
R E S E A R CH AR T I C L E

Association between structural brain network efficiency and
intelligence increases during adolescence

Marinka M.G. Koenis1 | Rachel M. Brouwer1 | Suzanne C. Swagerman2 |

Inge L.C. van Soelen1,2 | Dorret I. Boomsma2 | Hilleke E. Hulshoff Pol1

1Brain Center Rudolf Magnus, Department

of Psychiatry, University Medical Center

Utrecht, Utrecht, The Netherlands

2Department of Biological Psychology, Vrije

Universiteit Amsterdam, Amsterdam, the

Netherlands

Correspondence

MMG Koenis, Brain Center Rudolf Magnus,

University Medical Center Utrecht,

Department of Psychiatry, HP A.01.126,

Heidelberglaan 100, 3584 CX, The

Netherlands.

Email: marinka.koenis@live.com

Funding information

Netherlands Organization for Scientific

Research, Grant/Award Numbers:

NWO433-09-220, NWO 51.02.060,

668.772, NWOMagW480-04-004, NWO/

SPI 56-464-14192; European Research

Council, Grant/Award Number: ERC-

230374; High Potential Grant from Utrecht

University

Abstract
Adolescence represents an important period during which considerable changes in the brain take

place, including increases in integrity of white matter bundles, and increasing efficiency of the

structural brain network. A more efficient structural brain network has been associated with higher

intelligence. Whether development of structural network efficiency is related to intelligence, and if

so to which extent genetic and environmental influences are implicated in their association, is not

known. In a longitudinal study, we mapped FA-weighted efficiency of the structural brain network

in 310 twins and their older siblings at an average age of 10, 13, and 18 years. Age-trajectories of

global and local FA-weighted efficiency were related to intelligence. Contributions of genes and

environment were estimated using structural equation modeling. Efficiency of brain networks

changed in a non-linear fashion from childhood to early adulthood, increasing between 10 and 13

years, and leveling off between 13 and 18 years. Adolescents with higher intelligence had higher

global and local network efficiency. The dependency of FA-weighted global efficiency on IQ

increased during adolescence (rph50.007 at age 10; 0.23 at age 18). Global efficiency was signifi-

cantly heritable during adolescence (47% at age 18). The genetic correlation between intelligence

and global and local efficiency increased with age; genes explained up to 87% of the observed cor-

relation at age 18. In conclusion, the brain’s structural network differentiates depending on IQ

during adolescence, and is under increasing influence of genes that are also associated with intelli-

gence as it develops from late childhood to adulthood.
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1 | INTRODUCTION

Adolescence represents a period of considerable brain development.

During adolescence the cortex becomes thinner (Brown et al., 2012;

Ducharme et al., 2012; Gogtay et al., 2004; Shaw et al., 2008; van Soe-

len et al., 2012a; Sowell, 2004) while its connecting white matter fibers

increase in volume (Brouwer et al., 2012; Paus, 2010), which they con-

tinue into young adulthood (Lebel and Beaulieu, 2011; Peters et al.,

2014; Schmithorst and Yuan, 2010; Simmonds, Hallquist, Asato, &

Luna, 2014). Together, these white matter fibers form structural brain

networks with an efficient organization that becomes increasingly

more efficiently organized during development (Koenis et al., 2015).

Determining the process of development of the brain network during

adolescence is an important step in understanding developmental dis-

orders that have their onset during this period of rapid changes (Paus,

Keshavan, & Giedd, 2008). Because white matter network develop-

ment and cognitive development go hand in hand (Koenis et al., 2015)

and brain and experience may shape each other (Park and Friston,

2013; Paus, 2013), it is of importance to study both brain and cognitive

development and their associations during adolescence.

Structural brain efficiency has been associated with cognitive func-

tioning. Adults with a higher intelligence have a more efficient func-

tional brain network (van den Heuvel, Stam, Kahn, & Hulshoff Pol,

2009; Langer et al., 2012) and structural white matter network

(Bohlken et al., 2016b; Chiang et al., 2009; Li et al., 2009; Wen et al.,
This study was carried out at University Medical Center Utrecht and VU
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2011). Already in childhood (Kim et al., 2016) and early adolescence

(Koenis et al., 2015; Schmithorst, Wilkes, Dardzinski, & Holland, 2005;

Tamnes et al., 2011; Wang et al., 2012), positive associations between

intelligence and structure of the white matter seem to be present, at

least to some extent. How does the brain develop during this period of

major maturational changes in cognition and social environment (Blake-

more, Burnett, & Dahl, 2010; Luna, Marek, Larsen, Tervo-Clemmens, &

Chahal, 2015)? A longitudinal setup with measurements from late child-

hood and throughout adolescence allows us to study this question. By

including twins and their siblings, the influences of genes and environ-

ment on these developmental changes can be assessed over time.

Recently we showed in a longitudinal twin study with measure-

ments from late childhood to early adolescence that the FA-weighted

structural brain network becomes more efficient between the ages of

10 and 13, and that changes in intelligence were related to changes in

structural efficiency (Koenis et al., 2015). We now rescanned these

twins and their siblings for a third time at age 17 (twins) and age 15–

23 years (siblings), which allowed us to examine the nonlinear develop-

ment of FA-based network efficiency and the possible relation

between intelligence and this development. Previous studies showed

nonlinear developmental patterns of FA (Lebel and Beaulieu, 2011;

Peters et al., 2014; Schmithorst and Yuan, 2010; Simmonds et al.,

2014) and network characteristics (Dennis et al. 2013; Zhao et al.,

2015). One study found that the development of white matter integrity

is related to intelligence (Tamnes et al., 2010) and in our previous work

we observed a correlation between change in IQ and change in net-

work efficiency. In addition, intelligence is related to trajectories of

cortical thickness (Brans et al., 2010; Brouwer et al., 2014; Karama

et al., 2014; Shaw et al., 2006; Schnack et al., 2015). Given the relation-

ship between IQ and the development of several structural brain meas-

ures, this lead us to investigate the association between IQ and the

developmental trajectory of network efficiency, hypothesizing that not

only gray matter but also white matter microstructure shows a devel-

opmental trajectory that is associated with IQ level.

