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Estimating effects of parents’ cognitive and
non-cognitive skills on offspring education
using polygenic scores
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Understanding how parents’ cognitive and non-cognitive skills influence
offspring education is essential for educational, family and economic policy.
We use genetics (GWAS-by-subtraction) to assess a latent, broad non-
cognitive skills dimension. To index parental effects controlling for genetic
transmission, we estimate indirect parental genetic effects of polygenic
scores on childhood and adulthood educational outcomes, using siblings
(N=47,459),adoptees (N = 6407), and parent-offspring trios (N = 2534) in
three UK and Dutch cohorts. We find that parental cognitive and non-
cognitive skills affect offspring education through their environment: on
average across cohorts and designs, indirect genetic effects explain 36-40%
of population polygenic score associations. However, indirect genetic effects
are lower for achievement in the Dutch cohort, and for the adoption design.
We identify potential causes of higher sibling- and trio-based estimates:
prenatal indirect genetic effects, population stratification, and assortative
mating. Our phenotype-agnostic, genetically sensitive approach has
established overall environmental effects of parents’ skills, facilitating future
mechanistic work.

Parents and children tend to have similar educational outcomes'. alleviate inequalities. Many studies have investigated how much
Since education is highly predictive of social mobility and health certain parental characteristics influence offspring education, but
across the lifespan®’, understanding the mechanisms underlying the relatively few have considered non-cognitive skills. The term ‘non-
intergenerational transmission of education could inform efforts to  cognitive’ describes skills that differ from what has traditionally been
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education’s primary focus: academic and cognitive performance. The
umbrella of non-cognitive skills encompasses a wide range of
competencies, including academic motivation, perseverance, mind-
sets, learning strategies, and social skills*’. Cognitive skills like
executive functioning, working memory, and verbal 1Q are more
precisely integral to cognitive functioning, but both cognitive and
non-cognitive skills are critical for educational success*. Research in
developmental psychology®, economics’, and sociology® has sug-
gested that parents socially influence their children’s non-cognitive
skills including emotion regulation, social capacities, attitudes and
motivations”™°. Given that non-cognitive skills (particularly self-
control and emotion regulation™'?) support education, it follows that
parents’ non-cognitive skills may also affect children’s educational
outcomes.

Prior research has detected small associations between mea-
sured parental non-cognitive skills and offspring educational out-
comes. In one study, mothers’ locus of control was the only significant
non-cognitive predictor of offspring college attendance (f=0.02,
p<0.05; B=-0.01 for maternal self-concept and self-esteem, both
non-significant)’>. Mothers’ cognitive skills, measured by the U.S.
Armed Forces Qualifying Test, were a stronger predictor (=0.06,
p <0.01). Another study found that fathers’ non-cognitive skills were
associated with sons’ standardised test scores at age 16 (= 0.09)".
Here, non-cognitive skills were measured by a single composite of
extraversion, neuroticism, persistence, and perseverance from a
standardised Swedish military-oriented psychological evaluation.
Additionally, parents’ attitudes towards education and social skills
have been found to account for 8% of the socioeconomic gap in
children’s achievement®. The contributions of specific measured
parental traits that were included were also not stated.

Two key limitations weaken this base of evidence on the effects of
parents’ skills on offspring education: challenges with phenotypic
assessments of parents’ non-cognitive skills, and genetic confounding.

First, regarding assessment, whereas cognitive skills can be
directly measured by tests of domain-specific or general cognitive
performance, non-cognitive skills are more challenging to capture'®".
There is little agreement on what non-cognitive skills to measure.
Some researchers focus on personality, whereas others include self-
control, self-esteem, motivation, and interests. Importantly, studies
identifying partial effects of specific parental cognitive and non-
cognitive skills are less informative about the overall influences of
these domains. Measurement error could also mean that effects of
parents’ non-cognitive skills have been underestimated.

Genetic methods offer an alternative approach to defining
parents’ non-cognitive skills. Both cognitive and typically-studied non-
cognitiveskillsare substantially genetically influenced, with twin study
heritability estimates of 40-70%%. A new method—GWAS-by-
subtraction’—makes it possible to assess a broad latent genetic non-
cognitive construct, by ‘subtracting’ cognitive ability-related genetic
variationfromeducational attainment genetic variation. This follows
aninfluential definition of non-cognitive skills from economics® as all
traits positively contributing to educational and professional success
that are not cognitive skills. This non-cognitive genetic construct—
which could otherwise be conceptualized as ‘not-cognitive’—is asso-
ciated with higher socioeconomic attainment, more open and
conscientious personality, and some psychiatric disorders (e.g.,
higher risk for schizophrenia, lower risk for attention deficit/
hyperactivity disorder). In the present study, we use this GWAS-by-
subtraction measure of non-cognitive skills to capture the overall
effect of all non-cognitive parent phenotypes on offspring education.
This phenotype-agnostic approachissomewhatloose:it couldinclude
parental phenotypes not traditionally classed as ‘non-cognitive’ or
‘skills’. However, it provides a useful first step towards characterizing
pathways from specific parental skills to offspring educational
outcomes. After establishing overall effects, complementary research

designs using measured parental non-cognitive skills can subse-
quently be used to identify specific mediating mechanisms.

A second challenge is to distinguish social (i.e., environmental)
fromgenetic transmission. None of the associations between parental
skills and offspring education cited above were estimated using
genetically sensitive designs. This is problematic, because from just
parent-offspring correlations one cannot conclude that parents’ skills
shape offspring education, for instance by providing resources,
experiences, and support. Ignoring any shared genetic influences on
parents’ skills and child educational outcomes confounds estimation
of the effects of parental phenotypes on offspring outcome®. To
establish the extent that parents’ (non-)cognitive skills influence child
educational outcomes socially, it is vital to control for inherited
genetic effects.

