitude than those derived from 
ADMIXTURE proportions. Regardless of the method, the near-zero relationship 
indicates that sibling offspring of more diverse parents are not more dissimilar 
than the progeny of similar parents.

DISCUSSION
Ancestry estimation is a robust method for inferring population structure and 
is routinely employed in genetic association studies. With the abundance of 
data from various array-based genotyping technologies and the increasing 
popularity of within-family study designs, we sought to examine ancestry 
estimates as a function of genotyping array and genetic relatedness within f 
nuclear families. Here, we evaluated estimates of genetic ancestry obtained 
from PCA and ADMIXTURE in a large number of NTR twins and family members 
using whole-genome SNP data from three distinct genotyping platforms.

Utilizing reference data from 1000G and GoNL as global population surrogates, 
we demonstrated that PCs across genotyping arrays are not the same despite 
identical analytical strategies due to differences in platform SNPs used to 
calculate them. Calculation of PCs from the array-mimicked global reference 
data and subsequent projection onto NTR data resulted in top PCs capturing 
differences in ancestry. Within each platform and in the harmonized dataset, 
mean differences in PCs of family-matched MZ and DZ twins and siblings were 
near zero. Further, we calculated Euclidean distances to capture differences 
succinctly and quantitatively across all 10 PCs within familial pairs. Euclidean 
distance measures of PCs were inversely related to the degree of genetic 
similarity between individuals. The greater the genetic relatedness between 
two individuals, the smaller the Euclidean distances of their respective PCs. 
This finding was expected, given that the twin/sibling offspring of each pair 
have the same parents and possess a genetic profile derived from the same 
pool of segregating alleles.
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Figure 6.8 - Scatter plot of Euclidean distance measures of ADMIXTURE ancestry propor-
tions Q1-Q9 and PC1-PC10 for parental pairs and averaged sibling pairs within families.

We used ADMIXTURE, a model-based ancestry estimation method, to detect 
the optimal number of ancestral populations (i.e., K) in the global reference 
data. The value of K with the lowest error in the cross-validation procedure was 
nine. We utilized a projection analysis to determine the composition of each 
NTR individual across the nine populations. In this manner, allele frequencies of 
NTR individuals were compared to the allele frequencies of the nine ancestral 
populations, and proportions of each population were ascribed to each NTR 
individual. Population 4 was the major ancestry fraction of NTR participants, 
representing Northern and Western Europe and the Netherlands. Akin to the 
results of the PCA, differences in ancestry proportions of the nine populations 
were near zero between MZ twins and DZ twins/siblings. As with PCs, Euclidean 
distance measures of ancestry proportions were inversely proportional to the 
amount of allele sharing between family members.

Given the uniqueness of the NTR data, we evaluated estimates of genetic 
ancestry using genotypic data from independently genotyped MZ twins. 
Importantly, within-platform differences of MZ twins were non-zero. The 
mean Euclidean distances in the harmonized dataset were also larger, likely 
because of the reduced number of SNPs used for ancestry estimation. Although 
measurement error may play a role, differences within MZ twin pairs cannot 
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simply be ascribed to measurement error. One DNA sequencing study showed 
in a 40- and a 100-year-old MZ twin pair that somatic mosaicism leads to 
differences within pairs [36]. More recently, germline differences were shown in 
a large Icelandic study of the genomes in pedigrees of MZ twins [35]. Whether 
potential germline differences are the source of the variation in ancestry 
estimates for MZ twins remains to be determined.

We also examined ancestry estimates of individuals genotyped on multiple 
genotyping arrays. We observed differences larger than between MZ twins; 
however, this variation is mainly attributable to differences in platform-specific 
SNPs used in calculating ancestry. Regardless of the estimation method, the 
most considerable Euclidean distances were between AFFY6 and ILLGSA 
platforms. In the timeline of NTR genotyping efforts included in this study, AFFY6 
and ILLGSA are the oldest and most recent genotyping platforms, respectively. 
Successively large differences were between AXIOM and ILLGSA. AFFY6 and 
AXIOM are Affymetrix products, whereas Illumina manufactures ILLGSA. Thus, 
variation in array (the molecular approach utilized to measure SNP genotypes) 
manufacturer and subsequent platform-specific genotype calling algorithms 
may contribute an effect. The potential impact of array manufacturer is also 
seen in the boxplots of Euclidean distances for MZ twins. On average, ancestry 
estimates of MZ twins obtained from ILLGSA are more similar than AXIOM, which 
are more than AFFY6.

Ancestry is known to exist on a continuum due to the complexity of human 
evolution and repeated migrations. Thus, it should be kept in mind that the 
spectrum of ancestry referred to in this work is constrained by the diversity 
represented in the surrogate samples from the 1000G and GoNL projects. 
As more extensive and diverse genetic datasets become available, finer 
resolution estimates of genetic ancestry will be possible. Another important 
consideration concerns the optimal number of PCs and ancestral populations 
when making claims regarding genetic ancestry. A variety of statistical tests 
have been recommended for selecting the ideal number of PCs (e.g., Tracy-
Widom statistics [15]) or ancestral populations from ADMIXTURE (e.g., Bayesian 
information criterion [19]) to consider for downstream analysis. Still, others 
advise that these decisions be made based on the knowledge of the history 
of the study population(s) [20] or additional investigative analysis [7]. Although 
arbitrary, the top 10 PCs of the PCA method are often included in association 
studies to adjust population structure [37-39], which is the number of PCs we 
considered in this project. It is possible that additional examination of ancestry 
estimates derived from PCA, including selecting PCs that correspond best with 
genetic ancestry, will lead to utilizing additional (e.g., more than 10) PCs. We 
evaluated ancestry estimates between platforms using a harmonized dataset 

comprised of a modest number of overlapping genetic markers of the three 
different genotyping arrays. Future studies examining ancestry estimates when 
genotype data are coordinated and aggregated via imputation would be of 
merit.

Overall, we show genetic ancestry inference methods can provide reliable 
estimates of individual genetic ancestry across the genetic relatedness 
spectrum and when genetic data are sourced from various genotyping 
arrays. The consistency of the estimates is contingent upon the inclusion 
of necessary proxies of global population diversity and proper analytical 
execution. Genetic relatedness can confound individual ancestry estimates 
in the absence of reference population samples [40]. Alternative methods for 
handling relatedness in PCA have been proposed [41, 42], though they rely 
on performing PCA on diverse unrelated individuals first with subsequent PC 
prediction based on genetic similarities. To mitigate the concern of genetic 
relatedness, we utilized projection strategies to select independent SNPs for 
PCA and ADMIXTURE analyses based on unrelated individuals from globally 
diverse reference populations. We showed that PCs and ancestry proportions 
from ADMIXTURE show negligible differences between closely related pairs 
of individuals (i.e., MZ twins and DZ twins/sibling pairs) and individuals with 
genetic data obtained from different genotyping platforms. As expected, 
we observed that as the degree of relatedness between any two individuals 
becomes less, differences in their ancestry estimates become greater. Despite 
consistent results from PCA and ADMIXTURE, ancestry proportion estimates 
may be more favorable since they are more easily interpretable. ADMIXTURE 
returns membership proportions to surrogate global ancestral populations, 
whereas PCA simply reveals axes of variation in the data. Regardless of 
whichever method a researcher prefers, we show that the performance of PCA 
and the software ADMIXTURE for estimating genetic ancestry is comparable 
for downstream analyses involving families or different genotyping platforms.

6



186 187

GENETIC ANCESTRY INFERENCECHAPTER 6

REFERENCES
1.	 Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of 

GWAS Discovery: Biology, Function, and Translation. American Journal of Human 
Genetics. 2017;101(1):5-22.

2.	 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal 
components analysis corrects for stratification in genome-wide association 
studies. Nat Genet. 2006;38(8):904-9.

3.	 Novembre J, Stephens M. Interpreting principal component analyses of spatial 
population genetic variation. Nat Genet. 2008;40(5):646-9.

4.	 Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes mirror 
geography within Europe. Nature. 2008;456(7218):98-101.

5.	 Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat 
Genet. 2008;40(5):491-2.

6.	 Abdellaoui A, Hottenga J-J, de Knijff P, Nivard MG, Xiao X, Scheet P, et al. Population 
structure, migration, and diversifying selection in the Netherlands. European 
Journal of Human Genetics : EJHG. 2013;21(11):1277-85.

7.	 Prive F, Luu K, Blum MGB, McGrath JJ, Vilhjalmsson BJ. Efficient toolkit implementing 
best practices for principal component analysis of population genetic data. 
Bioinformatics. 2020;36(16):4449-57.

8.	 Price AL, Weale ME, Patterson N, Myers SR, Need AC, Shianna KV, et al. Long-range LD 
can confound genome scans in admixed populations. American Journal of Human 
Genetics. 2008;83(1):132-5; author reply 5-9.

9.	 Zou F, Lee S, Knowles MR, Wright FA. Quantification of population structure using 
correlated SNPs by shrinkage principal components. Hum Hered. 2010;70(1):9-22.

10.	 Prive F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale 
genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics. 
2018;34(16):2781-7.

11.	 Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in 
structured populations. American Journal of Human Genetics. 2000;67(1):170-81.

12.	 Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population 
structure in large SNP data sets. Genetics. 2014;197(2):573-89.

13.	 Tang H, Peng J, Wang P, Risch NJ. Estimation of individual admixture: analytical and 
study design considerations. Genet Epidemiol. 2005;28(4):289-301.

14.	 Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual 
ancestry estimation. BMC Bioinformatics. 2011;12:246.

15.	 Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 
2006;2(12):e190.

16.	 Engelhardt BE, Stephens M. Analysis of population structure: a unifying framework 
and novel methods based on sparse factor analysis. PLoS Genet. 2010;6(9):e1001117.