Because we found that FA-weighted network efficiency was

related to IQ whereas the streamlines-based network efficiency was

not, we chose to examine the relation between IQ and FA-based net-

work efficiency in this study. Thus, here we report on developmental

patterns of white matter efficiency up to early adulthood, on the asso-

ciation between white matter network efficiency and intelligence, and

on the extent to which genetic and the environmental factors influence

this development of structural brain efficiency.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 226 twins (98 monozygotic subjects (48 boys and 50 girls),

128 dizygotic subjects (66 boys and 62 girls)) and 103 of their older

siblings and 1 younger sibling (44 boys and 60 girls) were included in

the BrainSCALE cohort (van Soelen et al., 2012b). The sample was

recruited from the Netherlands Twin Register (van Beijsterveldt et al.,

2013). At the first wave the mean (SD) age of the twins was 9.2 (0.24)

years; at the second wave 12.2 (0.4) years; at the third wave 17.2 (0.3)

years. The age difference between the twins and their siblings was 2.7

years on average. Interval between waves one and two was 2.93 (0.23)

years, and between waves two and three, 5.02 (0.32) years (Figure 1

and Table 1). From 20 participants, no DTI scan with sufficient quality

was collected. In total, 699 scans were collected from 310 participants:

51 participants had 1 scan; 129 participants had 2 scans; 130 partici-

pants had 3 scans. Zygosity of the twins was confirmed by genome-

wide SNP data. Written informed consents were obtained from all sub-

jects and their parents. The Dutch Central Committee on Research

involving Human Subjects (CCMO) approved the study.

2.2 | Cognition

Intelligence was assessed based on the intelligence quotient (IQ) as

measured with the Wechsler Intelligence Scale for Children III (WISC-

III, Dutch version, Wechsler et al., 2002) at measurement 1 and 2, and

with the Wechsler Adult Intelligence Scale III (WAIS-III, Dutch version)

at measurement 3. At the first measurement, all subtasks of the WISC

were included. At the second measurement, six subtasks of the WISC-

III were administered: four verbal subtests (similarities, arithmetic,

vocabulary, and digit span), and two nonverbal subtests (picture

FIGURE 1 Ages of the individual participants from the twin families
and their older singleton sibling at the three measurements.
Individuals who have participated multiple times are connected by
lines [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Demographics

Wave 1 Wave 2 Wave 3

N (MZ/DZ/sibs) 285 (90/115/80) 179 (61/67/51) 235 (71/97/67)

Age (range) 10.0 [9.0–15.0] 13.0 [9.8–17.9] 18.0 [14.9–22.9]

IQ (sd) 101.9 (14.7) 101.7 (15.3) 103.8 (12.7)
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completion and block design). At the third measurement, four subtasks

of the WAIS-III were administered: similarities, vocabulary, block

design, and matrix reasoning. These tasks are similar to those in the

WASI (Wechsler Abbreviated Scale of Intelligence, Wechsler 2011),

which is a validated short version of the WAIS. The tasks in the WASI

were selected as those with the highest factor loadings on general

intelligence (Wechsler 2011). The IQs of the different measurements

were highly correlated (0.77 between M1 and M2, 0.74 between M2

and M3). These correlations are of the same magnitude as test-retest

correlations with a similar time interval (Bartels, Rietveld, Van Baal, &

Boomsma, 2002; Waber, Forbes, Almli, & Blood, 2012). Moreover, the

genetic correlations between the measurements were 0.99 (95% Confi-

dence Interval: 0.79–1.00) and 1.00(0.82–1.00), respectively, suggest-

ing all IQ tests were driven by the same construct. Raw test scores on

subtests from the WISC (Nederlands Instituut van Psychologen Dien-

stencentrum, 2003) or WAIS (Wechsler, 2004) were transformed into

standardized scale scores against age-specific norms, leading to a total

IQ score. For the second and third measurement, a correction for the

number of excluded subtests was applied (M2: 4 out of 5 verbal and 2

out of 5 nonverbal tests; M3: 2 out of 6 verbal and 2 out of 5 nonver-

bal tests) to obtain a total IQ score. For example for M3, the sum of

the standardized scores of the verbal tests was multiplied by 3, the

sum of the standardized scores of the nonverbal tests was multiplied

by 2.5. The sum of these scores then corresponded to the full scale IQ

score in the look up table.

2.3 | MRI acquisition

All MRI brain scans were acquired at the University Medical Center

Utrecht on a 1.5 Tesla Philips Achieva scanner (Philips, Best, The Neth-

erlands) using the same protocol at all waves (Brouwer et al., 2012).

For anatomy, a three-dimensional T1-weighted scan (Spoiled Gradient

Echo; TE54.6 ms; TR530 ms; flip angle 308; 160–180 contiguous

coronal slices of 1.2 mm; in-plane resolution 1 3 1 mm2; acquisition

matrix 256 3 256) of the whole head was made of each individual. For

white matter fiber tracking two Single Shot Echo Planar Imaging (SS-

EPI) DWI scans were acquired (32 diffusion-weighted volumes with dif-

fusion weighting b51000 s/mm2 and 32 noncollinear diffusion gradi-

ent directions; 8 diffusion-unweighted (b50 s/mm2) scans; TE588

ms; TR59822 ms; parallel imaging SENSE factor 2.5; flip angle 908; 60

transverse slices of 2.5 mm, no gap, FOV 240 mm; 128 3 128 recon-

struction matrix; 96 3 96 acquisition matrix, no cardiac gating) for opti-

mal signal-to-noise ratio.

2.4 | MRI processing

White matter pathways, referred to as fibers or tracts, were recon-

structed using streamline tractography. First, the two DWI measure-

ments were concatenated—each scan in gradient direction being

present twice, thereby reducing noise. Data were corrected for possible

geometric distortions by estimating parameters characterizing subject

movement and distortion, minimizing residual error when fitting data to

the diffusion tensor model (Andersson and Skare, 2002). Next, the

diffusion pattern in each voxel was fitted to a tensor matrix using a

robust M-estimator (Chang, Jones, & Pierpaoli, 2005), providing three

eigenvectors (representing the three principal directions of diffusion)

and corresponding eigenvalues. Fractional anisotropy (FA) values were

calculated in each voxel as a measure of microstructural directionality

from the eigenvalues (Basser and Pierpaoli, 1996). Then, the b0 scan

was registered to the T1-weighted scan using a rigid transformation

(no scaling), based on optimization of a mutual information metric

(Maes, Collignon, Vandermeulen, Marchal, & Suetens, 1997), and the

T1-weighted images were nonlinearly warped into model space per

measurement up to a scale of 1 mm (Collins, Holmes, Peters, & Evans,

1995), and then to the model of the second measurement. All possible

fiber tracts between two regions were reconstructed in individual

space using the diffusion tensor images with an in-house implementa-

tion of the fiber assignment by a continuous tracking (FACT) algorithm

(Mori and Van Zijl, 2002) with 8 seed points per voxel, FA threshold of

0.1, and maximal angle of 458.