Genetic study designs can isolate environmental effects of
parental skills on offspring education, controlling for genetic
transmission. Several designs estimate a genetic effect of the child’s
genotype on the child phenotype (direct genetic effect), and an
environmentally mediated effect of the parental genotype on the
child’sphenotype (parentalindirect genetic effect). Forexample,non-
transmitted genetic variants affect offspring phenotypes indirectly
via the environment shaped by parental phenotypes™?*. Polygenic
scores (individual-level indices of trait-specific genetic endowment;
PGS) for educational attainment based on parents’ non-transmitted
variants, are associated with offspring attainment®?. Com-
plementary evidence of indirect effects of parents” education-linked
genetics on offspring education has also accumulated from sibling
and adoption PGS designs*?*?*?°, To obtain estimates of indirect
genetic effects using sibling data, within-sibling genetic associations
(first developed to estimate direct genetic effects independent of
population biases***') are compared to population-based associa-
tions. To obtain estimates of indirect genetic effects using adoption
data, genetic associations estimated for adoptees and non-adopted
individuals are compared®’. Notably, variance decomposition as well
as PGS methods can be applied to disentangle direct and indirect
genetic effects, but the former requires much larger sample sizes* .
Itis not known whether parental indirect genetic effects on offspring
education occur through cognitive or non-cognitive pathways (or
both), because studies have not parsed out the contributions of sub-
components of the educational attainment PGS.

Here, we directly compare estimates of parental indirect genetic
effects obtained from different designs. Estimation of genetic
associations may involve numerous biases* %, Sibling, adoption, and
non-transmitted allele designs have different assumptions and subtle
differencesinbiasesand components affecting the estimated indirect
genetic effect. As shown by our data simulations indirect genetic
effect estimates from the adoption design may be less biased by
population stratification and assortative mating than the sibling and
non-transmitted allele designs (see Supplementary Note 6 and our
GitHub repository*?). However, estimates obtained from the adoption
design do not capture prenatal parental environmental effects on
child education and may be less generalisable to the population. The
sibling design may estimate parental indirect genetic effects with
more bias from sibling genetic effects. Triangulation across designs
and sensitivity analyses can help detect possible biases and quantify
parental indirect genetic effects and other environmental effects**°.

In the current study (pre-registration: https://osf.io/mk938/), we
use a novel approach to estimate the social effects of parents’
cognitive and non-cognitive skills on offspring education. We deploy
GWAS-by-subtraction to estimate individuals’ genetic endowments
(PGS) for cognitive and non-cognitive skills, and test how much these
operate environmentally via parental influences on offspring educa-
tional outcomes. We provide a comparison of parental indirect
geneticeffectsin three cohorts of genotyped families in two countries
(UK Biobank, UK Twins Early Development Study, Netherlands Twin
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Register). Each cohort includes multiple achievement outcome
measures (i.e., standardised test results and teacher-reported grades
in childhood and adolescence) and attainment (i.e., years of com-
pleted education reported in adulthood). We triangulate across three
complementary study designs for estimating parental indirect
genetic effects and assess the presence of components and biases.

Results

GWAS-by-subtraction results

We identified the genetic components of cognitive and non-cognitive
skills using Genomic SEM, following Demange et al.”’, in samples that
excluded participants used for polygenic score analyses. Educational
attainment and cognitive performance meta-analytic summary sta-
tistics (see Methods) were regressed on two independent latent
variables, Cog and NonCog (see Supplementary Fig. 1). These two
latent factors were then regressed on 1,071,804 HapMap3 SNPs in a
genome wide association (GWA) design. The LD score regression-
based SNP heritabilities of Cog and NonCog were 0.184 (SE=0.007)
and 0.054 (SE = 0.002), respectively. More information on the GWAS
ispresented in Supplementary Datal.

Descriptive statistics

SNP associations with the Cog and NonCog latent variables provided
the weights to create individual-level polygenic scores in 3 cohorts
with family data and educational achievement and/or attainment
outcomes. Sample sizes for individuals with polygenic score and
educational outcome datawere: 39,500 UK Biobank siblings, 6409 UK
Biobank adoptees, up to 4796 DZ twins in the Twins Early Develop-
ment Study (TEDS), up to 3163 twins and siblings in the Netherlands
TwinRegister (NTR),and upto 2534 NTRindividuals withboth parents
genotyped. Full phenotypic descriptive statistics are available in
Supplementary Data 2.

Overview of three family-based polygenic score designs

To estimate direct offspring-led and indirect parent-led effects of PGS
for cognitive and non-cognitive skills on educational outcomes, we
considered three family-based genomic designs. The designs are

illustrated in Fig. 1. All models jointly included Cog and NonCog PGS.
Note that population effects are equivalent to PGS effects estimatedin
standard population analyses that do not use within-family data. In
contrast, within-family designs exploit the principles of Mendelian
segregation or the natural experiment of adoption to separate direct
and indirect/social components of the overall population PGS effect.
Importantly, a direct genetic effect is only direct in the sense that it
does not originate from another individual’s genotype. Direct effects
are also not ‘purely’ genetic, but lead to educational outcomes via
intermediate pathways, and are expressed in the context of
environments.

First, the sibling design estimates indirect genetic effects by
comparing population-level and within-family (i.e., within-sibling or
within-DZ twin) PGS associations (Eq. (1))*®. The direct effect of a
polygenic score is estimated based on genetic differences between
siblings, which are due to random segregations of parental genetic
material, independent of shared family effects (including parental
indirect genetic effects). Specifically, the direct effect is estimated
using a variable representing individuals’ polygenic scores minus the
average polygenicscorefor their family: the within-family beta (Bwichin
inEq. (1)). The population effect of a polygenic score is estimated in a
separate model, simply regressing the outcome variable on polygenic
scoredifferencesbetweenindividuals fromdifferent families (Eq. (2)).
The indirect genetic effect is obtained by subtracting the within-
family PGS effect estimate from the population effect estimate.