17.	 McVean G. A genealogical interpretation of principal components analysis. PLoS 
Genet. 2009;5(10):e1000686.

18.	 Ma J, Amos CI. Principal components analysis of population admixture. PLoS One. 
2012;7(7):e40115.

19.	 Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in 
unrelated individuals. Genome Res. 2009;19(9):1655-64.

20.	 Zheng X, Weir BS. Eigenanalysis of SNP data with an identity by descent 
interpretation. Theor Popul Biol. 2016;107:65-76.

21.	 Brumpton B, Sanderson E, Heilbron K, Hartwig FP, Harrison S, Vie GA, et al. Avoiding 
dynastic, assortative mating, and population stratification biases in Mendelian 
randomization through within-family analyses. Nature Communications. 
2020;11(1):3519.

22.	 Abecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative 
traits in nuclear families. American Journal of Human Genetics. 2000;66(1):279-92.

23.	 Howe LJ, Nivard MG, Morris TT, Hansen AF, Rasheed H, Cho Y, et al. Within-sibship 
GWAS improve estimates of direct genetic effects. bioRxiv. 2021:2021.03.05.433935.

24.	 Benyamin B, Visscher PM, McRae AF. Family-based genome-wide association 
studies. Pharmacogenomics. 2009;10(2):181-90.

25.	 Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A 
global reference for human genetic variation. Nature. 2015;526(7571):68-74.

26.	 Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A, et 
al. The Genome of the Netherlands: design, and project goals. Eur J Hum Genet. 
2014;22(2):221-7.

27.	 Genome of the Netherlands C. Whole-genome sequence variation, population 
structure and demographic history of the Dutch population. Nat Genet. 
2014;46(8):818-25.

28.	 Willemsen G, Vink JM, Abdellaoui A, den Braber A, van Beek JH, Draisma HH, et al. 
The Adult Netherlands Twin Register: twenty-five years of survey and biological 
data collection. Twin Res Hum Genet. 2013;16(1):271-81.

29.	 van Beijsterveldt CE, Groen-Blokhuis M, Hottenga JJ, Franic S, Hudziak JJ, Lamb D, 
et al. The Young Netherlands Twin Register (YNTR): longitudinal twin and family 
studies in over 70,000 children. Twin Res Hum Genet. 2013;16(1):252-67.

30.	 Min JL, Lakenberg N, Bakker-Verweij M, Suchiman E, Boomsma DI, Slagboom PE, et 
al. High microsatellite and SNP genotyping success rates established in a large 
number of genomic DNA samples extracted from mouth swabs and genotypes. 
Twin Res Hum Genet. 2006;9(4):501-6.

31.	 Ehli EA, Abdellaoui A, Fedko IO, Grieser C, Nohzadeh-Malakshah S, Willemsen G, et al. 
A method to customize population-specific arrays for genome-wide association 
testing. Eur J Hum Genet. 2017;25(2):267-70.

32.	 Beck JJ, Hottenga JJ, Mbarek H, Finnicum CT, Ehli EA, Hur YM, et al. Genetic Similarity 
Assessment of Twin-Family Populations by Custom-Designed Genotyping Array. 
Twin Res Hum Genet. 2019:1-10.

33.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 
PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

34.	 Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship 
inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867-73.

35.	 Jonsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson 
O, et al. Differences between germline genomes of monozygotic twins. Nat Genet. 
2021;53(1):27-34.

36.	 Ouwens KG, Jansen R, Tolhuis B, Slagboom PE, Penninx B, Boomsma DI. A 
characterization of postzygotic mutations identified in monozygotic twins. Hum 
Mutat. 2018;39(10):1393-401.

37.	 Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification 
in genome-wide association studies. Nat Rev Genet. 2010;11(7):459-63.

6



188 189

GENETIC ANCESTRY INFERENCECHAPTER 6

38.	 Feng Q, Abraham J, Feng T, Song Y, Elston RC, Zhu X. A method to correct for 
population structure using a segregation model. BMC Proc. 2009;3 Suppl 7:S104.

39.	 Kang SJ, Larkin EK, Song Y, Barnholtz-Sloan J, Baechle D, Feng T, et al. Assessing the 
impact of global versus local ancestry in association studies. BMC Proc. 2009;3 
Suppl 7:S107.

40.	 Thornton T, Conomos MP, Sverdlov S, Blue EM, Cheung CY, Glazner CG, et al. 
Estimating and adjusting for ancestry admixture in statistical methods for 
relatedness inference, heritability estimation, and association testing. BMC Proc. 
2014;8(Suppl 1):S5.

41.	 Zhu X, Li S, Cooper RS, Elston RC. A unified association analysis approach for family 
and unrelated samples correcting for stratification. American Journal of Human 
Genetics. 2008;82(2):352-65.

42.	 Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for 
ancestry prediction and correction of stratification in the presence of relatedness. 
Genet Epidemiol. 2015;39(4):276-93.

SUPPLEMENTARY MATERIALS

Supplementary Figure 6.1 –Scatterplots of PCs 1-10 per genotyping array. Panels A-E are 
for 1000G and GoNL reference samples only. Panels F-H are the NTR samples colored 
by genotyping array superimposed on the 1000G and GoNL reference samples (small 
gray points). 
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Supplementary Figure 6.2 – Correlations of PCs by genotyping array.

Supplementary Figure 6.3 – Scatterplot of PC Euclidean distance as a function of IBD 
(identity-by-descent). PIHAT is calculated as the proportion(IBD=2) + 0.5*propor-
tion(IBD-1).
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Supplementary Figure 6.4 – Correlations of admixture proportions by genotyping array.
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SUMMARY AND DISCUSSIONCHAPTER 7

The amount of information obtained from DNA in molecular genetic 
laboratories, including our lab at the Avera Institute Human Genetics (AIHG), 
is enormous. The richness of these data and the conclusions that can be drawn 
from them have fueled applied genetic epidemiological research. With the 
completion of the Human Genome Project in 2003 [1] and improvements since 
its initial release [2, 3], genome-wide association studies (GWAS) have become 
the key gene discovery approach for providing insight into human traits and 
disease [4-6]. Now, more than 18 years after the completion of the first draft 
of the human genome, GWAS continue to be a primary method for identifying 
genetic variant-trait associations [7]. To date, more than 257,000 variant-trait 
associations have been identified and documented in the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/). Despite the apparent benefit of linking genetic 
variants to human health and traits, the wealth of genetic data can also be 
leveraged to study populations. Genetic studies of populations have and will 
continue to inform about population substructure and inferences regarding 
human history [8]. Therefore, studies on the genetic composition of individuals, 
families, and populations will unlock additional information about the human 
condition.

The central aim of this thesis was to use molecular genetic data to improve 
our understanding of twinning, twins, their families, and the populations they 
represent. In this thesis, I begin with an extensive overview of the current 
knowledge of the biology and genetics of twinning. Next, I present a pedigree-
based study that leverages whole-genome genotype and sequence data to 
identify novel biomarkers of human dizygotic twinning. Then, in what follows are 
three separate studies that incorporate large amounts of molecular genetic 
and phenotypic data obtained from twins and their families that participate in 
population-based twin registries worldwide. The common theme of the three 
studies is the usage of data from twins and their family members to make 
informed conclusions about genetic structure at the population level and the 
genetic architecture underlying a complex trait in twins.

In this final chapter, I summarize the main findings of each chapter of 
this thesis. I then conclude with a general discussion of human genetic 
studies, emphasizing gene finding for twinning and birth weight, as well 
as considerations of genetic ancestry testing. Lastly, I provide my future 
perspectives.

BIOLOGY AND GENETICS OF DIZYGOTIC AND 
MONOZYGOTIC TWINNING
Across religions, cultures, and societies, twins have sparked human curiosity 
for centuries. Twin births were considered an extraordinary phenomenon in 
ancient times, though they were likely limited due to pregnancy and birth 
complications. With clinical and medical improvements, successful twin 
pregnancies have become far more prevalent in more recent times. As a 
matter of fact, twin births can be the by-product of medical technologies 
designed to assist couples experiencing reproductive difficulties (i.e., assisted 
reproductive technologies) [9-11].

In the case of identical twins, inherent interest comes from their astonishing 
physical similarity yet unique personality traits. Alternatively, fraternal twins are 
captivating in their own way, representing a set of non-identical siblings born 
at the same time. Identical twins, which share close to 100% of their genetic 
material, are called monozygotic (MZ) twins, indicating they are derived from 
a single zygote. Fraternal twins, which on average share 50% of their genetic 
material, are dizygotic (DZ), meaning they formed from two independent 
zygotes.

In science, the degree of phenotypic resemblance between MZ and DZ twins 
is fundamental to studies aimed at deriving the influence of genetics on 
a particular trait, also known as trait heritability. In this way, twins allow for 
a natural experiment and form the basis of the twin study design. Studies 
involving twins have grown in popularity through the years, especially in 
the ‘omics’ era in which different facets of human biology are studied in the 
context of human traits and diseases [12]. The scientific interest in twins has 
largely been facilitated by the establishment of global twin registries, with 
the first being established in Denmark in the 1950s [13]. Since then, it has been 
estimated that more than 1.5 million twins, high-order multiples, and family 
members participate in twin registries worldwide [14, 15].

Twins are undoubtedly a valuable resource for scientific research. Twin 
registries have been instrumental in making significant contributions to studies 
of human disease susceptibility and healthy development and regarding 
determinants and correlates of complex traits. Because twins are born in all 
strata of society, they are representative of the general population [16]. Thus, 
twin research may also be used to further explore discoveries in the general 
population, as reflected in chapters 4, 5, and 6.
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In chapter 2, an extensive overview of the biology and genetics of MZ and DZ 
twinning is provided. The focus of the chapter is a description of what is known 
and what remains to be understood about the human twinning process with 
related findings from animal studies. First, I present the biological similarities 
and differences of DZ and MZ twins concerning zygosity, chorionicity, and 
placentation and how this information relates to the traditional and widely 
adopted models of twinning [17]. Second, I describe the etiology of twinning 
from biological and genetic perspectives, with an important distinction 
between twin types. Third, the incidence and global variation in MZ and DZ 
twinning rates are outlined.