Further computations were done in model space. Most available

model brains are based on adults, which is not ideal for our cohort. We

therefore created a study specific model brain of all the scans in the

second wave, using methodology described in Peper et al. (2009). Indi-

vidual brains were warped to the model brain using an iterative proce-

dure with increasing level of precision using the ANIMAL software

(Collins et al., 1995). The fiber tracts were warped into model space,

using the concatenation of the transformations between the b0 scan

and T1 scan, and between the T1 scan and model space. For network

construction, the AAL template (Tzourio-Mazoyer et al., 2002) was

warped onto the model brain, segmenting the cortex in a parcellation

map consisting of 90 regions.

2.5 | Construction of structural brain networks

A network consists of a set of nodes and connections (edges) that can

be mathematically expressed as a graph with a collection of nodes and

a collection of edges between the nodes (Bullmore and Bassett, 2011).

Whole brain networks were created based on the 90 AAL brain

regions. Structural FA-weighted brain networks were created for each

individual, one for each measurement when available. Each individual

network included bundles that were present in at least 60% of all par-

ticipants in each wave (de Reus and van den Heuvel, 2013): Network

nodes i and j were defined as structurally connected by an edge when

from the total collection of reconstructed streamlines, in at least 60%

of the participants of Wave 1, Wave 2, and Wave 3 at least one fiber

connected region i and j. For each edge, each subject and each wave,

weight wij was defined by the mean FA value of the traced fibers

between region i and j.

2.6 | Graph analysis

Mathematical representations of the structural connectivity of the

human brain network have revealed that the brain is organized accord-

ing to a highly efficient small-world topology combining a high level of

segregation (local efficiency) with a high level of global integration
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(global efficiency) (Achard and Bullmore, 2007). Global efficiency is a

network attribute that quantifies how easy information can be

exchanged over the network, providing information on the communica-

tion efficiency of a network as a whole. Local efficiency reflects how

well information can travel in the direct neighborhood of a node, and is

often interpreted as a metric of the local information processing

capacity of a network (Bullmore and Sporns, 2012; van den Heuvel and

Hulshoff Pol, 2010). To measure changes in efficiency, we computed

global and local efficiency in the AAL regions for each individual at

each measurement using the Brain Connectivity Toolbox (Rubinov and

Sporns, 2010; http://www.brain-connectivity-toolbox.net). Figures

were created with the BrainNet Viewer (Xia, Wang, & He, 2013).

2.7 | Statistical analyses

Structural equation modeling, implemented in the OpenMx package

(Boker et al., 2011) in R (R Core Team, 2014), was used in all analyses

to account for dependency (both familial and temporal) of the data and

to estimate the relative influences of genes and environment. In a first

step, the best fitting age-trajectory of global and local efficiency was

determined as the model with the lowest Akaike information criterion

(AIC): we entered efficiency data up to three measurements for each

subject in a saturated model, modeling a regression of age on network

measures, while allowing for nonzero covariances between measure-

ments and between members of twin and twin-sib pairs. As the upper

level of complexity was clear given the age-distribution of the data, we

subsequently fitted a cubic, quadratic, linear, and constant age-model,

with age entered as continuous measure, for each network measure in

a top–down fashion. Once the best-fitting model for each network

measure was determined, we proceeded in two ways:

(1) Based on the best-fitting age model (cubic, quadratic, linear, or

constant), we tested whether a model including regression terms for IQ

fitted the data better than a model that included only regression terms

for age. Nested models can be compared by computing minus twice

the log-likelihoods of these models, which is distributed as a chi-square

distribution, with n degrees of freedom, if n parameters are fixed to

zero in the submodel. Thus, in the equation below, we tested whether

a model in which b2, b3, b5, and b7 were constrained to zero fitted

worse than a model in which they were freely estimated (p<0.05

based on the differences between the 22 log likelihoods, with 4

degrees of freedom in the cubic model).

Efficiency� c1b1Age1b2IQ1b3Age � IQ1b4Age
21b5Age

2

� IQ1b6Age
31b7Age

3 � IQ1E

(2) We computed residuals of the network measures by taking out

the effect of age based on the best fitting model determined above.

The residuals were subsequently modeled in a 6-variate genetic model,

combining the network data and IQ per wave (for details please see

the next paragraphs). This model allows us to simultaneously estimate

(a) (genetic) correlations between network measures and IQ at each of

the three waves; (b) heritability of network measures at the three

waves to investigate possible quantitative changing influences of

genetic factors explaining individual differences over time; (c) the

genetic correlations between network measures at Waves 1 and 2, and

between Waves 2 and 3, to investigate qualitative genetic differences

influencing the network throughout development.

2.8 | Genetic modeling of twin and sib data

Relative influences of genetic and environmental factors were exam-

ined in an extended twin design by comparing within-pair correlations

between monozygotic (MZ) and dizygotic (DZ) twins/twin sibling pairs.

Differences between these correlations may arise because monozy-

gotic twins share (almost) 100% of their genetic makeup and twin-

sibling pairs, like dizygotic pairs, share on average 50% of their segre-

gating genes. When an MZ correlation is twice as high as a DZ correla-

tion, this indicates that familial resemblance is largely accounted for by

genetic factors (see Boomsma, Busjahn, & Peltonen, 2002 for an over-

view of twin research, and see Falconer and Mackay, 1992; Posthuma

et al., 2003 for a more detailed description). In addition to genetic fac-

tors, resemblance between twins and sibs can arise from common envi-

ronmental factors, which comprises those environmental factors that

induce similarity in children growing up in the same family. The pres-

ence of common environmental factors is suggested when correlations

between DZ twins and twins/sibs are larger than half the MZ correla-

tion. When the MZ correlations are more than twice the DZ/sib corre-

lations, there is a suggestion for nonadditive genetic influences (e.g.,

epistasis or dominance). Unique environmental influences are not

shared with other family members and also contain the measurement

error. In a SEM model for MZ and DZ data, the total variance of a trait

(V) generally can be split into additive genetic variance (A), unique envi-

ronmental variance (E), and either nonadditive genetic variance (D) or

common environmental variance (C). In a twin-sibling design, a model

including both C and D are not identifiable and a choice for C or D is

made after inspection of the pattern of the twin correlations. The pro-

portion of the total variance that can be attributed to genetic or

environmental factors gives estimates of (univariate) heritability (A/

V5 h2), broad sense heritability ((A1D)/V5 h21 d2), common environ-

mental influences (C/V5 c2), and unique environmental influence

(E/V5 e2).