EA;= a0 + BwnhinCog (PGSCOgU - PGSCOgj)

+ BBetweenCQg(PGSCOgj)+ BwithinNuncOg (PGSNonCUgij - PGSNonCogj) (1)
+ BBetweenN‘,"Cog (PGSNonCogj) + Zg’
EAij = (XOO + ﬁCog(PGSCOgU)+ﬁNonC0g(PGSNanCog[j)+ le (2)

Note: EA is the educational outcome, PGS is the polygenic score (for
Cog PGScog and NonCog PGSnoncog)- PGS refers to the average
polygenic score in the family j. i refers to the individual sibling. o
refers to the intercept, Z are covariates for the individual i: sex, age,
sex*age, the first 10 principal components, and genotyping platform.
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See Supplementary Note 5 for a comparison of different versions of
this sibling design, using data simulations.

Second, indirect genetic effects can be estimated by comparing
polygenic score associations estimated in a sample of adoptees
against those estimated for individuals who were reared by their
biological parents®. Therefore, we estimate the regression model
shown in Eq. (2) separately for adoptees and for non-adopted
individuals. The population effect is estimated as the polygenic score
effect on phenotypic variation among non-adopted individuals (i.e.,a
combination of direct and indirect genetic mechanisms). The direct
genetic effect is the effect of the polygenic score among adoptees.
Adoptees do not share genes by descent with their adoptive parents,
so we expect their polygenic scores to be uncorrelated with the
genotypes of their adoptive parents. Therefore, the polygenic score
effect in adoptees cannot be inflated by environmentally mediated
parental indirect genetic effects. In this design, the indirect genetic
effect is estimated by subtracting this direct PGS effect from the
population effect estimated in the non-adopted group. When taking
the difference, itisimportant that the groups are similar in terms of all
observed and unobserved confounders, an untestable assumption
that is unlikely to always hold. We found small differences between
adoptees and non-adopted individuals in the UK Biobank in their
demographic and early-life characteristics. Cohen’s d values were
d<0.15 for Cog and NonCog PGS and educational attainment, and
d=0.31 for birth weight. The pattern of geographical clustering of
adopted and non-adopted participants across the UK was highly
similar (see Supplementary Data 11, Supplementary Note 3, and
Supplementary Fig. 2).

Third, indirectgeneticeffectscanbe estimated, and disentangled
from direct genetic effects, using information on parental genetic
variation that was not transmitted to offspring® (Eq. (3)).

EA= 0,0+ BTcog(PGSTCog) + BTNOHCOE(PGSTNonCug)

3
*+Brrcog (PGSNT.,,) * PN Tyonco (POSNTese) + Z

The population effect is estimated from a polygenic score based on
transmitted variants (Br). Transmitted genetic variants are presentinan
offspring and in at least one of their parents, and so may influence
offspring education via both direct and indirect mechanisms. The
parental indirect genetic effect is estimated as the effect of a polygenic
score based on parental variants that were not transmitted to offspring
(BnT)- Non-transmitted variants can only take effect on offspring
education through the environment. The direct genetic effect is
estimated by partialling out the effect of the non-transmitted polygenic
score from that of the transmitted polygenic score (B — Bnt). Maternal
and paternal scores are averaged to create overall parental non-
transmitted polygenic scores. We did not distinguish between maternal
and paternal PGS, due to the replicated evidence that mothers’ and
fathers’ PGS for educational attainment have equal effects on offspring
education*"*?, and to enable closer comparison with the adoption and
sibling designs, which yield estimates of the overall parental genetic
effect. Notably, regressing offspring phenotype on offspring PGS and
parental PGS would allow equivalent estimation of the parental indirect
genetic effect without haplotype estimation*’.

Parents’ heritable cognitive and non-cognitive skills
environmentally influence offspring education

We investigated environmental effects of parents’ non-cognitive and
cognitive skills on offspring education by estimating parental indirect
genetic effects of NonCog and Cog PGS. Figure 2a shows that, for both
NonCog and Cog PGS, indirect genetic effects of parents on offspring
education were present (meta-analytic indirect Bnoncog = 0.08, SE =
0.03; indirect Bcog=0.10, SE=0.01), in addition to direct genetic
effects (direct Bnoncog = 0.14, SE = 0.03; direct fcog = 0.15, SE=0.02).
Averaged across all designs, outcomes and cohorts, indirect

environmentally mediated effects explained 36% of the population
effect of the NonCog PGS, and 40% of the population effect of the Cog
PGS. However, results varied depending on the methods used and
outcomes investigated. Results per cohort, outcome and design, as
well as population genetic effects and the ratio of indirect to
population effects are reported in Supplementary Data 3 and
Supplementary Figs. 3, 4 and 5. Meta-analytic results are reported in
Supplementary Data 4. Z-tests results comparing direct and indirect
effects are reported in Supplementary Data 5.

Estimates of indirect genetic effects vary by age, outcome and
cohort

Figure 2b shows estimates of direct and indirect genetic effects of
NonCogand CogPGS for differentcohortsand educational outcomes,
holding the design constant (i.e., the sibling design, which was
available for all cohorts and outcomes). Estimates were highly
consistent across cohorts except for age 12 achievement in Dutch
versus UK cohorts: indirect genetic effects were negligible and
represented a small fraction of the population effect in NTR (3% and
23% for NonCog and Cog, respectively), whereas they accounted for
56%and 48%ofthe population effects of NonCogand CogPGSin TEDS.
For adult educational attainment, estimates of direct and indirect
effects were more similar for the Dutch (NTR: indirect Bnoncog = 0.11,
SE=0.03; indirect Pcog=0.06, SE=0.03) and UK (UKB: indirect
BNoncog =0.12, SE=0.01; indirect Bcog = 0.12, SE = 0.01) cohorts. See
Supplementary Data 3 for full results.