The remarkable overall consistency in MZ twinning rates worldwide suggests 
that MZ twinning is spontaneous and may be under the influence of some 
combination of genetic and non-genetic factors. Although comprehensive 
understanding has remained challenging, recent breakthroughs have 
discovered stable epigenetic signatures associated with MZ twinning that 
persist into adulthood [18]. The occurrence and rates of DZ twinning exhibit 
temporal and spatial variation, with significant variation attributable to 
maternal (i.e., genetic) factors. Important genetic developments and 
techniques have facilitated considerable scientific efforts to discover genes 
related to the DZ twinning process. Most notable is the identification and 
replication in 2016 of two genetic variants, near the SMAD3 and within the FSHB 
genes, robustly associated with being a mother of spontaneous DZ twins (i.e., 
no use of assisted reproductive technologies) [19].

In conclusion, chapter 2 defines and differentiates between human MZ and 
DZ twinning from biological and genetic viewpoints. Even with the recent 
development and improvement of molecular techniques, the human twinning 
process remains to be fully characterized, with substantially less known about 
contributory factors of MZ twinning. As technological advancements continue, 
so too will our knowledge of the twinning process. Further elucidation of the 
genetic and non-genetic factors underpinning the twinning process will aid 
in the understanding of female fertility and improve upon the outcomes of 
multiple gestation pregnancies from predictive, supportive, and clinical care 
perspectives.

PEDIGREE BASED ANALYSIS OF HUMAN DIZYGOTIC 
TWINNING USING WHOLE-GENOME SEQUENCE DATA
Spontaneous DZ twinning in humans results from double ovulation and tends 
to run in families [20]. Although large regional differences in DZ twinning rates 
exist, approximately 1-4% of women worldwide are affected [21-23]. Over many 
decades, many have tried to elucidate its genetic basis, but with limited 
success. A recent gene-discovery effort brought together unique collections 
of mothers of DZ twins (MoDZT) to conduct the first genome-wide association 
meta-analysis of 1,980 MoDZT and 12,953 controls [19]. The study identified two 
polymorphisms, located near FSHB and within SMAD3 genes, with significant 
effects on twinning and numerous measures of female fertility, including higher 
serum FSH levels, earlier age at menarche, earlier age at first child, higher 
lifetime parity, and earlier age at menopause. The findings from this study 
revealed important genetic aspects of reproductive capacity and health; 
however, the identified variants do not entirely capture the genetic disposition 
of having DZ twins. The lack of complete understanding underlying the genetics 
of DZ twinning provided an opportunity to uncover novel genetic variants not 
identifiable through common variant approaches.

As a follow-up approach to the promising results of the investigative twinning 
GWAS, we performed whole-genome genotyping and sequencing on mothers 
of DZ twins from a large multigenerational Dutch pedigree with a rich history 
of DZ twinning. The project’s goal was to identify additional gene regions 
potentially containing rare and functional variants that increase the risk 
of DZ twinning and that index female fertility. We hypothesized that such a 
strategy could lead to the discovery of next-generation biomarkers of clinical 
importance for predicting DZ twinning and related to fertility measures.

Chapter 3 provides a detailed description of a large DZ twinning pedigree 
and the results of combined within-family linkage information and analysis of 
whole-genome sequence data. The large multigenerational pedigree contains 
18 MoDZT and 21 sets of spontaneous DZ twins (no use of assisted reproductive 
technologies). Biological samples were available for 17 individuals (4 males 
and 13 females). Of the 13 females, 11 are MoDZT, of which one is part of an 
opposite-sex DZ twin pair. Of the MoDZT, two of them gave birth to two sets 
of DZ twins. DNA was extracted from the available samples and sent to the 
Avera Institute for Human Genetics for SNP genotyping on the Illumina GSA 
and whole-genome sequencing.
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To locate DZ twinning-related genes in the pedigree, we employed linkage 
analysis using genotypic data. Broadly, linkage analysis aims to demonstrate 
co-segregation of genetic markers and a trait within families. Non-parametric 
linkage analysis with Merlin software [24] yielded a top hit on chromosome 5 
(maximum LOD score=1.21, p=0.009). Though not a convincingly strong signal, 
the result indicated excess allele sharing among the affected MoDZT and 
favored the presence of linkage.

As a follow-up to the initial linkage work, four of the most distantly affected 
MoDZT in the pedigree were selected for whole-genome sequencing. 
Combined genotypic and sequence data from the four MoDZT were used for 
haplotype estimation and identification of shared genomic segments with 
Olorin software [25]. Sizeable segments present in at least three of the four 
MoDZT were present on nearly all chromosomes. The largest shared segments 
possessed by all four mothers were found on chromosomes 1, 3, 6, 11, making 
them regions of interest to identify rare driver variants of DZ twinning.

Identification of variants in the shared regions may reveal novel genetic 
biomarkers for DZ twinning. Coupling variants with corresponding functional 
consequence information obtained from Variant Effect Predictor may reaffirm 
or establish new biological mechanisms driving multiple ovulation and 
subsequent DZ twinning events. Screening of shared haplotypes and variants 
against an external cohort of MoDZT from the Genome of the Netherlands 
project [26] (46 MoDZT with whole genome-sequence data) will demonstrate if 
they are pedigree-specific or generally characteristic of being a MoDZT. Given 
the global variation in DZ twinning rates, it will also be impactful to assess the 
shared genetic regions and variants in more diverse populations, especially 
those with high twinning rates.

The continuing objective of this project is to use whole-genome sequencing 
as a follow-up approach to linkage and association studies of DZ twinning. 
Given the results of previous work, variants affecting multiple ovulation and 
subsequent DZ twinning events are likely to occur in genes and pathways 
controlling the synthesis of Follicle Stimulating Hormone (FSH), an important 
reproductive hormone. Pedigree-based whole-genome sequencing may 
implicate new pathways or novel regulation of FSH-related pathways. Though 
initial genomic regions of interest have been identified, additional work is 
needed to determine specific variants with meaningful biological effects. 
The findings from this work may someday enable new opportunities to treat 
infertility or optimize assisted reproductive strategies.

GENETIC SIMILARITY ASSESSMENT OF TWIN- 
FAMILY POPULATIONS
Genetic studies of human complex traits and disease have demonstrated the 
necessity of large sample sizes for achieving adequate statistical power and 
identifying reproducible discoveries [4, 5, 7]. One approach for attaining large 
sample sizes is to combine forces. That is, to aggregate data collected by 
different groups from around the world. Twin registries represent a premier 
source for acquiring data given their dedication to recruitment, longitudinal 
assessment, and collection of biological samples [27]. While population-based 
twin registers enable data aggregation, it is not always clear the extent to which 
these data are harmonizable or what extra precautions need to be considered. 
Thus, there is value in examining the degree of genetic similarity of population 
cohorts to be combined for genetic studies from a genetic standpoint.

In chapter 4, an assessment of genetic similarity for three global populations 
(Australian, Dutch, American) that are routinely combined for large association 
studies is described. In this chapter, empirical and quantitative measures of 
global genetic differentiation were estimated. Estimates of genetic similarity 
for Australians and the Dutch have been previously reported in a smaller 
study, suggesting that the populations are indeed similar, allowing for data 
aggregation for joint genetic analyses [28]. In their study, Sullivan et al. 
estimated the proportion of total genetic variability attributable to genetic 
differences between cohorts, known as Wright’s fixation index (FST), based on 
359 short tandem repeat (STR) polymorphisms and analysis of molecular 
variance. The FST between 519 Australian and 549 Dutch individuals was 
estimated at 0.30%, a value smaller than between many European groups. 
Their work concluded that it is reasonable to combine samples from Australian 
and Dutch cohorts in genetic studies. However, their results were based on 
modest sample sizes and numbers of genetic markers.

In chapter 4, we augmented the study design by adding a third major 
population from the Midwestern United States and attained much larger 
sample sizes. Genetic data were obtained from a DNA microarray, with more 
than 600,000 genetic markers interrogated per individual. With the available 
genome-wide data, similar methods for quantifying population genetic 
variability were applied. I hypothesized that estimates of genetic similarity 
between the three populations would be comparable to the previously 
published estimates, which indeed turned out to be the case.
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The study design was enhanced by incorporating genotypes from a small 
number of individuals from Nigeria, representative of a globally distinct 
population compared to the three populations of predominantly European 
ancestry. I predicted that empirical estimates of genetic similarity between 
Australian, Dutch, and American populations would be more like each other 
than estimates with other globally diverse populations, including samples from 
Nigeria and a reference cohort of worldwide representative samples from the 
Human Genome Diversity Project (HGDP).

Another unique aspect of the study presented in chapter 4 is that although 
the biomaterials were collected from individuals from geographically distant 
areas of the globe, all genotypes were generated at the same laboratory (the 
AIHG) on the same DNA microarray (Illumina GSA). This particular characteristic 
of the study design is extremely beneficial as sample handling, shipping, and 
processing may affect sample quality and downstream genetic estimates [29]. 
Chapter 4 describes the design of the customized Illumina GSA. Included is a 
detailed breakdown of the content and marker selection categories, including 
markers related to clinical research (i.e., pharmacogenomics), human health, 
population research, and a core backbone of makers for optimizing imputation. 
Results of the initial validation studies of the Illumina GSA for imputation are 
presented, including coverage, overall imputation quality, and concordance 
checks between array-mimicked imputed data and sequence data. For these 
assessments, a dataset mimicking the content of the GSA was created from 
whole-genome sequence data of 249 unrelated females from the Genome 
of the Netherlands (GoNL) project. Results demonstrated that genotypes 
derived from the GSA could be re-imputed with high confidence, apart from 
very rare alleles that never impute well [30]. The imputation quality metrics of 
the GSA were consistent with previous reports from other custom-designed 
microarrays, including the earlier Affymetrix Axiom array, also collaboratively 
designed by the NTR and the AIHG [31].