The same rationale as described for the univariate case can be

applied to multivariate data. If a correlation exists between two varia-

bles, the cross-trait cross-twin/sibling correlations give an indication

whether the same genes, or (shared) environment is responsible for the

association. A genetic correlation rg between two variables is defined

as the (broad) genetic covariance between two traits, standardized by

the standard deviations of the two traits attributable to the genetic

components (for details see Koenis et al., 2013 and formulas below).

Because a genetic correlation does not take the heritability of the traits

into account, one can also compute the rph-g which is defined as the

(broad) genetic covariance between two traits, divided by the square

roots of the variances for each trait (Toulopoulou et al., 2007 and for-

mulas below). rph-g can be interpreted as the correlation that would be

observed if only genetic factors are taken into account. The environ-

mental correlations re and rph-e are defined similarly.
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2.9 | Genetic analyses

For each network measure, we fitted a 6-variate model to the data

including the three network measures (one at each wave) and IQ at

each wave. Network metric was either global efficiency or local effi-

ciency for each of the 90 brain regions. Based on our previous work,

we fitted a model that allowed for additive and nonadditive genetic

effects and unique environment for the network measures (Koenis

et al., 2015) and additive genetic effects, and common and unique envi-

ronment for mean IQ (van Soelen et al., 2011) (Figure 2). Following the

path tracing rules, a variance is modeled as the sum of squares of paths

connecting to a trait. For example, the variance of the network mea-

sure at wave 1 equals V15 (a211 1 d211 1 e211). Similarly, the variance of

IQ at wave 1 equals V45 (a214 1 a224 1 a234 1 a244 1 c244 1 e214 1 e224 1

e234 1 e244) . Phenotypic correlations between IQ and network measures

at e.g. wave 1 are defined as (a11 3 a411 e11 3 e41)/(�V1 3 �V4). Sig-

nificance of this correlation was determined by constraining this quan-

tity to zero, computing the 22 log likelihood difference which is

distributed as a chi-square distribution with 1 df. Similarly, rph-g and

rph-e in this model are equal to (a11 3 a41)/(�V1 3 �V4) and (e11 3 e41)/

(�Vr1 3 �Vr4), respectively, and can be tested likewise. A similar

approach was used to investigate (genetic) correlations over time. As

an example, the genetic correlation rg between network measures at

Wave 1 and Wave 2 is defined as (a11 3 a211 d113 d21)/(�(a211 1 d2Þ11
3 �(a221 1 d221 1 a222 1 d222)). Broad heritability of network measures is

defined as proportion of the additive and nonadditive genetic variance

of the total variance. Hence broad heritability is modeled as

(a211 1 d211)/(a
2
11 1 d211 1 e211) for network measures at Wave 1, and as

(a221 1 a222 1 d221 1 d222)/(a
2
21 1 a222 1 d221 1 d222 1 e221 1 e222) for Wave 2

and similarly for Wave 3. For IQ measures, heritability at Wave 1 was

defined as (a241 1 a242 1 a243 1 a244)/(a
2
41 a242 1 a243 1 a244 1 c244 1 e241 1

e222 1 e243 1 e244). Significance of the variance components h21 d2 for

network measures and h2 for IQ were determined through 95% confi-

dence intervals.

Network metric was either global efficiency or local efficiency for

each of the 90 brain regions. When reporting results on local efficiency

of the 90 regions, we used false discovery rate (FDR) corrections to

control the expected proportion of discoveries that are false (Benjamini

et al., 2010). The FDR was set to 5%. FDR corrections were done in R

using p.adjust from the stat package.

2.10 | Post-hoc analyses

Because the IQ tests were different at each measurement, we investi-

gated in a post-hoc analysis whether that influenced our results. We

recomputed the correlations between local efficiency and IQ using (a) a

mean IQ derived by averaging all available IQ measures of an individual

and (b) the full-scale IQ score acquired at wave 1.

In our previous work, we found that changes in IQ are related to

changes in FA-based local efficiency between the age of 10 and 13

years (Koenis et al., 2015). Therefore, in a post-hoc analysis, we

FIGURE 2 Six-variate model to which the data were fitted. For simplicity, only the diagram for Twin 1 is shown. The additive genetic
components A1 to A6 of Twin 1 are connected to those of Twin 2 with a correlation of 1 in MZ twins and 0.5 in DZ twins. The
nonadditive genetic components D1 to D3 of Twin 1 are connected to those of Twin 2 with a correlation of 1 in MZ twins and 0.25 in DZ
twins. The common environmental components C4 to C6 of Twin 1 are connected to those of Twin 2 with a correlation of 1 by definition
for both MZ and DZ twins. For i in {1,6}, Ai represents the additive genetic factor acting on trait i. Di represents the dominant genetic factor

acting on trait i. Similarly, Ci represents the common environmental factor acting on trait i and Ei represents the unique environmental
factor acting on trait i. The additive and dominant genetic effects were combined to compute broad heritability of the individual traits as
(a211 1 d211)/(a

2
11 1 d211 1 e211) for network measure at Wave 1 and (a221 1 d221 1 a222 1 d222)/(a

2
21 1 d221 1 e221 1 a222 1 d222 1e222) for network

measure at Wave 2. A phenotypic correlation between IQ and network measures at, for example, Wave 1 was defined as (a11 3 a411 e11
3 e41)/�(a211 1 d211 1 e211) 3 �(a214 1 a224 1 a234 1 a244 1 c244 1 e214 1 e224 1 e234 1 e244). Furthermore, a (broad sense) genetic correlation between the
broad sense genetic factors was computed as (a11 3 a211 d11 3 d21)/(�(a211 1 d211) 3 �(a221 1 d221 1 a222 1 d222)
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investigated whether change in IQ and change in local efficiency were

related between the ages of 13 and 18 years.