Estimates of indirect genetic effects depend on the analytical
design

Figure 2c shows estimates of direct and indirect genetic effects of
NonCog and Cog PGS for different designs, holding the phenotype
constant (i.e., educational attainment, which was available forall three
methods). While estimates obtained with sibling and non-transmitted
PGS methods indicate equal indirect effect sizes (indirect s for
educational attainment ranged between 0.11 and 0.12; see Supple-
mentary Data3 and 4), the adoption designyielded low to nullindirect
genetic effects forbothNonCogand Cog PGS (indirect Bnoncog = 0.02,
SE =0.02;indirect Bcog = 0.08,SE=0.02).

Figure 3 summarises how the three designs estimate parental
indirect genetic effects in the presence of different contributors, thus
highlighting possible explanations for lower adoption-based estimates.
This information is based on simulations (see Supplementary Notes 4
and 6, Supplementary Fig. 9, and our GitHub repository*). We consider
prenatal and postnatal parental indirect genetic effects as components
of the total parental indirect genetic effect, and other simulated
contributors as biases. First, unlike the sibling and non-transmitted
allele designs, the adoption design does not capture indirect genetic
effects occurring in the prenatal period. Second, the adoption design
estimates indirect genetic effects with less bias from population
stratification. Third, the adoption design estimates indirect genetic
effects with less bias from assortative mating than the sibling design,
and, mostlikely, than the non-transmitted alleles design. How the biasin
the adoption design estimates compares to the non-transmitted design
depends on the precision of the polygenic score, see Supplementary
Note 6. Any excess indirect genetic effect estimated in the sibling/non-
transmitted allele designs compared to the adoption design therefore
indicates the overall impact of prenatal indirect genetic effects,
population stratification, and assortative mating. Sibling indirect
genetic effects are an important potential influence to consider,
but cannot explain the empirical results because they only do not
affect indirect effect estimates from adoption and non-transmitted
designs differently (they mainly inflate sibling-based estimates).

With the adoption design, the indirect genetic effect of the
NonCog PGS on educational attainment in UK Biobank is 83% lower
than with the sibling design, while it is only 33% lower for Cog. This
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suggests that estimates for NonCog are affected more strongly than
Cog by population stratification, assortative mating and/or prenatal
indirect genetic effects.

Population phenomena may inflate indirect genetic effect
estimates

Although triangulating designs suggested that prenatal indirect
genetic effects, population stratification, and assortative mating may
contribute to the higher estimated parental indirect genetic effects
from non-transmitted alleles/sibling designs relative to the adoption
design, this approach cannot disentangle the relative importance of

these individual biases. To this end, we conducted additional
sensitivity analyses to assess the magnitudes of these biases (not pre-
registered).

First, we analysed the GWAS summary data on which the
polygenic scores were based, using LD score regression to detect
population stratification. The LD score regression ratio statistics of
uncorrected educational attainment and cognitive performance
GWAS were 0.11 (SE=0.01) and 0.06 (SE=0.01), respectively (Sup-
plementary Data 1). These non-null estimates indicated that a small
butsignificant portion of the GWAS signal was potentially attributable
toresidual population stratification. As cognitive performance seems
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Components and biases included in simulated data

Fig.3 | Estimates of parental indirect genetic effects from the three designs,
based on data simulated to include different components and biases.
Componentsinclude parental prenatal and postnatal indirect genetic effects.
Biases include sibling indirect genetic effects, assortative mating, and population
stratification. Boxplots of 100 replicates based on a simulated sample of 20,000
families. The center line represents the median, the box limits are the 1stand 3rd

quartile, and the whiskers reach the maximum value within 1.5 times the
interquartile range. Outlying values are not represented. For clarity, the red line
benchmarks the true simulated postnatal parental indirect effect, although we
note that prenatal parental genetic effects are acomponent rather than a bias of
the parental indirect genetic effect.

less prone to population stratification than EA, it is possible our
estimates of direct and indirect genetic effects of NonCog were more
biased by population stratification than Cog.

Second, we detected slight evidence of assortative mating, which
appeared stronger in the UK than Dutch cohorts. In NTR, parental PGS
correlations are non-significant (NonCog r=0.03, Cog r=0.02).
Sibling PGS intraclass correlations ranged between 0.49 and 0.52 in
NTR,andbetween0.53and 0.56in TEDS and UK Biobank. Thissupports
the presence ofassortative matingonNonCogand Cog PGS potentially
biasing our estimates of indirect genetic effectsin UK cohorts, but less
inour Dutch cohort. See Supplementary Data 6 for full correlations.

Third, our sensitivity analyses did not support the presence of
indirect effects of siblings’ NonCog and Cog PGS on individuals’
educational outcomes. Our first approach leveraged sibling poly-
genic scores, the rationale being that in the presence of a sibling
effect, a sibling’s PGS will influence a child’s outcome beyond child
and parent PGS. In NTR, siblings’ NonCog or Cog PGS had non-
significant effects (Supplementary Data 7). In a second approach,
the difference in PGS effects on EA between monozygotic (MZ) and
dizygotic (DZ) individuals was tested. Since MZ twins are more
genetically similar than DZ twins, their PGS should capture more of
the indirect genetic effect of their twin. In NTR and TEDS, PGS
effects were not significantly different between MZs and DZs
(Supplementary Data 8 and Supplementary Fig. 6). Finally, in UKB,
we tested PGS effects on EA given the number of siblings individuals
reported having. If more siblings lead to a stronger sibling effect,
this will be captured as an increased effect of an individual's own
PGS on the outcome in the presence of more genetically related
siblings. As a negative control, we conducted the same analysis in
adoptees. Since adoptees are unrelated to their siblings, their PGS
do not capture sibling effects at any family size. NonCog PGS effects
weakly increased with number of siblings, but this pattern was also
present in adoptees, suggesting confounding by unobserved
characteristics of families with numerous children (Supplementary
Data 9 and Supplementary Fig. 7).