With the genotypic data from the GSA, we employed various analytical 
strategies to assess population genetic similarity and differences, including 
principal components analysis (PCA) and FST estimates. PCA was used to 
visually compare the populations of interest to each other and globally diverse 
populations from the HGDP. After accounting for factors that can bias PCA, 
such as family structure and linkage disequilibrium, we found considerable 
overlap in the plotted top principal components (PCs) of Australian, Dutch, 
and American individuals. The superimposition of top PCs suggested 
genetic resemblance. No overlap in top PCs was observed with more diverse 
populations, such as those obtained from Asia or Africa. This finding agreed 
with previous work that has demonstrated strong correlations of top PCs with 

geography [32]. FST estimates were smaller between Australian, Dutch, and 
American populations than Nigerian populations, suggesting more genetic 
similarity between the three European ancestry-based populations. The FST 
estimates from two methods, Weir and Cockerham and Hudson estimators, 
were consistent with the geographical patterns observed from the PCA and 
with previous estimates of population genetic differentiation [26, 33].

In the context of GWAS and population structure, the findings and results of 
chapter 4 support the practice of aggregating data from ancestry matched 
(i.e., genetically similar) populations to minimize the degree of possible 
confounding while maximizing the power to detect association. While the 
populations under study showed strong genetic similarity, it is still of utmost 
importance to account for the genetic ancestry of individuals in a GWAS. In this 
regard, and when samples come from more diverse populations, correction for 
ancestry can be accomplished using an association model with appropriate 
covariates, where covariates (ideally) capture differences in genetic ancestry. 
This strategy is critical when more genetically diverse or admixed individuals 
are included to enhance detection power further.

GWAMA OF TWIN BIRTH WEIGHT AND COMPARISON 
TO GENETICS OF SINGLETON BIRTH WEIGHT
Studies of birth weight (BW) have been of great interest because BW is an 
important indicator of newborn and infant survival [34-36]. In addition, there 
is robust and well-replicated evidence for associations of BW extremes and 
adult health. For example, there is consistent evidence between low BW and 
adverse cardiovascular outcomes, such as heart disease, hypertension, stroke, 
and type 2 diabetes [37-40]. Furthermore, low BW has also been considered a 
risk factor for mood disorders and poorer cognitive ability [41, 42].

Given the robust relationships with various later-life conditions, studies in 
the last few years have sought to advance our understanding of the genetic 
architecture of BW through large-scale genome-wide association studies 
(GWAS) [43-46]. A common characteristic of these gene-finding studies is that 
they are performed with BW data obtained from singletons and not from twins. 
Twins tend to be excluded from discovery analyses because they typically have 
a lower BW than singletons, mainly due to a crowded intrauterine environment 
and a shortened gestational period. Only one genome-wide association 
study on BW in twins, specifically 4953 female twins, has been performed [47]. 
Therefore, there is a clear knowledge gap in our understanding of this trait 
in twins from a genetic perspective. Even more, it is unclear to what extent 
findings of BW from singletons can be generalized to twins and to what degree 
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twins can contribute to gene discovery for BW. Thus, the goal of chapter 5 was 
to elucidate the genetics of BW in twins and to compare findings to those 
previously reported in singletons.

In chapter 5, a genome-wide association meta-analysis (GWAMA) was 
performed to gain insight into the genetics of BW in twins. In the study, eight 
population-based twin cohorts contributed results of a GWAS on twin BW 
considering important covariables, including sex, gestational age, year of birth, 
maternal age at birth, birth order, and other relevant study-specific metrics 
(e.g., ten PCs capturing ancestry differences or variation in the genotyping 
platform). The GWAS results from 42,212 twin individuals were subsequently 
meta-analyzed to compare twin and singleton BW genetics and address 
whether GWAS results from the two groups can be combined. A secondary 
goal was to identify genetic variants associated with twin BW.

In a first step, the performance of SNPs with genome-wide significant signals in 
the largest and most recent GWAS of singleton BW [46] was evaluated against 
the GWAMA results of twin BW. We compared the most strongly associated 
markers (P<6.6x10-9) with singleton BW to those from our study by correlating 
the effect size estimates. Of the significant singleton BW variants, 150 of 
them overlapped with twin BW GWAMA results. We found a strong positive 
correlation (Pearson’s r=0.66) between the 150 overlapping SNPs of the two 
studies. Although not in perfect unison, the strong positive linear relationship 
suggested that the previously reported genetic variants for BW behave similarly 
regardless of singleton or twin status. The likeness of the effect size estimates 
was the first promising indicator that the genetic influences on BW might be 
similar in singletons and twins.

No genome-wide significant genetic variants were identified in our GWAMA 
at the defined threshold of genome-wide significance (P<5x10-8). Although 
two SNPs achieved a suggestive level of significance (P<5x10-7). The two 
SNPs, rs10800682 and rs3845913, were located on chromosomes 1 and 3, 
respectively. Of the two signals, the former was independent (i.e., not in linkage 
disequilibrium) of sixty previously reported loci in large GWAS of singleton 
BW [43]. Although not significant, the novelty of rs10800682 makes this SNP a 
potential candidate for future studies of BW in twins. Alternatively, the latter 
SNP was found to be about 31 kilobases downstream of rs11719201, an intronic 
variant of the ADCY5 gene, and one of 60 loci previously found to be robustly 
associated with BW in singletons [43]. This finding is supported by the fact that 
ADCY5 and CCNL1 were two of the first genes shown to be associated with fetal 
growth and BW [48]. Exactly how and through which gene(s) rs10800682 and 
rs3845913 may impart variation in BW is a promising avenue for future research.

For discerning the degree of genetic overlap between BW in twins and 
singletons, genetic correlations were calculated. In the simplest sense, genetic 
correlations represent the extent to which the same genes influence two traits. 
The two traits can be different phenotypes (e.g., BMI and blood pressure), the 
same trait measured at different ages, or the same trait measured in different 
groups (e.g., twins and non-twins). In this context, positive genetic correlations 
between twin and singleton BW indicate shared genetic contribution to BW 
irrespective of twin status. Strongly positive genetic correlations (rg>0.9) 
were observed between the results of our GWAMA of twin BW and previously 
published GWAS results of BW in singletons from three sequential studies [43, 
44, 46].

In the next step, we also looked at genetic correlations between BW in twins and 
a series of other health-related traits previously compared to BW in singletons. 
We found remarkably similar genetic correlations with these traits, particularly 
anthropometric traits, akin to those reported for singleton BW.

As a follow-up to the exciting genetic correlation findings, polygenic scores 
(PGS) for BW were also calculated. PGS represent the cumulative estimated 
effect of many genetic variants on an individual’s phenotype, calculated as a 
weighted sum of trait-associated variants. Summary statistics (i.e., the effect 
size estimates per genetic variant) were derived from a UK Biobank discovery 
study on BW and were used to calculate PGS in an independent target sample 
of Dutch twins and singletons. The Dutch twins and singletons participate in 
the Netherlands Twin Register and had BW data available. The PGS were used 
to predict BW separately in twins and singletons after considering important 
confounding factors, such as family relationships, sex, year of birth, gestational 
age, genotyping platform, and principal components. Similar predictability 
of BW in singletons and twins with the optimal PGS was found. The model 
including PGS and important covariates explained 2% and 3% of BW variation 
in twins and non-twins, respectively. The likeness in the predictiveness provided 
yet another piece of evidence supporting a similar genetic architecture of BW 
in twins and singletons.

In conclusion, chapter 5 supports the inclusion of twins in genetic studies of BW, 
assuming proper analytical strategies are employed to account for the known 
differences in BW. The compelling results from various analytical approaches 
suggested a similar genetic profile of BW in twins and singletons. Given the 
continually expanding efforts to identify genetic variants associated with BW by 
initiatives such as the Early Growth Genetics Consortium (EGG) [49], the results 
of chapter 5 may considerably aid in detection efforts by boosting sample sizes 
through the incorporation of twins.
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GENETIC ANCESTRY ESTIMATES IN TWINS AND FAMILIES
The popularity of population-based genetic association studies has increased 
throughout the years [5]. Their success is rooted in the continuing value of 
identifying genetic variant-trait associations related to human health and 
disease. One necessary component of genetic association studies is inferring 
ancestry from genetic data to correct for population stratification [50]. That is, 
allele frequency differences due to systematic ancestry differences. Population 
stratification can confound association studies and give rise to spurious results 
[51]. Many methods can determine genetic ancestry, but the approaches can 
generally be categorized into algorithmic or model-based approaches.

In chapter 6, the focus was on two scenarios that often arise in association 
studies. How do ancestry estimates using algorithmic and model-based 
approaches perform when family members participate in a study and is it 
possible that different decisions would be taken for individuals from the same 
family? We are especially interested in addressing this question in those 
individuals that are ancestrally diverse or admixed. Secondly, how comparable 
are ancestry estimates from those methods when study participants have 
been genotyped across multiple DNA microarrays? This question is relevant 
since large cohort studies are often faced with genotyping data obtained from 
different (e.g., earlier and later) microarrays. Genome-wide SNP data from 
twins and their family members participating in the Netherland’s Twin Register 
were analyzed to answer these questions. All genotyping was performed at 
the AIHG on at least one of three genotyping platforms, namely Affymetrix6 
(AFFY6), Affymetrix Axiom (AXIOM), or Illumina GSA (GSA). Genetic ancestry 
was determined using PCA (algorithmic) and a model-based approach, 
exemplified by the ADMIXTURE software package [52, 53].