As another post-hoc analysis, we tested whether the developmen-

tal pattern of the structural brain network was different for boys and

girls. Subsequently, we tested whether the correlations between effi-

ciency measures and IQ were different in boys and girls, by testing a

genetic model that allows for qualitative sex differences. In such a

model, the covariance between members of opposite-sex twin and

twin-sibling pairs that is attributed to additive (or dominant) genetic

factors is not assumed to be equal to 0.5 (0.25 for dominant factors),

but estimated from the data. Sex differences in additive and dominant

genetic influences on the covariance were tested in separate models.

Quantitative sex effects were tested in a model in which the genetic

factors influencing network measures in boys and girls were the same,

but the path loadings (i.e., heritabilities) were allowed to be different.

3 | RESULTS

3.1 | Efficiency of adolescent brain networks develops

in a non-linear pattern

FA-based global efficiency followed a cubic pattern (better fit com-

pared to lower degree polynomial functions; AIC cubic54162; AIC

quadratic54173) with age, characterized by an increase in efficiency

from age 10 to around age 13, followed by a period of leveling off until

around age 18 (Figure 3). On a local level, most regions showed this

cubic pattern, although for some regions a quadratic or linear trajectory

fitted the data better (Figure 4 and Supporting Information, Figure S1).

Visually, regional differences in developmental trajectories were mostly

observed between the ages of 13 and 18, where FA-based local effi-

ciency either decreased or remained stable: the decrease was most

prominent in medial frontal areas; a milder decrease in efficiency was

found in lateral frontal and subcortical areas, while decrease was mini-

mal or absent in temporal, parietal and occipital areas (Figure 4 and

Supporting Information, Figure S1).

3.2 | Adolescent brains differentiate in relation to IQ

A model of the developmental trajectory of global efficiency which

included IQ regression terms fitted the data better than a model with

only age regression terms (p50.03). More specifically, we found that a

higher IQ was associated with higher and later peak of efficiency

whereas an average and lower IQ was associated with a decline in

global efficiency around the age of 14 (Figure 5a). A significant influ-

ence of IQ was also seen for local efficiency in numerous regions

throughout the brain (31 regions p<0.05; 23 regions FDR corrected)

(Figure 5b).

3.3 | Correlations between IQ and efficiency emerge

during adolescence

Over time, the association between IQ and global and local FA-

weighted network efficiency increased significantly (Figure 6): A model

which allowed free estimations of phenotypic correlations between

efficiency and IQ fitted better than a model which constrained the cor-

relations to be equal across measurements (global efficiency p50.03;

local efficiency in 33 regions, p<0.05; 11 regions reached FDR cor-

rected significance). More specifically, at age 10, efficiency of the struc-

tural network was not significantly correlated with IQ (global efficiency:

rph50.007; p50.92). At age 13, IQ was significantly correlated with

global efficiency (rph50.15, p50.04) and this correlation was even

higher at age 18 (rph50.23, p50.001).

At the local level, there were three regions with a significant asso-

ciation between local efficiency and IQ at age 9 (rph50.12–0.16,

p<0.05). At age 13, local efficiency was associated with IQ in 40

regions of the brain (mean local efficiency rph50.16, p50.03; region-

ally in 40 regions up to rph50.20, p50.005) but these correlations did

not survive FDR-corrected significance. At age 18, FDR corrected sig-

nificant correlations between local efficiency and IQ were present in

80 regions (mean local efficiency: rph50.24, p50.0005, regionally in

80 regions, up to r50.28, p<0.0001; see Figure 6a and Supporting

Information, Table SI).

Across measurements, the correlations between global efficiency

and IQ were partly driven by genes (Figure 6b). The relative influence

of genes implicated in the association between intelligence and FA-

weighted global efficiency increased significantly over time: a model

which constrained the genetic part of the phenotypic correlation (rph-g)

to be equal across all measurements fitted worse than a model which

allowed the correlation to be fitted freely (global efficiency: p50.04).

Investigating the three waves separately, rph-g between global effi-

ciency and IQ was not significantly different from zero at the first wave

(rph-g50.02, p50.76), but it was at waves 2 and 3 (wave 2: rph-

g50.25, p50.004; wave 3: rph-g50.20, p50.016), to an equal extent

(rph-g could be set equal at wave 2 and 3, p50.62). In addition, in

FIGURE 3 Development of FA-weighted global efficiency during
adolescence [Color figure can be viewed at wileyonlinelibrary.com]
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wave 2, around the age of 13, but not in wave 3 (around age 18) there

was a unique environmental influence that partly annulled the genetic

association between FA-weighted global efficiency and IQ (rph-

e520.10; p50.04; Figure 6b).

Positive contributions of genes to the correlations between IQ and

FA-weighted local efficiency were found at ages 13 and 18 (age 13: 74

regions, p<0.05 FDR corrected; age 18: 64 regions at p<0.05, of

which 13 regions reached FDR corrected significance; Supporting

Information, Figure S2). The same pattern of an increase in the genetic

contribution to the correlation between local efficiency and IQ from

age 10 to age 13 (rph-g is not allowed to be equal across measure-

ments; in 34 regions p<0.05 uncorrected, of which 6 regions reached

FDR corrected significance) and then a stable positive rph-g to age 18

(rph-g can be set equal in all 90 regions, p>0.06 uncorrected) was seen

throughout the brain. Similar to the correlation between IQ and global

efficiency, locally, a negative unique-environmental correlation

between IQ and FA-weighted local efficiency was found at age 13,

throughout the brain in 30 regions (rph-e up to 20.16, p50.0004

uncorrected, see Supporting Information, Figure S2).

3.4 | Genetic influences on structural network

efficiency and IQ

Broad heritability of FA-weighted global efficiency was 39% (95% CI:

14–59%), 20 (5–43)%, and 43 (19–62)% for ages 10, 13, and 18,

respectively (Figure 7a). Broad heritability did not significantly differ at

FIGURE 4 Development of FA-weighted local efficiency during adolescence. The derivatives of the best fit function are displayed as
change per year. Most regions followed a cubic developmental pattern. A quadratic pattern was found for: right inferior orbitofronal gyrus,
left and right calcarine sulcus, left cuneus, right superior occipital gyrus, left inferior occipital gyrus, left angular gyrus, and right thalamus. A
linear fit was found for right pars opercularis and triangularis, and left lingual gyrus [Color figure can be viewed at wileyonlinelibrary.com]
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the respective ages for global and local efficiency (Figure 7b; Support-

ing Information, Table SII). Heritability of IQ at age 10 was estimated at

61% (95% CI: 40–79); at age 13 this was 65% (95% CI: 45–80%); and

heritability of IQ at age 18 was estimated at 40% (95% CI: 22–67%).