Discussion

We used genetic methods to study environmental effects of parents’
skills on child education. We found evidence that characteristics
tagged by NonCog and Cog polygenic scores (PGS) are both involved
in how parents provide environments conducive to offspring
education. Indeed, indirect genetic mechanisms explained 36% of the
populationeffectof theNonCog PGS, and 40% ofthe population effect
of the Cog PGS (population Bnoncog=0.22, SE=0.01; population
Bcog =0.25, SE=0.01). This result was consistent across countries,
generations, outcomes, and analytic designs, with two notable
exceptions. First, estimated parentalindirect genetic effects were null
for childhood achievement in our Dutch cohort (NTR), but not for
comparable outcomes in our UK cohort (TEDS). Second, parental
indirect genetic effects estimated with the adoption design were
lower than for the sibling and non-transmitted allele designs,
particularly for the NonCog PGS. Given our evidence from data
simulations that the adoption-based estimates of indirect genetic
effects do not account for prenatal effects and may be more robust to
population stratification and assortative mating, these factors may
contribute substantially to estimates from the other two designs,
especially for the NonCog PGS. This was supported by results from
sensitivity analyses.

This study demonstrates the utility of genetic methods for
assessing elusive phenomena: non-cognitive skills, and genuine
environmental influences from parents, unconfounded by offspring-
led effects of inherited genes. Compared to analysing a set of
measured parental non-cognitive skills, our GWAS-by-subtraction
approach captures a wider array of traits linked genetically to
attainment, and therefore broadly quantifies the overall salience of
parents’ non-cognitive skills. Our evidence that parents’ non-
cognitive and cognitive skills are both important for children’s
education complements the growing literature that has considered
effects of specific measured skills within both of these domains™",
These studies found that effects of parents’ non-cognitive skills on
offspring education were less than half the size of the effects of
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parents’ cognitive skills. In contrast, we found that indirect genetic
effects of NonCog PGS were almost as large as for Cog skills. This
discrepancy might stem in part from our comprehensive definition of
non-cognitive skills, as we do not rely on possibly unreliable and
incomplete phenotypic measures. Importantly, the parental indirect
genetic effects we have identified may capture proximal forms of
‘nurture’ (e.g., aparentdirectly training their child’s cognitive skills, or
cultivating their child’s learning habits through participation and
support) and/or more distal environmental effects (e.g., a parent’s
openness to experience leading them to move to an area with good
schools). The environmental effects of parents’ non-cognitive and
cognitive skills are likely to be larger than we estimate, because our
approach only captures effects of parent skills tagged by current
GWAS. Polygenic scores index a subset of the common genetic
component of parent skills, which is in turn a fraction of the total
genetic component (missing heritability***°), and cannot account for
the non-heritable component of parent skills.

The lower importance of parental indirect genetic effects for
child achievement in the Netherlands compared to the UK indicates
that our UK achievement outcomes more strongly capture variationin
family background. This difference could result from the design of
these achievement measures: Dutch test results are standardized
based on a representative population, but UK teacher reports might
still be affected by student social background. Societal differences
between the two countries might offer another explanation, as
indirect genetic effects might be seen as indicator of social inequality
(similarly to shared-environment variance in twin studies*). For adult
attainment, results were more similar across UK and Dutch cohorts,
corresponding with recent evidence for consistent shared-
environment influence on educational attainment across social
models*. This consistency also suggests that the difference in
childhood is not due to a cohort or population difference. The higher
indirect genetic effects in adult attainment in the Netherlands might
reflect an increase in environmental variance following tracking
taking place in secondary schools”. Indeed, socioeconomic dis-
paritiesin achievement seem toincrease more between ages10 and 15
in the Netherlands than in the UK*® and children whose parents have a
higher education are more likely to enrolin a higher educational track
independently of their achievement at age 12*°, suggestive of greater
parental effects on secondary and later education, which should be
tested in further studies.

Wefoundthatthe designused to estimate indirect genetic effects
matters, with the adoption design giving systematically lower
estimates. Direct comparison of results across designs suggested that
33% (for Cog) and 83% (for NonCog) of the indirect genetic effects on
adult educational attainment, estimated using the sibling design, are
atleastinpartdueto populationstratification, assortative mating, and
prenatal indirect genetic effects. The importance of population
stratification for genetic associations with educational attainment
was suggested by recent UK Biobank studies®®'. Our sensitivity
analyses also indicated residual population stratification, which was
more severe for the NonCog GWAS. There was some evidence of
assortative mating, with sibling PGS correlations above expectation
(>0.5) particularly in the UK cohorts. This country difference in
assortment is supported by the lower estimated spouse PGS
correlations in NTR (0.02 for Cog, 0.03 for NonCog) than for the EA
PGS in the UK Biobank (0.06)*. There was no statistically significant
difference in assortative mating between Cog and NonCog, suggest-
ing that population stratification explains the particularly large
design-based discrepancy between estimates of indirect genetic
effects for NonCog (but possibly also differential bias in the Cog
versus NonCog GWAS; see Limitations). Population stratification
should be carefully considered in studies using NonCog PGS.
Structural equation models, leveraging within-family polygenic
scores and phenotypes, are being developed to parse the

contributions of indirect and direct genetic effects to complex traits
from assortative mating (both disequilibrium and equilibrium forms)
and population stratification®***. Another consideration for future
research is that indirect genetic effects on education might span
across more than a single generation, for example the influence of
grandparents. Since cumulative indirect genetic effects are all
removed when a child is adopted, their presence would contribute to
the observed difference in indirect effect between the adoption and
other designs.

Regarding siblings, we did not find evidence that indirect effects
of siblings’ NonCog and Cog PGS affect individual differences in
educational outcomes, using three different approaches. This corre-
sponds with null findings regarding indirect effects of siblings’
educational attainment genetics in the UK Biobank*>*'. However,
other UK Biobank studies have detected indirect effects of older
siblings’ EA PGS on younger siblings’ educational attainment®, and
parental compensation for sibling EA PGS differences®, suggesting
that more subtle analyses are required to understand sibling effects.
There is also some evidence for sibling effects on educational
attainment in other populations, based on the EA PGS® and on
extended twin family data”’. It is possible that our PGS analyses were
not sufficiently powered to detect indirect genetic effects of siblings,
since they were based on lower sample size than our main analyses.
However, our results suggest that indirect genetic effects of siblings
oneducation are small. Therefore, our methods provide good proxies
for parental indirect genetic effects, with minimal inflation from
sibling effects.