PCA is a mathematical data dimensionality reduction technique. When 
employed on genetic data, PCA transforms a large set of correlated 
variables (i.e., genetic variants) into a smaller group of uncorrelated 
principal components (PCs) that capture most of the variation in the data. 
All individuals in the analysis then get a series of scores corresponding to 
each of the selected number of PCs. In genetic association studies, top PCs 
typically reflect population structure among the individuals in the analysis. PCs 
often correlate with geography, reflecting decreasing genetic similarity with 
increasing geographic distance [54, 55]. Recently, the correlation of PCs with 
geography and the general use of PCA in genetics has been scrutinized, albeit 
more of a warning of PCA abuse and misuse [56]. Thus, if PCA is improperly 
executed, PCs can reflect other artifacts of the data. As an example, rather than 

capturing population structure, PCs may also capture linkage disequilibrium 
structure [32, 57-59]. In the past several years, PCA has been increasingly 
utilized in population genetics for inferring genetic ancestry [50, 60], correcting 
for confounding due to population stratification [50], and understanding 
population composition and migration [32, 54, 61].

Model-based approaches can also elucidate population structure, one 
example being the software program ADMIXTURE. The premise of model-
based methods is to calculate relative proportions of ancestry, knowing 
that the genetic composition of an individual is a mosaic of the ancestral 
populations they originate from. These approaches mostly use Bayesian or 
maximum likelihood estimation approaches to optimize the probability of 
observed genotypes by modeling ancestry proportions and population allele 
frequencies. The culminating result is ancestry proportions for each individual, 
where each proportion corresponds to the percentage of each ancestral 
population. In this way, ancestry proportions from ADMIXTURE are more directly 
interpretable than PCs since they resemble actual populations rather than 
some arbitrary axes of variation in the data (i.e., PCs).

Using global reference data from the 1000 Genomes Project [62] and the 
Genome of the Netherlands [26, 63], PCA and ADMIXTURE projection analyses 
were completed on NTR families, including MZ and DZ twins, siblings, parents, 
and parent-offspring pairs. Euclidean distances of PCs and ancestry 
proportions were calculated for pairs of family members. In this manner, 
Euclidean distances provided a singular quantitative value between two 
individuals across all PCs or ancestry proportions. Larger Euclidean distances 
indicated increasing dissimilarity across all PCs or ancestry proportions, 
whereas smaller Euclidean distances suggested more similarity. Even in diverse 
and admixed families, Euclidean distances of PCs and ancestry proportions 
closely resembled the degree of relatedness between individuals. That is, 
two genetically similar individuals (i.e., MZ twins share ~%100 of segregating 
alleles) had smaller Euclidean distances than less related family members (i.e., 
parent-offspring pairs that share precisely 50% of segregating alleles. Despite 
underlying analytical differences, the results were consistent with reports of 
high concordance between algorithmic and model-based approaches [53].

Ancestry estimates obtained from PCA and ADMIXTURE showed a negligible 
difference for individuals with genotypic information obtained from three 
different genotyping platforms. However, slightly larger differences were 
observed across array manufacturers (Affymetrix and Illumina) than within 
(Affymetrix 6.0 and Affymetrix Axiom). This finding, coupled with the results 
from within family pairs, demonstrated that ancestry analyses utilizing PCA or 
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ADMIXTURE software are robust to genotyping platforms, assuming the proper/
same analytical steps are employed. This result is encouraging for cohorts 
having to aggregate genotypic data from different platforms.

In conclusion, chapter 6 assessed genetic ancestry estimates in many twin 
and family participants of the NTR. Genetic data generated at the AIHG from 
three different genotyping platforms were used to calculate genetic ancestry 
estimates using algorithmic (i.e., PCA) and model-based approaches, such as 
the one implemented in the software ADMIXTURE. When combined with genetic 
data from global reference panels in projection analyses, population structure 
estimates in the NTR between twins and family members reflected the genetic 
relatedness among them as would be expected given the law of segregation 
of alleles. The results provide confidence in commonly employed ancestry 
estimation strategies for family-based studies and those that combine genetic 
data from multiple microarrays.

GENERAL DISCUSSION
The emphasis of this thesis concerns genetically informed studies of twinning, 
twins, families, and populations from genome-wide molecular data. In what 
follows, I begin by discussing recent findings involving the twinning process 
since I have a particularly keen interest in gene-finding efforts related to 
dizygotic (DZ) twinning. With respect to these findings, I transition into recent 
developments that hold promise for supplementing and improving our 
understanding of the biology of the twinning process. Next, I turn to birth weight, 
focusing on more recent analytical strategies for improving our understanding 
of the phenotype. Then I broadly discuss genetic ancestry testing and the 
implications of results from these analyses for individuals and society. Following 
the ancestry discussion, I reflect on the importance of including cohorts of 
diverse ancestry in human genetic studies. Lastly, I close with my take on future 
perspectives of the field of human genetics.

GENE-FINDING FOR HUMAN TWINNING
Throughout my entire Ph.D. trajectory, I have worked with twins and their 
families in some capacity. When I first began my graduate studies and 
research projects at the Avera Institute for Human Genetics (AIHG), I dedicated 
a significant amount of time genotyping DNA extracted from cheek swabs 
of twins on the Affymetrix Axiom array. Around the same time, the AIHG 
established its twin register, the Avera Twin Register [64]. The formation of the 
twin register filled the local community with excitement and raised awareness 
for the importance of twins in genetic studies. The public attention resulted in 

fielding a wide array of questions about twins. A popular inquiry was about the 
likelihood of conceiving twins, a question that twin researchers and geneticists 
have been trying to answer for more than 40 years [65].

Fortuitously, a landmark paper was published shortly thereafter, which 
provided compelling and replicable evidence for two genetic variants involved 
in spontaneous dizygotic (DZ) twinning. The study, spearheaded by colleagues 
at the Netherlands Twin Register, identified the first common genetic variants 
associated with being a mother of spontaneous DZ twins (MoDZT), but that 
also appeared to influence many other female reproductive traits [19]. The 
variants, rs11031006 and rs17293443, are located near FSHB and within SMAD3, 
respectively. FSHB had been hypothesized but never shown to be implicated in 
DZ twinning. Alternatively, SMAD3, which regulates ovarian responsiveness to 
FSH, was not previously implicated in twinning. The findings were remarkable, 
replicable, robust, and identified the first common genetic variants related to 
female fertility, which could partly explain the inheritance of DZ twinning.

Around the same time as the identification of DZ twinning genes, I enrolled in 
a course on female biology and endocrinology to learn more about female 
fertility. Specifically, I desired to put in context the recent genetic findings 
related to twinning. I sought to understand better the biological mechanisms 
related to multiple ovulation and the potential for conceiving twins. While 
enrolled in the course, I began to work on a project associated with DZ twinning, 
focusing on identifying less common genetic variants associated with the trait. 
I utilized samples obtained from a large Dutch pedigree with a rich history 
of DZ twinning to complete SNP genotyping and whole-genome sequencing 
experiments. I presented preliminary sequencing experiment results at a global 
meeting in Singapore in November 2019 dedicated to research on the etiology 
of DZ and MZ twinning.

Since then, efforts to characterize the twinning phenotype from a genetic 
standpoint have expanded. For example, in 2019, I assisted with a follow-up 
project of UK Biobank participants that reported being part of a multiple birth 
[66]. The study replicated previously discovered DZ twinning genes, namely 
FSHB and SMAD3. A novel genetic variant (rs428022), close to two genes PIAS1 
and SKOR1, was also associated with multiple birth. PIAS1, a protein inhibitor of 
activated STAT 1, regulates the androgen receptor and has been implicated 
in prostate cancer [67-69]. It has also been shown that inhibitors of PIAS 
proteins interact with the transforming growth factor-beta pathway and 
regulate transcriptional activity mediated by SMAD proteins [70, 71]. Likewise, 
SKOR1, known as functional SMAD-suppressing element on chromosome 15, 
interacts with SMAD1, SMAD2, and SMAD3 to regulate bone morphogenetic 
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protein (BMP) signaling [72]. The BMP protein family regulates many biological 
and developmental aspects of the reproductive system and has been shown to 
increase ovulation rate in sheep [73] and the marmoset monkey, which exhibits 
a high twinning rate [74]. The study reiterated some previous findings and 
provided additional insight into the biological and genetic etiology of multiple 
births and fertility.

Past epidemiological research has firmly established the complex inheritance 
of familial DZ twinning [75, 76], a hallmark and defining characteristic 
compared to monozygotic (MZ) twinning. Thus, discovery efforts have extended 
the phenotype to more than just MoDZT. Current and ongoing studies of 
DZ twinning now include the proxy phenotype of “Are you a DZ twin?”. The 
combined set, including MoDZT and now DZ twins, helps improve the ability 
to detect new signals and identify novel biological and genetic associations 
through combined meta-analysis. Still an ongoing effort, multiple new loci 
have been identified, which all seem to have apparent implications in female 
reproductive function and endocrinological processes. Generally, identified 
genes converge on pathways involving hormone ligand-binding receptors 
and the ovulation cycle, including the hypothalamic-pituitary-gonadotrophin 
axis and intra-ovarian signaling. In a biological context, the findings from 
the combined meta-analysis are encouraging and provide reassurance for 
identifying genes that influence DZ twinning.