When, as according to the literature, an AE model was fitted to esti-

mate heritability of IQ at age 18, heritability was estimated at 79%

(68–86%). This is comparable to Swagerman et al. (2016), who esti-

mated IQ in the twins only, in which case, C can be dropped from the

model. In data from the twins and the siblings, a model without C fits

worse than the full ACE model (p50.02).

A stable genetic factor influenced global efficiency at waves 1 and

2 (rg50.78 (0.09–0.98)). A model where rg was constrained to be zero

fitted worse than a model that allowed rg to be estimated freely

(p50.03). The same was found for the genetic correlation between

global efficiency at Waves 2 and 3 (rg50.85 (0.25–1.00), p50.008).

For local efficiency, 48 regions were partly influenced by the same

genetic factor at both wave 1 and 2 (p<0.05 uncorrected, 40 regions

FDR-corrected, see Supporting Information, Table SII). For Waves 2

and 3, 47 regions were found to be influenced by the same genetic fac-

tor (p<0.05, uncorrected; 5 regions were significant at p <0.05, FDR-

FIGURE 5 Development of efficiency depends in part on intelligence. (a) Global and (b) local FA-weighted efficiency as a function of age
and IQ. (a) Estimated age trajectories of global efficiency and its relationship with IQ. (b) Regions where IQ had a significant influence on

the age trajectory of local efficiency (FDR corrected; in yellow, purple, and blue). Sizes of the spheres reflect relative p value (12FDR-cor-
rected p value). Yellow spheres indicate cubic fit; purple quadratic fit; blue a linear fit. Insets show an example of the local efficiency of the
left insula and right calcarine sulcus [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 (a) Phenotypic correlation between IQ and local efficiency at age 10, 13, and 18. Size of the spheres reflects size of the
correlation. Dark green nodes indicate significance at p<0.05; light green spheres indicate FDR-corrected significance. (b) Genetic (dark
grey) and unique environmental light grey) contributions to the phenotypic correlation between global efficiency and IQ at age 10, 13, and
18. * significant at p<0.05; ** significant at p<0.005 [Color figure can be viewed at wileyonlinelibrary.com]
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corrected). Regions where a stable genetic factor influenced local effi-

ciency were distributed over the entire brain.

3.5 | Post-hoc analyses

Repeating the analyses by computing the associations between IQ and

brain network measures using IQ averaged over all available measure-

ments or full-scale IQ from measurement 1, did not substantially

change our findings, although the correlations between full scale IQ

from measurement 1 and local efficiency at measurement 3 were less

strong (Supporting Information, Figure S3).

Although 15% of the participants showed a change in IQ of more

than 1 SD (15 IQ points) between wave 2 and 3, we did not find a cor-

relation between change in IQ and change in global efficiency between

age 13 and 18 (r520.11, p50.20). For local efficiency, an (uncor-

rected) significant correlation was found in two regions (left olfactory

cortex: r520.17, p50.04; and left paracentral lobule, r520.19,

p50.02).

There were no significant differences between boys and girls at

each time-point separately for FA-weighted global and local efficiency.

The associations between global and local efficiency of the brain with

IQ revealed no evidence for quantitative or qualitative genetic sex-

differences.

No differential developmental trajectories for FA-weighted global

efficiency in boys and girls were found (p50.11). Locally, however,

several regions showed a better fit for the model with different trajec-

tories for boys and girls compared to the model that fitted one trajec-

tory for all participants. This sex-effect reached FDR-corrected

significance (p<0.05) for the following 10 regions: left rolandic opercu-

lum, left medial orbitofrontal gyrus, left anterior cingulum, left amyg-

dala, bilateral calcarine sulcus, right angular gyrus, right pallidum, right

heschl gyrus, and left superior temporal gyrus. Generally, in these 10

regions, boys started with a lower efficiency than girls at age 10, made

a steeper increase in efficiency between ages 10 and 13 and end with

a higher efficiency than girls at age 13 and 18. For the left superior

temporal gyrus, left rolandic operculum, and right heschl gyrus, the fit-

ted age trajectory for boys had a lower level of efficiency over the

entire age range compared to girls.

The strong correlations between local efficiency and IQ at age 18

seem to be driven by the girls in our sample: 2 regions reached FDR

significance in the boys, whereas 46 regions reached FDR significance

in girls of the same age.

4 | DISCUSSION

In this longitudinal study, we measured the development of FA-

weighted global and local efficiency of the brain network in relation to

intelligence in (young) adolescent twins and their siblings from over

100 families at 3 time-points. We showed that FA-weighted efficiency

of the structural brain network increased during early adolescence and

leveled off during mid adolescence. Moreover, during adolescence,

individual differences in intelligence became increasingly reflected in

the structural brain network, with widespread correlations between

intelligence and FA-weighted local efficiency at age 18 years. This

effect was due to development of network efficiency. Finally, we

reported that genes contribute to the brain’s network efficiency during

development and to its growing association with intelligence, explain-

ing up to 87% of this association by age 18, while unique environmen-

tal factors counteract this genetic effect around age 13 years. Thus,

during adolescent development, communication in the brain network

becomes a reflection of intelligence by the age of 18 years, in part

under the influence of genes.

We report for the first time in a longitudinal study that efficiency

of the structural brain network increases throughout adolescent devel-

opment in a nonlinear fashion: an increase in efficiency that is particu-

larly prominent before age 13, and levels off during mid-adolescence.

Moreover, development of local efficiency followed different trajecto-

ries, with frontal and subcortical regions having a seemingly small

decrease in local efficiency around mid-adolescence, whereas occipital

regions continued to increase in efficiency until adulthood. Earlier, we

FIGURE 7 Broad heritability of (a) global and (b) local efficiency during adolescence. Broad heritability of global efficiency was significantly
different from zero (*) on all three measurements. Size of the spheres reflects magnitude of broad heritability. Grey spheres indicate
estimates of broad heritability were not significantly different from zero. See also Supporting Information, Table SII [Color figure can be
viewed at wileyonlinelibrary.com]
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showed that between 10 and 13 years, there is an increase in FA-

based efficiency of the brain network with most regions showing

increases in efficiency over time (Koenis et al., 2015). Here we

extended this finding with the results of the third measurement in

these twins and their siblings on the verge of adulthood, revealing that

the increase in global and local FA-based efficiency stabilized in late

adolescence in most individuals, and decreased in some individuals.