Our data suggest that the adoption design may provide a useful
lower-bound estimate of indirect genetic effects of parents. Giventhat
there was no evidence for sibling effects of the Cog or NonCog PGS,
our adoption-based estimates, which appear to be less biased by
population stratification and assortative mating, should give a closer
measure of (postnatal) parentalindirect genetic effectsinthe absence
of other issues. However, adoptees and non-adopted individuals
differ in unobserved and observed ways, including birthweight
(d=0.3). These differences likely make adoption-based estimates of
indirect geneticeffects, whichrely onacomparison ofthe two groups,
less reliable. Moreover, three additional factors may make the
adoption-based estimates of indirect genetic effects too con-
servative. First, adoption based indirect effect estimates exclude
prenatal indirect genetic effects (and indirect genetic effects taking
place between the birth and moment of adoption), which might
influence educational outcomes®™*’. While we are unable to test for
prenatal indirect effects, these could be investigated in cohorts with
pregnancy information, adjusting for postnatal indirect genetic
effects. Second, adoptees may have beenexposed to anarrower range
of environments (e.g., family socioeconomic status) compared to
non-adopted individuals®. This form of selection bias is likely to
increase the genetic variance at the expense of the indirect genetic
effect. Third, selective placement of children in adoptive families
matching characteristics of their biological families, or adoption of
children by close relatives®, could result in correlation between child
and (adoptive) parent genotypes, leading to an underestimation of
the indirect genetic effect. There is modest evidence for selective
placement of adoptees based on education in the US®’. We cannot
control for selection and relatedness (e.g., by excluding individuals
who were adopted by relatives and/or adopted relatively late in
development), since there is no information on the adoptive parents
in the UK Biobank resource.

We acknowledge several limitations. First, while we suggest that
an attribute of our study is the broad and phenotype-agnostic
characterisation of non-cognitive skills, our GWAS-by-subtraction
approach is unable to identify specific parental characteristics and is
also still limited by measures of cognitive performance and educa-
tional attainment in the original GWAS. Some cognitive skills might
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not be reflected in the available Cognitive Performance GWAS, so the
NonCog factor could capture genetic influences affecting cognition.
However, previous analyses have shown that aNonCog PGS based on
GWAS-by-subtraction predicts substantially less variation in cogni-
tion than the Cog PGS*. Additionally, our NonCog latent variable
reflects the residual variance of adult educational attainment, and
therefore is a measure of non-cognitive aspects of adult EA. Non-
cognitive aspects of childhood achievement might differ somewhat,
which might lead to an underestimation of indirect genetic effects of
the NonCog PGS on these outcomes.

Second, the generalisability of our results is limited. Highly
educated individuals are over-represented in all cohorts. Participa-
tion bias also affects GWAS results®. Selection effects may be
especially strong in the adoption design as adoptions may depend on
(partially heritable) phenotypes of the biological parents, and many
adoptive parents are also selected based on their (partially heritable)
behavioural phenotypes. Additionally, only participants of European
descent were included in the analysis.

Third, replication efforts are needed. Special effort should be
targeted to include diverse ancestry participants. While our overall
estimates are well powered due to the aggregation of cohorts, some
analyses rely on a single sample. As such, results from these analyses
might reflect specifics of these samples and not design-specific biases
and should be replicated.

Fourth, although our within-family methods allowed us to
evaluate biases in polygenic score effects within the target samples,
the same biases are likely to influence the effect size estimates from
the original population-based GWAS used to construct polygenic
scores. This problem has been explored in relation to the sibling
design in a recent preprint®, but remains to be investigated for non-
transmitted PGS and adoption designs. Population GWAS effects
could be differentially affected (i.e., stronger correlation between
direct and indirect genetic effects) for NonCog versus Cog, which
would maketheir respective PGS effects less comparable. Increasingly
large within-family GWAS** of Cog and EA will allow this to be
resolved.

Finally, while we conceptualize our NonCog PGS as a non-
cognitive measure, it could also be considered a ‘not-cognitive PGS’,
since it is a residual construct that results from removing heritable
variance associated with cognitive skills from the heritable variancein
educational attainment. In the future, it may be useful to develop a
more precise non-cognitive skills GWAS, by creating the latent Cog
and NonCog factors using additional measured phenotypes. To this
end, large GWA meta-analyses should be completed not only for
personality®® but for other classic non-cognitive skills such as
motivation and self-control.

Several additional future research directions emerge. First, given
that we have quantified the overall environmental effects of parents
on offspring education tagged by NonCog and Cog PGS, the next step
is to identify specific mediating parent characteristics, whether
proximal or distal. It will be informative to test not only typical non-
cognitive skills measures such as parental locus of control (as
suggested by"), but also ‘not-cognitive’ characteristics that do not
appear in non-cognitive skill batteries yet are genetically correlated
with the NonCog PGS and phenotypically correlated with offspring
achievement. For instance, parental depression is a feasible partial
mediator, given that Major Depressive Disorder is significantly
genetically correlated with NonCog (r;=-0.19, p=2.62E-14)*°, and
maternal depression is associated with offspring mathematics
performance, possibly viaoffspring executive function®. Researchers
could also examine mediating child characteristics on the pathway
between their parents’ characteristics and their own educational
outcomes. Children’s skills themselves might not be involved in these
pathways. Indeed, educated parents do not appear to affect offspring
education by fostering non-cognitive skill development”, and twin

research shows no influence of shared environmental factors on
individual differences in children’s measured non-cognitive skills
such as grit and self-control®*™7°.