In contrast to the ongoing efforts and the promising results related to gene-
finding for DZ twinning, the etiology of MZ twinning remains much less clear. 
Consistent with the prevailing hypothesis that MZ twinning occurs at random, 
attempts to identify genes associated with “being a MZ twin” have been less 
successful. Instead, attention has shifted to epigenetics since the MZ twinning 
event occurs early in development, coinciding with the same time as major 
epigenetic reprogramming. In fact, immediately following fertilization, the pre-
implantation embryo undergoes multiple waves of global DNA methylation 
followed by de novo methylation. The methylation changes occur during the 
differentiation of pluripotent cells to specific cellular lineages and are crucial 
for embryonic development [77]. Given the substantial overlap, there has been 
recent interest in identifying DNA methylation signatures associated with MZ 
twinning.

Efforts to characterize epigenetic influences on MZ twinning have employed 
an epigenome-wide association study (EWAS) design. Analogous to GWAS, 
an EWAS is a powerful approach for identifying epigenetic signatures, such as 
DNA methylation, associated with a particular trait [78, 79]. The first EWAS for MZ 
twinning has generated a plethora of promising results [18]. Using DZ twins as 

controls to account for the unique prenatal effects of womb sharing, a strong 
association was found between MZ twinning and a DNA methylation signature 
in adult somatic tissues. The results revealed 834 differentially methylated sites 
associated with MZ twinning, which were not randomly distributed across the 
genome. The differential methylation existed near telomeres and centromeres, 
in transcriptionally repressed regions, and at putative sites of known inter-
individual epigenetic modification (e.g., metastable epialleles). The robust 
DNA methylation signature can be used for retrospective diagnosis of MZ 
twinning, which could aid in investigations of known links between congenital 
disorders and MZ twinning. The first MZ twinning EWAS results are promising. 
They are beginning to illuminate potential biological mechanisms related to MZ 
twinning, a phenotype that has evaded scientific efforts to uncover its genetic 
basis.

Efforts to identify and characterize the genes for DZ twinning continue. The 
results of these investigations will have a profound impact on society since the 
global number of twins is increasing at an unprecedented level [21]. Much of 
the sharp rise in recent decades is due to medically assisted reproduction [23, 
80]. However, increased family size and delayed childbearing (i.e., advanced 
maternal age at birth) have also contributed, particularly in higher-income 
areas of the world [81, 82]. Regardless, the surge is highly relevant since 
twin births are associated with higher infant and child mortality rates and 
increased prenatal and perinatal complications for the mother and fetus [83-
85], especially in low-income countries [83]. Given the health implications for 
twins and mothers, a complete understanding of the twinning process will be 
imperative for predictive capabilities and improving the outcomes of multiple 
gestation pregnancies.

GENETICS AND (EPI)GENETICS OF BIRTH WEIGHT
An essential factor in newborn and infant survival is weight at birth [86]. It is 
well established that newborns at the high (i.e., macrosomia) and low (i.e., fetal 
growth restriction) ends of the population distribution for birth weight (BW) will 
have an increased risk of adverse health outcomes in adulthood [39, 87-90]. For 
this reason, BW has been studied extensively, with substantial effort dedicated 
to discerning the relative genetic and environmental influences on BW variation 
(Table 7.1). Genetic studies of BW are not straightforward since genetic effects 
can be direct because of the fetal genotype and indirect, acting through the 
maternal genotype (i.e., non-transmitted alleles) [91-95]. Of the conjoined 
effects, the latter represents genes that act via the intrauterine environment, 
more generally serving as a proxy for the environment.
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To date, GWAS have identified and implicated 190 genomic loci with BW 
[43, 45, 46]. Classification of associated variants suggests that 75% of the 
identified loci show direct effects of the fetal genotype, a small proportion 
of which also exhibit maternal effects. The remaining SNPs show indirect 
effects of the maternal genotype, considered the non-transmitted alleles. 
These findings are consistent with a more recent haplotype-based approach 
in mother-child pairs, demonstrating that fetal size is primarily the result of 
the fetal genome, whereas the maternal genome determines the duration of 
gestation [107]. Further efforts have discerned that maternally non-transmitted 
alleles influencing offspring birthweight through the intrauterine environment 
are unlikely to be major determinants of later-life adverse cardiometabolic 
outcomes [94].

Although many genetic loci have been found to be associated with BW, the 
causal variants have not yet been identified. Many of the GWAS hits exist outside 
protein-coding regions, so it remains uncertain whether the functional variant 
they tag exerts its effect through the most proximal gene or some other gene(s) 
located elsewhere. Knowledge of the causal biological and genetic pathways 
underpinning BW will help us understand the life-course associations between 
infant BW and adult morbidity.

Like scientific investigations of twinning, recent work on BW has also sought 
to understand other sources of BW variation influencing the later-life risk of 
non-communicable disease, including epigenetic processes. DNA methylation 
represents one plausible mechanism linking BW to adult health outcomes, 
including advanced aging. Prenatal exposures and stressors may alter 
methylation status, detrimentally affecting development, and lead to preterm 
birth and reduced BW. Preterm birth has been shown to increase sensitivity to 
long-term epigenetic effects [108], including accelerated aging [109].

Knowledge of methylation status across the genome has been shown to yield 
promising predictive results for BW. For example, methylation scores for BW, 
weighted sums of the individual’s methylation levels at selected sites within 
the genome, have been shown to explain nearly 2% of BW variance, compared 
to 0.4% captured by genetics alone [110]. Another study found that methylation 
and polygenic scores could capture 0.4% and 1.5% of BW variation, respectively 
[111]. Together these findings corroborate some equivocal combination of 
genetic and epigenetic factors influencing variation in BW.

Methylation scores extend beyond genetic vulnerability, such as that captured 
by polygenic scores. In addition to genetic influences on the trait, methylation 
scores may also capture environmental and stochastic influences and 

the effect of the trait itself on the score, reflecting a reciprocal effect. Thus, 
methylation status may be informative as biomarkers of environmental 
influences on BW. It could also serve as a potential target for therapies since 
methylation status is known to be modifiable. For BW, these therapies could 
eventually help attenuate the extremes of BW distribution.

Epigenetic studies of BW aim to describe the intrauterine environment 
by quantitatively characterizing (un)favorable developmental conditions 
leading to variation in BW. One study, an EWAS of a Scottish birth cohort of 
1757 individuals with BW and DNA methylation data from whole blood, yielded 
the identification of one significant methylation site associated with BW [112]. In 
addition to discovering a local effect, the study also supported an association 
with global DNA methylation, as determined by associations between BW and 
epigenetic measures of biological age (e.g., telomere length). An important 
caveat of this study is that blood-based methylation was assessed during 
adulthood. For one, the findings may not generalize to other tissues. However, 
blood measures can track biological processes and contain biomarkers 
of inflammation, cardiovascular disease, cardiometabolic disease, all of 
which are relevant to BW. Secondly, the epigenetic marks were evaluated in 
adulthood, representing a snapshot of epigenetic signatures that are known to 
be temporally dynamic. Previous work has demonstrated that DNA methylation 
associated with BW may fade away with age [113]. Other studies have reported 
differences in methylation being a consequence of later life obesity rather 
than a cause [114]. Evaluation of persistent and variable methylation signatures 
across time could be achieved with longitudinal data, ultimately providing 
more reliable associations.

Another EWAS utilized DNA methylation data from 1,040 infants from the United 
Kingdom to investigate epigenetic signatures of BW in cord blood [115]. The 
result was the identification of 236 and 1230 differentially methylated sites and 
regions associated with BW, respectively. Many of the associated methylation 
markers were enriched for methylation sites previously associated with 
pregnancy complications and exposures, including gestational hypertension/
pre-eclampsia, smoking, and maternal folic acid levels during pregnancy. 
These findings are important since pre-eclampsia is itself associated with 
reduced BW. The results of this study provided insight into developmental 
pathways affecting BW, over and above what has been elucidated from purely 
genetic studies. Furthermore, epigenetic studies of BW may suggest potential 
surrogate markers for identifying prenatal exposures, which may assist in 
individual risk stratification for later-life non-communicable disease.
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Localization and characterization efforts of BW-associated loci are ongoing 
and will continue to improve our knowledge of genetic and environmental 
influences on the trait. Further assessment of the separation of fetal and 
maternal genetic effects will enhance our understanding of the regulation of 
BW and its connections with adult health outcomes, including cardiometabolic 
health. Investigations of the epigenetic mechanisms influencing BW may help 
elucidate later-life disease pathways and potentially lead to targetable and 
modifiable treatment strategies. Combined studies of various ‘omics’ data will 
help define links between the biological mechanisms affecting BW variation 
and later life disease and may even provide new insights for improved clinical 
management of in-utero development.

INFERENCE OF GENETIC ANCESTRY – 
APPLICATIONS AND CHALLENGES
Recent advances in genetics and genomics have brought forth new 
opportunities to study the ancestry composition of individuals and populations. 
Genetic ancestry testing has been applied in a variety of ways, including 
biomedical research [116], forensics [117], and genealogical research [118]. 
Knowledge of ancestry is also used for clinical decision-making, and 
pharmacogenomics [119] since ancestry is a potential risk factor for disease 
[120, 121]. Ancestry testing has also gained a foothold in the commercial genetics 
enterprise through direct-to-consumer (DTC) testing. DTC genetic testing offers 
an opportunity for individuals to learn about their athletic aptitude, ancestry, 
dating compatibility, health, nutrition, physical traits, wine preference, and a 
seemingly endless list of other personal attributes. Despite the popularity and 
excitement that health-related DTC genetic testing offers, ongoing concern 
has been expressed concerning ancestry testing initiatives [122-125].

From a research standpoint, anthropologists and population geneticists 
leverage genetic data and information in genetic databases to draw 
conclusions about population structure, history, and evolution. In this 
context, inferences have been made regarding human migratory events and 
differentiating selective pressures from demographic changes [32, 126-129]. 
Depending on the application, research-oriented ancestry testing usually 
makes ancestry inferences at the population level rather than the individual 
level, which is the basis of commercial ancestry testing. Consequently, ancestry 
inferences at the population level are inherently more robust to the imprecision 
and limitations associated with ancestry testing in individuals.