Regarding the influence of genes on network efficiency, we found that

during adolescence variance in network efficiency could partly be

explained by stable genetic influences.

Our finding that FA-weighted efficiency increased throughout ado-

lescence but levels off between age 13 and 18, is supported by cross-

sectional studies reporting increases in FA with increasing age during

adolescence and a pattern of FA development that differs across white

matter bundles (Lebel and Beaulieu, 2011; Peters et al., 2014; Schmi-

thorst and Yuan, 2010; Simmonds et al., 2014). More specifically, Sim-

monds et al. (2014) report for several regions a cubic age pattern of FA

with a period of rest during mid-adolescence. In addition, they find that

white matter bundles develop in a hierarchical pattern with bundles

involved in basis sensorimotor function to develop earlier than frontal

connections. In our study, a decrease in local efficiency during mid ado-

lescence occurs mostly in the (medial) frontal areas. Possibly reflecting

later development of these regions since FA still increases until the

third decade of life (Lebel et al., 2012; Yap et al., 2013). Efficiency of

occipital and parietal regions on the other hand seems reach stable lev-

els in mid-adolescence.

A recent longitudinal study in adolescents between 15 and 19

years, comparable with our second and third wave, also reported both

increases and decreases in FA and streamline count during late adoles-

cence, with preferential maturation in hub-to-hub connections (Baker

et al., 2015). Our findings are also in alignment with development of

white matter volume (Brouwer et al., 2012; Paus, 2010), which is con-

sistent with the small but positive association between white matter

volume and FA reported in adult twins (Bohlken et al., 2016a). Also,

our FA-weighted findings align with cross-sectional reports of

streamline-count weighted efficiency of brain networks showing largely

positive correlations with age in childhood and adolescence (Dennis

et al., 2013; Hagmann et al., 2010; Zhao et al., 2015) while leveling off

or showing a negative correlation in adulthood (Dennis et al., 2013;

Gong et al., 2009; Lim, Han, Uhlhaas, & Kaiser, 2015; Zhao et al.,

2015). We add to the existing literature that the adolescent FA-

weighted network develops in a non-linear pattern

The question remains how the brain continues to function in an

efficient manner during the years in which both brain and cognition are

changing rapidly (Blakemore et al., 2010; Luna et al., 2015). Based on

our data, it seems as if the moment the structural brain network has

grown into its adult state, we can see the individual levels of general

cognitive functioning reflected in the brain’s level of network effi-

ciency, while earlier in development there are only some indications of

this link. This is probably related to the stable component of IQ, as our

findings were similar using mean IQ of all time points. Regions that had

a significant correlation between local efficiency and IQ were distrib-

uted over the entire brain, suggesting that intelligence is supported by

a distributed network (Shaw, 2007; Deary, Penke, & Johnson, 2010).

Our results do not seem to support the PFIT theory (Jung & Haier

2007), because they encompass more areas: at age 18, 17 out of the

24 P-FIT regions are significant, and 59 out of the 66 non-P-FIT

regions (Chi square test, p50.07). However, it is important to keep in

mind that the efficiency of a region is a summary statistic on the con-

nections between the neighbors of that region.

Several mechanisms could explain the increase of a (genetic) corre-

lation between white matter network efficiency and IQ in mid adoles-

cence. First, it can be hypothesized that gene expression triggered by

education may depend on IQ and thus diverge structural brain network

development to more efficient networks in smarter children. For exam-

ple, rats showed upregulated mRNA expression of brain-derived neuro-

trophic factor (BDNF) and basic fibroblast growth factor (bFGF) in the

hippocampus a few days after learning a spatial memory task (G�omez-

Pinilla, So, & Kesslak, 1998; Kesslak, So, Choi, Cotman, & Gomez-

Pinilla, 1998). This shows that training or activating the brain could lead

to (a cascade of) activation of genes that regulate long-term plasticity.

A second hypothesis is that people with a higher IQ may have different

genetic variants that directly or indirectly cause genes related to ado-

lescent brain development to be more efficiently translated. For

instance, heritability of FA in the thalamus, the genu and posterior

limbs of the internal capsule, and the superior corona radiate was

higher in people with high IQ compared to people with lower IQ

(Chiang et al., 2011a). In another paper by these same authors, it was

shown that the association between FA and object assembly perform-

ance was positive in BDNF-Val carriers but around zero or negative in

BDNF-Met carriers (Chiang et al., 2011b). A third hypothesis is that

teenagers may follow their ‘genetic drive’ (based on their IQ) to an

environment that will trigger specific developmental changes. For

example, genes that are involved in (higher) IQ may also make a person

more curious and interested in school-related work. This may allow for

a longer sensitive period in individuals with a higher IQ as reflected by

a higher common environmental influence on IQ during adolescence in

teenagers with a higher IQ compared to teenagers with a lower IQ

(Brant et al., 2013).

That developmental trajectories of white matter connectivity

depend on cognitive functioning is supported by the study of Tamnes

et al. (2010), which showed that the development of FA between 8

and 30 years is related to the level of verbal intelligence. Other studies

support the notion that structural brain associations with IQ are not

stable throughout life. Cortical thickness studies showed differential

developmental trajectories depending on the IQ (Brans et al., 2010;

Brouwer et al., 2014; Karama et al., 2014; Schnack et al., 2015; Shaw

et al., 2006). The absence of a correlation between FA-weighted net-

work efficiency and IQ in late childhood is somewhat inconsistent with

a recent study in in children age 6–11 years that reported a positive

correlation between block design and FA-weighted network efficiency,

but not with other non-verbal subtasks (Kim et al., 2016). However,

total IQ versus a single IQ-subtask may be differently related to local

brain regions and thus may show a different developmental pattern in

relation to brain development.
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Global efficiency of the white matter network is already heritable

at age 10 years (39%), and remains largely stable throughout adoles-

cence, with estimated heritability of 20% at age 13 years and 43% at

age 18 years. This estimate is comparable with the heritability esti-

mates of FA in adult twins (Blokland, de Zubicaray, McMahon, &

Wright, 2012; Bohlken et al., 2014; Chiang et al., 2011a; Jahanshad

et al., 2013; Kochunov et al., 2015). While significant, its heritability is

quite modest when compared to the heritability for white matter vol-

ume that is estimated to be over 85% in both adolescence (van Soelen

et al., 2013) and adulthood (Bohlken et al., 2014). This leaves ample

room for influences of the environment on the network of white mat-

ter fiber connectivity in adolescence and adulthood.