A second future direction is to incorporate gender and
socioeconomic status into research on indirect genetic effects on
education. Twin data show that shared environmental contributions
to educational attainment are larger for women than for men*’. It is
unknown whether this finding holds for indirect genetic effects and
for childhood achievement. Another gender aspect to consider is
differential maternal and paternal indirect genetic effects®. There is
some evidence (although not genetically informed) that mother and
father skills show unique associations with offspring education™.
Indirect effects of parents’ genetic endowment for non-cognitive
skills on child education might be mediated or moderated by
parents’ income and cultural capital (including school-related skills
and habits). While some evidence suggests that home learning
environments may be more cognitively stimulating in families of
higher socioeconomic”’?, there is also evidence suggesting that
mothers who have lower reported incomes also report more
frequent activities that facilitate cognitive stimulation”.

Insum, this study provides evidence for environmental effects of
parents’ non-cognitive and cognitive skills on offspring educational
outcomes, indexed by indirect genetic effects of polygenic scores.
Combining three cohorts and three designs for estimating indirect
geneticeffectsallowed usto obtainrobustfindings. Theseresultshave
significance for human health, as the role parents play in successful
cognitive development and (mental) health development go hand
in hand.

Methods

Our research complies with all relevant ethical regulations. Project
approval for the Twins Early Development Study (TEDS) was granted
by King’s College London’s ethics committee for the Institute of
Psychiatry, Psychology and Neuroscience PNM/09/10-104. Ethical
approval forthe Netherlands Twin Register (NTR) was provided by the
Central Ethics Committee on Research Involving Human Subjects of
the VU University Medical Center, Amsterdam, and Institutional
Review Board certified by the U.S. Office of Human Research
Protections (IRB number IRB-2991 under Federal-wide Assurance-
3703; IRB/institute codes 94/105, 96/205, 99/068, 2003/182, 2010/
359) and participants provided informed consent. The UK Biobank has
received ethical approval fromthe National Health Service North West
Centre for Research Ethics Committee (reference: 11/NW/0382).
Informed consent was obtained from all human participants.

The study methods were pre-registered on the Open Science
Framework (https://osf.io/mk938/) on the 24/02/2020. Additional
non-preregistered analyses are indicated as such below and should be
considered exploratory. Additional deviations from the pre-
registration are detailed in Supplementary Note 1.

Samples
UK Biobank. The UK Biobankis an epidemiological resourceincluding
British individuals aged 40 to 70 at recruitment’*. Genome-wide
genetic data came from the full release of the UK Biobank data, and
were collected and processed according to the quality control
pipeline”.

We defined three subsamples of the UK Biobank to be used for
polygenic score analyses: adopted participants, a control group of
non-adopted participants, and siblings. Starting with UK Biobank
participants with QC genotype data and educational attainment data
(N =451,229), we first identified 6407 unrelated adopted individuals
who said yes to the question “Were you adopted as a child?” (Data-
Field 1767). We restricted the sample to unrelated participants
(kinship coefficient <1/(2%9/2))’°. Second, our comparison sample
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(N=6500) was drawn at random from non-adopted participants who
were unrelated to each other and to the adopted participants. Third,
we identified 39,500 full siblings, excluding adopted individuals. We
defined full-siblings as participants with a kinship coefficient between
1/(2~(3/2)) and 1/(2*(5/2)) and a probability of zero IBS sharing
>0.0012, as suggested by’ and”.

After excluding the three sub-samples for polygenic score
analyses and individuals related to these participants, we were left
with 388,196 UK Biobankindividuals with educational attainment (EA)
data, and 202,815 individuals with cognitive performance (CP) data.
We used these remaining individuals for the GWAS of EA and CP, and
later meta-analysis with external GWASs”’ (see ‘Statistical Analyses’
and Supplementary Note 2).

Twins Early Development Study (TEDS). The Twins Early Develop-
ment Study (TEDS) is a multivariate, longitudinal study of >10,000
twin pairs representative of England and Wales, recruited
1994-1996%. The demographic characteristics of TEDS participants
and their families closely match those of families in the UK. Analyses
were conducted on a sub-sample of dizygotic (DZ) twin pairs with
genome-wide genotyping and phenotypic data on school achieve-
mentatage 12 (1431 DZ pairs) and age 16 (2398 pairs).

Netherlands Twins Register (NTR). The Netherlands Twin Register
(NTR)” is established by the Department of Biological Psychology at
the Vrije Universiteit Amsterdam and recruits children and adults
twins for longitudinal research. Data on health, personality, lifestyle
and others, as well as genotyping data have been collected on
participants and their families.

We included in our analyses genotyped European-ancestry
participants. We created a subsample of full-siblings. NTR contains
information on numerous monozygotic multiples (twins or triplets).
Because MZ multiples share the same genes, werandomly excluded all
individuals but one per MZ multiple. Only siblings with complete
geneticand outcome datawere subsequentlyincludedintheanalyses:
1631 siblings with CITO (achievement test taken during the last year of
primary school) data (from 757 families) and 3163 siblings with EA data
available (from 1309 families).

We created a subsample with complete offspring, maternal and
paternal genotypic data (i.e., trios). Among individuals with available
parental genotypes, respectively 1526 (from 765 families) and 2534
(from 1337 families) had reported CITO and EA information.

The sibling and trio subsets are not independent: for CITO, 823
participants are present in both subsets, 1374 for EA.

Phenotypic measures

UK Biobank. Educational attainment and cognitive performance
phenotypes were defined following Lee et al. 2018”’. From data-field
6238, educational attainment was defined according to ISCED
categories and coded as the number of Years of Education. The
response categoriesare: none of theabove (no qualifications) =7years
of education; Certificate of Secondary Education (CSEs) or equivalent
=10years; Olevels/GCSEs orequivalent=10years; Alevels/ASlevels or
equivalent = 13 years; other professional qualification = 15 years;
National Vocational Qualification (NVQ) or Higher National Diploma
(HNC) orequivalent =19 years; college or university degree =20 years
of education. For cognitive performance, we used the (standardized)
mean of the standardized scores of the fluid intelligence measure
(data-field 20016 for in-person and 20191 for an online assessment).