Genetic epidemiologists routinely employ some form of ancestry inference from 
genetic data for predominantly analytical reasons. Population stratification, 

the systematic differences in allele frequencies of (sub)populations can 
lead to confounding in association studies. Therefore, statistical biases 
related to population stratification need to be controlled for. In this context, 
principal component analysis (PCA) has been widely applied [50, 61, 130]. 
The expectation of PCA is that a small number of resulting coordinates (i.e., 
principal components) relate to the geographic origin of each individual 
for which highly-dimensional genetic data are supplied [131]. PCA has been 
firmly established in population genetics, given the remarkable genealogical 
interpretation of principal components [132]. Although commonly utilized, PCA 
is not without limitation. As one example, PCA will incorrectly ascribe a single 
origin that is intermediate of parental source populations for an admixed 
individual (i.e., offspring of parents from disparate populations). Drawbacks 
of PCA, along with recent denunciation of its misuse in population genetic 
studies [56], warrant the need for alternate ancestry estimation approaches, 
such as admixture estimation.

Inference of genetic ancestry from autosomal genetic data using admixture 
estimation strategies almost always relies on a model of discrete demes that 
individuals inherit proportions of their genome from. The demes are often called 
‘ancestral’ or ‘parental’ populations. Thus, the goal of the admixture model 
approach is to estimate individual admixture proportions for each ancestral 
population. Despite being more robust than PCA in dealing with admixture, 
these models also have intrinsic limitations. For example, not all ancestral 
populations may be observable since the proxy reference populations strictly 
define them. For instance, Yoruba samples are frequently used for inferring 
African American ancestry, even though most African Americans derive their 
ancestry from other (West) African populations [133, 134]. Thus, the current 
Yoruba proxy population may not be well representative of diverse African 
ancestry. In instances like this, a poor proxy would result in compensation of 
proportions by adding to another ancestral population. Another caveat is 
when ancestral populations are missing. The admixture estimation algorithms 
of commonly utilized software programs may skew the results and force 
proportions depending on the applied reference populations. Regardless of 
its limitations, admixture estimation has dramatically advanced the field of 
ancestry inference from genetic data resulting in numerous scientific works 
regarding population structure and history.

The relationship of genetic ancestry to individual and population health is 
still not well understood. Increasing efforts to apply ancestry-specific [121, 135] 
and trans-ancestry [136, 137] study designs is helping close this gap. However, 
the currently limited understanding of the ancestry and health connection 
can manifest in severe consequences. From a basic biological standpoint, the 
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extent to which disease risk is due to DNA sequence versus gene expression is 
not always apparent. Concerning DTC genetic testing, a customer may share 
the results with a healthcare provider and assume that the information is 
considered when receiving care. Going forward, the healthcare community 
must play an integral role in genetic ancestry inference since this practice may 
become more widespread given the increasing popularity of DTC ancestry 
testing. In short, it is clear that the relationships among genetic variation, 
genetic ancestry, ethnicity, and health are complex, highlighting an exciting 
area for investigation.

In summary, genetic ancestry inference requires enormous care both in 
commercial and research applications. Along with technical and analytical 
limitations, a host of social, ethical, and even psychological concerns on 
the individual and global level arise when considering the interpretation of 
ancestry testing results. From a commercial standpoint, variation exists in how 
the estimates are determined and presented to the customer. To operate in the 
customer’s best interest, additional policy and regulation have been proposed 
in this space [123], though lab certification and accreditation are still not 
required. In the academic research realm, accountability and rigor are equally 
as crucial for genetic ancestry estimation. The field of population genetics is 
evolving to standardize and improve upon terminology, methodologies, and 
communication of research conclusions based on ancestry testing. Though 
challenges surrounding ancestry inference continue to persist, assessment of 
genetic variation undoubtedly provides a window into human history.

FUTURE PERSPECTIVES
The fields of genetic epidemiology and population genetics are advancing 
knowledge of the human condition at an astounding rate. With each passing 
year, progressively more exciting developments and remarkable discoveries 
are put forth. The range of these findings is extensive, and the last year and 
a half have been no exception despite the havoc caused by the coronavirus 
outbreak. The incredible response by the scientific community, including our 
lab at the AIHG, has been nothing short of astonishing. I will never forget the 
opportunity to immediately impact our local community by providing COVID-
19 testing for the Avera Healthcare System and the state of South Dakota. Even 
with the chaos surrounding the coronavirus pandemic, many other fascinating 
findings, technological developments, and methodological improvements 
in the field of genetics have amounted. In what follows, I provide future 
perspectives broadly related to the work presented in this thesis.

TWINNING
Ongoing meta- and mega-analyses of different aspects of human twinning, 
especially DZ twinning, will continue to reveal insight into common genetic 
variation underlying this trait. Moving forward, increased sample sizes and 
proxy phenotypes, including mothers of DZ twins and DZ twins themselves, 
will augment the ability to identify genetic associations. The effects of current 
findings related to FSHB and SMAD3 have been proposed describing fluctuations 
in population twinning rates based on the number of risk alleles possessed by 
females [138]. However, these translations are population estimates and are 
not yet suited for prediction at the individual level. More extensive studies may 
facilitate these predictions in the future.

Rare and structural genetic variation associated with human twining also 
represents a promising area of investigation. Sequencing projects of mothers 
of DZ twins, particularly in large, carefully phenotyped pedigrees, may be a 
suitable approach for identifying rare variants associated with human DZ 
twinning. In this manner, the entire genomes of mothers of twins and potential 
carriers could be analyzed to uncover genetic variants that cannot be identified 
with the current microarray and imputation strategies. Larger scale sequencing 
studies, those extending beyond pedigrees, may further aid in the elucidation 
of rare alleles driving DZ twinning. If performed in diverse populations, we may 
uncover rare genomic sites or regions that impact the global variation in DZ 
twinning rates.

BIRTH WEIGHT
BW-oriented consortia, such as the Early Growth Genetics Consortium (http://
egg-consortium.org/), continue to expand and increase sample numbers 
for improved power for detection for genomic loci impacting early growth. 
I sincerely hope that twins will be incorporated into future gene-finding 
association studies, given the strong genetic correlations we reported in 
chapter 4. The addition of twins will drastically bolster sample sizes because 
of diligent genotyping and phenotyping efforts of twin registers from around 
the world. Although an obvious benefit for increasing statistical power, careful 
analytical decisions must be made to obtain reliable results. Examples include 
correcting for familial relatedness and accounting for apparent differences in 
BW between twins and singletons. I envision the optimal strategy consisting 
of separate GWAS in singletons and twins, which would then be combined 
for meta-analysis of P-values since effect size estimates will drastically vary 
between groups. An alternate option would be to standardize BW within each 
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group before meta-analysis. Regardless of the approach, careful consideration 
will be needed to properly account for the known BW differences between twins 
and singletons and the implications therein.

We continue to learn more about the maternal and fetal genetic effects 
influencing BW by employing clever and informative study designs. In addition 
to the strategies already implemented, it would be interesting to predict BW 
using polygenic scores (PGS) of both transmitted and untransmitted alleles 
from maternal and paternal lineages. In this way, direct genetic effects could 
be distinguished from maternal and paternal indirect genetic effects, of which 
the latter would be expected to be (close to) null. This analytical strategy would 
permit the estimation of environmentally mediated effects of PGS on BW.

In chapter 4, a lower effect of the PGS was observed for twins compared 
to singletons. This potentially indicates a form of sibling competition or 
interaction. Detection strategies for such competition/interaction have been 
applied to educational attainment, though no evidence was found to support 
this phenomenon [139]. Concerning BW, the genes of one (larger) twin could 
influence the ability of the co-twin to achieve its full genetic potential for growth. 
The larger twin thereby limits the space available for the development of the 
co-twin, consequently decreasing its BW. The result is dampened predictive 
power of the PGS in twins where this type of competition potentially occurs. 
Future studies using PGS predictions may expand on our initial findings of the 
possibility of sibling competition/interaction in terms of BW.

GENETIC ANCESTRY
The opportunities, challenges, and implications of genetic ancestry testing are 
apparent and continually changing. The importance of including ancestrally 
diverse cohorts in large-scale analyses has been made abundantly clear 
in genetics research. Historically, most genomic studies have examined 
individuals of European ancestry; however, recent findings from trans-
ancestry studies indicate that more association signals are discoverable 
when diverse populations are included. The ongoing disparity has resulted in 
a lack of sufficient data for genomics and health-related research. Therefore, 
it is imperative that studies include more diverse populations to improve our 
understanding of different traits and diseases, not just in specific populations 
but in general. The inclusion of globally diverse or comparatively under-studied 
populations will facilitate trans-ancestry comparisons that will produce 
relevant results worldwide.
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The work presented in this thesis broadly covers the genetics of twinning, 
genetic influences on birth weight in twins compared to singletons, and 
considerations of analytical strategies for genetically informed study designs. 
I first present an overview of the current understanding of the biology and 
genetics of the human twinning process, highlighting critical differences 
between monozygotic (MZ) and dizygotic (DZ) twins. Next, I provide a molecular 
genetic study of DZ twinning in a large pedigree to identify novel genetic 
associations. Then, I report on the use of data from twin-family cohorts to 
genetically compare worldwide populations. The extent to which populations 
are genetically homogenous or comparable is an essential consideration of 
genome-wide association studies (GWAS) and meta-analysis. In what follows, 
I detail the findings of a meta-analysis of GWAS of twin birth weight from eight 
global twin cohorts. In this study, I compared the genetic influences on birth 
weight in twins to those previously reported in singletons. In the final study, I 
evaluate genetic ancestry estimates in twins and their family members with 
routinely employed methods for inferring population structure in GWAS.