Individual differences in genetic makeup became increasingly impli-

cated in the association between IQ and global FA-weighted efficiency

of the structural network: from no significant influence at age 10 years

(rph-g50.02) to a significant influence at age 13 (Wave 2: rph-g50.25)

and remaining largely stable at age 18 (Wave 3: rph-g50.20). By the

time adolescents have reached age 18 years, genes explained up to

87% of the association between intelligence and local efficiency of the

brain network. Individual environmental factors were found to counter-

act this development around age 13 years (rph-e520.10), suggesting

that at that time unique environmental differences were important for

this association.

Changes in individual IQ over time have been reported earlier (Bur-

galeta, Johnson, Waber, Colom, & Karama, 2014; Ramsden et al., 2011;

Waber et al., 2012). These individual changes in IQ were found to be

associated with changes in brain structure (Ramsden et al., 2011) and

with changes in efficiency of the brain network in early adolescence

(Koenis et al., 2015). In our participants, aged between 13 and 18 years,

we did not find that changes in IQ were significantly related to changes

in FA-weighted network efficiency. This could be caused by the more

pronounced influences of the genetic background that influences the

brain and intelligence during late adolescence. For both IQ (Haworth

et al., 2010; van Soelen et al., 2011) and brain structure (Lenroot et al.,

2009) genetic influences have been shown to increase with age.

Girls enter puberty earlier than boys (Mul et al., 2001), and their

brains also develop at a different pace during adolescence (Gogtay

et al., 2004; Gur and Gur, 2016; Raznahan et al., 2010). Although

puberty might in addition to age explain variance in brain development

(Blanton et al., 2012; Brouwer et al., 2015; Menzies, Goddings, Whi-

taker, Blakemore, & Viner, 2015; review by Peper, Hulshoff Pol, Crone,

& van Honk, 2011), we did not control for differences in pubertal tim-

ing. We did find sex related differences in the developmental trajecto-

ries of network efficiency in a few regions, with an earlier increase in

efficiency in girl than boys, and boys catching up with the girls around

age 13. Indeed, several studies report differences between the sexes

with regard to development of FA, especially between childhood and

early adulthood (Herting, Maxwell, Irvine, & Nagel, 2012; Ladouceur,

Peper, Crone, & Dahl, 2012; Lebel et al., 2012; Schmithorst, Holland, &

Dardzinski, 2008; Simmonds et al., 2014; Wang et al., 2012; but see

Lebel and Beaulieu, 2011; Peters et al., 2014). Despite the difference in

the trajectories, no significant differences between the sexes were

found within each wave for mean efficiency values in our cohort.

In addition, no qualitative or quantitative sex differences were found

on the (genetic) association between FA-weighted local network effi-

ciency and IQ at each wave. However, the brain wide correlation

between local efficiency and IQ at age 18 seemed to be more promi-

nent in girls. Sex-dependent associations in white matter with IQ have

been reported earlier, both in children (Luders et al., 2011; Schmithorst,

2009; Wang et al., 2012) and in adults (Gur et al., 1999; Tang et al.,

2010, but see Tamnes et al., 2010). Possibly, because girls start their

pubertal development earlier than boys do (with regard to both sec-

ondary sexual characteristics and brain development) the difference

between boys and girls at age 18 we observed, is the result of the tim-

ing of developmental processes. A fourth measurement would be able

to elucidate this question.

Some limitations need to be taken into consideration when inter-

preting the findings of this study. First, the network measures are

strongly driven by their weights, in our case FA. Although we did not

correct for individual differences in mean FA of the total white matter,

the results give an indication of the connectivity of the white matter

bundles and their strength (measured by FA) of the connections. Espe-

cially for local efficiency, a network approach is more informative than

measures of local FA. Second, we specifically studied the FA-weighted

networks because our previous study showed a correlation between

FA-weighted network efficiency and IQ, but not streamline weighed

network efficiency (Koenis et al., 2015). In addition, we showed that

during adolescence, the streamline-weighted network behaves differ-

ent from the FA-weighted network (Koenis et al., 2015). This should be

taken into account when comparing the results with other studies.

Another limitation is that we have used three different sets of tests

from the Wechsler intelligence tasks: all subtests of the WISC at wave

1, 6 WISC subtests at Wave 2, and 4 subtests of the WAIS at Wave 3.

However, (genetic) correlations over time were high. Additionally, the

results were very similar when using either the three measures of IQ,

an average IQ over our three measurements or the—probably most

reliable—full-scale IQ obtained at age 10, suggesting that our findings

regarding network development and IQ are driven by changes in the

network, rather than changes in IQ measure. The smaller correlations

between FSIQ of Wave 1 and local efficiency of Wave 3 could be

attributed to cognitive development (cf. Burgaleta et al., 2014; Koenis

et al., 2015; Ramsden et al., 2011; Waber et al., 2012). Finally, we fitted

a simple tensor model to our data which does not allow for the detec-

tion of crossing fibers. More sophisticated methods are available, but

given that our data were collected at 1.5 T in children in which some

movement may be expected, the data are probably not best suited for

robustly estimating more complicating diffusion models.

A last limitation is the use of a relatively low-resolution atlas since

graph parameters of structural networks may differ as a function of

scale (Zalesky et al., 2010). Our current study is an extension of our

previous study (Koenis et al. 2015). When we started our previous

study, the AAL template was the most commonly used atlas for DTI

network studies. In addition, Bassett, Brown, Deshpande, Carlson, and

Grafton (2011) showed that the AAL atlas produced more within sub-

ject reproducible results than the Harvard Oxford atlas and that

increased spatial resolution decreased the individual reproducibility of
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graph metrics. Zhao et al. (2015) found similar lifespan trajectories of

streamline weighted efficiency for brain networks based on 90 regions

AAL and a 1024 regions AAL template. Concerning the current study,

it is possible that results may differ with studies that used a higher

resolution parcellation. However, because (a) the effects were clustered

in large brain areas and (b) as efficiency measures in this study were

strongly driven by FA and correlations between whole brain white mat-

ter FA and IQ show the same pattern of an increase in correlation with

age, we do not think that a different template would result in different

conclusions.

In conclusion, we observed non-linear development of the struc-

tural brain network’s efficiency during adolescence that differentiates

with intelligence. The correlation between IQ and local FA-weighted

efficiency became more clearly visible when adulthood was reached,

and is influenced by genes common to both intelligence and structural

network efficiency.
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