In what follows, I provide concise summaries for each main chapter of the 
thesis.

Chapter 2 summarizes the current understanding of the biology, epidemiology, 
genetics, and incidence of twins. In this chapter, the central theme was 
differentiating between the twin types, MZ and DZ, by characteristically defining 
each group. The key distinguishing feature between the types of twins is the 
mechanism of embryo formation. Whereas MZ twinning results from splitting 
a single fertilized ovum, DZ twinning arises when two independent ova are 
fertilized. In the remainder of the chapter, other hallmark characteristics of twins 
are described, including the variation of incidence rates and other influential 
factors known to affect the twinning process, particularly for DZ twins. Several 
factors influence the DZ twinning process, including maternal traits (age, height, 
weight, parity, family history of twinning) and the use of assisted reproductive 
technologies. Enhanced knowledge of the biological and genetic aspects 
underlying DZ twinning has been tremendously improved with advancements 
in molecular techniques. These developments enabled the recent identification 
of genetic factors robustly associated with DZ twinning, namely variation in the 
FSHB and SMAD3 genes. Despite the strong associations, our knowledge of the 
etiology of DZ twinning is not yet comprehensive, and even less is known about 
factors giving rise to MZ twins. Regardless, it is understood that there are many 
genetic and non-genetic factors contributing to the human twinning process. 
Efforts to characterize these influences are ongoing and will have important 
contributions in healthcare for improving fertility and predicting, managing, 
and improving the outcomes of twin pregnancies.

Chapter 3 follows up on the genetic findings related to DZ twinning presented 
in the previous chapter. This study aimed to identify rare and potentially 
novel genetic variants influencing the likelihood of a mother to conceive DZ 
twins. I leveraged genome-wide genotypic and sequence data from selected 
members of a sizable DZ-twinning pedigree to identify genomic regions 
shared by mothers of DZ twins. In a first step, I used nonparametric linkage 
analysis to locate trait-specific genes by demonstrating co-segregation of 
genetic markers and being a mother of DZ twins. Albeit modest, a region on 
chromosome 5 exhibited excess allele sharing amongst selected mothers 
(maximum LOD score 1.21, p=0.009), favoring the presence of linkage in this 
region. To pursue the linkage results further, I performed whole-genome 
sequencing on four of the pedigree’s most distantly affected mothers of 
DZ twins. With available genotype and sequence data, I used haplotype 
estimation strategies to identify large shared genomic segments possessed 
by affected mothers with hopes of discovering rare/novel variants harbored 
in these regions. The largest areas shared by the four mothers with whole-
genome sequence data were found to be on chromosomes 11, 1, 3, and 6. Within 
these regions, I propose to investigate further the variants identified through 
analysis of the sequence data. Functional consequence prediction of these 
variants may help uncover novel biological functions related to DZ twinning. It 
remains to be determined whether the shared regions and the genetic variants 
therein are specific to the mothers of the pedigree or possessed by all mothers 
of DZ twins more generally.

Chapter 4 focuses on designing and applying a DNA microarray, the Illumina 
Global Screening Array (GSA). The GSA was designed to provide reliable 
genotype calls in a high-throughput manner capable of fostering genetic 
studies of human disease, complex traits, and population genetics. Per 
individual, the GSA interrogates nearly 700,000 genetic loci, known as single 
nucleotide polymorphisms (SNPs). The array content contains a core backbone 
of genetic markers useful for imputation and thousands of other markers 
concerning human disease, drug metabolism, fertility, and twinning. Chapter 
4 provides a detailed description of the GSA content selection and subsequent 
bioinformatic validation steps. I used genetic data from the GSA to compare the 
genetic compositions of populations possessing twin registers that routinely 
contribute to large-scale genetic association studies. Samples were obtained 
from twin-family participants representing Australian, Dutch, and Midwestern 
American populations. Principal Component Analysis (PCA), where the top 
components reflect genetic ancestry, enabled the visualization of genetic 
similarity. Visual inspection of the PCA results revealed superimposition of 
population clusters, suggesting genetic similarity. The addition of genetic data 
from globally diverse populations, including Nigerian samples genotyped on 
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GSA, further augmented this finding by providing broad resolution comparisons. 
Measures of population differentiation were quantified with FST (ranging from 
0-1), where high values reflect a considerable degree of differentiation among 
populations. The analysis revealed very small FST between the three populations 
of interest, which were much less than the FST between each population and 
the Nigerian population. Together, the results suggest that Australian, Dutch, 
and Midwestern American populations have slight genetic differences but are 
genetically alike overall. The findings indicate that genetic data obtained from 
these populations can be combined for large-scale human genetic studies if 
proper analytical steps are employed. Overall, the GSA demonstrates excellent 
utility in providing robust genotype calls across many populations, pivotal to 
nearly all projects in the thesis.

Chapter 5 explores the genetic architecture of birth weight (BW) in twins to 
determine if twins can contribute to genome-wide association studies (GWAS) 
of BW, typically performed only with singletons. Here, the underlying question 
was whether the genetic factors responsible for differences in BW in singletons 
also explain variation in BW in twins. In this study, I addressed this question by 
first meta-analyzing the GWAS results performed in eight global twin cohorts, 
comprising 42,212 twin individuals. The meta-analysis effect size estimates 
were strongly correlated (Pearson’s r=0.66) with the effect sizes of 150 genetic 
variants recently found to be significantly associated with BW in singletons. This 
finding provided the first indication that the genetic profile of BW of twins and 
singletons may be similar despite known differences in BW between the groups. 
I followed up this finding by computing genome-wide genetic correlations to 
discern the degree of genetic overlap between traits. Robust positive genetic 
correlations (rg>0.9) were observed between the meta-analysis results of twin 
BW and previously published GWAS results of singleton BW. I also computed 
genetic correlations between BW in twins and a series of other health-related 
traits. The results were remarkably similar to previously reported correlations 
between the same traits and BW in singletons. In the last step, we utilized 
summary statistics from a discovery GWAS of BW in the UK Biobank to construct 
BW polygenic scores (PGS) in a Dutch target population. The target population 
consisted of singletons and twins participating in the Netherlands Twin Register. 
Using the same fraction of genetic markers captured by the optimal PGS, we 
found similar predictability of BW in twins and singletons. Taken together, 
the results of chapter 5 provide compelling evidence that the genetic profile 
underlying variation in BW is very similar between twins and singletons. The 
genetics of BW is critical to understand since BW is an important indicator of 
newborn health and survival. At the extremes, there are strong associations 
with adverse health outcomes later in life. Thus, ongoing efforts to identify 

genetic variants associated with BW will benefit from including twins through 
improved statistical power afforded by increased sample sizes.

Chapter 6 evaluates genetic ancestry inference in twins and family members. 
Estimating genetic ancestry is essential for population-based association 
studies to account for population heterogeneity and (sub)structure. I looked 
at two scenarios that may impact the results of genetic ancestry estimates. 
The first arises when family members participate in a study, and ancestry 
estimates differ for siblings. We hypothesized that this situation might mainly 
occur in ancestrally diverse or admixed families. The second scenario is when 
study participants have been genotyped across multiple different microarrays. 
To address these queries, I analyzed genome-wide SNP data of families 
participating in the Netherlands Twin Register. Family members included 
independently genotyped MZ and DZ twins, siblings, and parents, constituting 
21,117 unique individuals belonging to 6,361 unique families. Participants were 
genotyped on one of three genotyping platforms: Affymetrix 6.0, Affymetrix 
Axiom, and Illumina GSA. A modest number of individuals were genotyped 
on at least two arrays (N=751), 35 of which genotyped on all three arrays, 
facilitating cross-platform comparisons. Estimates of genetic ancestry were 
determined from model-based (ADMIXTURE software) and algorithmic (PCA) 
approaches. Ancestry estimates were evaluated by comparing Euclidean 
distances, representing quantitative measures that summarize each method’s 
ancestry estimates. Euclidean distances between pairs of family members 
closely resembled the degree of genetic relatedness between them, even in 
more diverse families. That is, the more closely two individuals are related, the 
smaller the Euclidean distances between them. However, the magnitude of the 
ancestry differences was larger when calculated with ADMIXTURE software. The 
differences were also larger for Affymetrix arrays (Affymetrix 6.0 and Axiom) 
than for the Illumina GSA. Across all platforms, ancestry estimates of individuals 
genotyped on multiple microarrays were similar. Slightly larger differences 
were found between Affymetrix and Illumina arrays than those with genotypes 
from Affymetrix arrays only. The differences can, in part, be attributed to the 
platform-specific SNPs used as input for PCA or ADMIXTURE software. Overall, 
the results of this study are promising and suggest that reliable estimates of 
ancestry can be obtained with PCA or ADMIXTURE software and that estimates 
in families are robust, even in diverse families. The findings from this study may 
have implications in the rapidly progressing area of trans-ancestry association 
studies.

Chapter 7 provides a thorough summary of each proceeding chapter and a 
broad discussion of the topics therein. Following the chapter-specific outlines, 
I overview current strategies and findings related to gene-finding for the 
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human twinning process and how these developments are guiding future 
studies. A discussion of recent results related to BW genetics is then provided, 
emphasizing epigenetic processes that may help explain the link between 
BW extremes and later-life disease. Here, the underlying theme is expanding 
research to include combined ‘omics’ approaches, which will help elucidate 
additional biological mechanisms involved in human health and disease. Then, 
I put forth ideas related to the application, challenges, and implications of 
genetic ancestry testing from commercial and research perspectives. Lastly, 
I provide my take on future research opportunities related to twinning, birth 
weight, and genetic ancestry. I specifically highlight the need to include cohorts 
of diverse ancestry and under-studied populations to provide novel insights 
into different diseases for specific populations and in general.
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