TEDS. Educational achievement at age 12 was assessed by teacher
reports, aggregated across the three core subjects (Mathematics,
English, and Science).

Educational achievement at age 16 was assessed by self-reported
results for standardized tests taken at the end of compulsory

educationinEngland, Wales and NorthernIreland: General Certificate
of Secondary Education; GCSE). GCSE grades were coded from 4 (G;
the minimum pass grade) to11 (Ax; the highest possible grade). As with
the age 12 measure, we analysed a variable representing mean score
for the compulsory core subjects.

NTR. Educational attainment was measured by self-report of the
highest obtained degree®’. This measure was re-coded as the number
of years in education, following Okbay et al. 2016*'.

Academicachievementisassessedinthe Netherlands by anation-
wide standardized educational performance test (CITO) around the
age of 12 during the last year of primary education. CITO is used to
determine tracking placement in secondary school in the Nether-
lands, incombination with teacher advice. The total score ranges from
5000550, reflecting the child’s position relative to the other children
taking the test this particular year.

Genotype quality control

UK Biobank. SNPs from HapMap3 CEU (1,345,801 SNPs) were filtered
out of the imputed UK Biobank dataset. We then did a pre-PCAQC on
unrelated individuals, and filtered out SNPs with MAF <0.01 and
missingness > 0.05, leaving 1,252,123 SNPs. After removing indivi-
duals with non-European ancestry, we repeated the SNP QC on
unrelated Europeans (N =312,927), excluding SNPs with MAF < 0.01,
missingness >0.05 and HWE p<107°, leaving 1,246,531 SNPs.
The HWE p-value threshold of 10™° was based on: http://www.
nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-
hardy-weinberg-equilibrium-test. We then created a dataset of
1,246,531 QC-ed SNPs for 456,064 UKB subjects of European ancestry.
Principal components were derived from a subset of 131,426
genotyped SNPs, pruned for LD (> 0.2) and long-range LD regions
removed®. PCA was conducted on unrelated individuals using
flashPCA v2%.

TEDS. Two different genotyping platforms were used because
genotyping was undertaken in two separate waves. Affyme-
trixGeneChip 6.0 SNP arrays were used to genotype 3665 individuals.
Additionally, 8122 individuals (including 3607 DZ co-twin samples)
were genotyped on lllumina HumanOmniExpressExome-8v1.2 arrays.
After quality control, 635,269 SNPsremained for AffymetrixGeneChip
6.0 genotypes, and 559,772 SNPs for HumanOmniExpressExome
genotypes.

Genotypes from the two platforms were separately phased and
imputed into the Haplotype Reference Consortium (release 1.1)
through the Sanger Imputation Service before merging. Genotypes
fromatotal 0f 10,346 samples (including 3320 DZ twin pairs and 7026
unrelated individuals) passed quality control, including 3057 indivi-
duals genotyped on Affymetrix and 7289 individuals genotyped on
lllumina. The identity-by-descent (IBD) between individuals was
<0.05 for 99.5% in the merged sample excluding the DZ co-twins
(range=0.00-0.12) and ranged between 0.36 and 0.62 for the DZ twin
pairs (mean = 0.49). There were 7,363,646 genotyped or well-imputed
SNPs (for full genotype processing and quality control details, see®*).

To ease high computational demands for the current study, we
excluded SNPs with MAF < 1% and info <1. Following this, 619216 SNPs
wereincluded in polygenic score construction.

Principal components were derived from a subset of 39,353
common (MAF > 5%), perfectly imputed (info = 1) autosomal SNPs,
after stringent pruning to remove markers in linkage disequilibrium
(> 0.1) and excluding high linkage disequilibrium genomic regions
to ensure that only genome-wide effects were detected.

NTR. Genotyping was done on multiple platforms, following manu-
facturers protocols: Perlegen-Affymetrix, Affymetrix 6.0, Affymetrix
Axiom, Illumina Human Quad Bead 660, Illumina Omni 1M and

Nature Communications| (2022)13:4801


http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-weinberg-equilibrium-test
http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-weinberg-equilibrium-test
http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-weinberg-equilibrium-test

Article

https://doi.org/10.1038/s41467-022-32003-x

Illumina GSA. For each genotype platform, samples were removed if
DNA sex did not match the expected phenotype, if the PLINK
heterozygosity F statistic was <-0.10 or >0.10, or if the genotyping
call rate was <0.90. SNPs were excluded if the MAF <1x10-6, if the
Hardy-Weinberg equilibrium p-value was <1 x 10-6, and/or if the call
rate was <0.95. The genotype data was then aligned with the 1000
Genomesreference panel usingthe HRC and 1000 Genomes checking
tool, testing and filtering for SNPs with allele frequency differences
larger than 0.20 as compared to the CEU population, palindromic
SNPs and DNA strand issues. The data of the different platforms was
then merged into a single dataset, and one platform was chosen for
each individual. Based on the ~10.8 k SNPs that all platforms have in
common, DNA identity-by-descent state was estimated for all
individual pairs using the Plink 1.9 and King 2.1.6 programs. Samples
were excluded if these estimates did not correspond to expected
familial relationships. CEU population outliers, based on per platform
1000 Genomes PC projection with the Smartpca software v2.r904,
were removed from the data. Then, per platform, the data was phased
using Eagle v2.4.1 and then imputed to 1000 Genomes and Topmed
using Minimac3-omp v2.10 following the Michigan imputation server
protocols. Post-imputation, the resulting separate platform VCF files
were merged with Bcftools 1.9 into a single file per chromosome for
each reference, for SNPs present on all platforms. For the polygenic
scoring and parental re-phasing, the imputed data were converted to
bestguessdataand werefiltered toinclude only ACGT SNPs, SNPs with
MAF > 0.01, HWE p >10-5 and a genotype call rate >0.98, and to
exclude SNPswith more than2alleles. Allmendelianerrors were setto
missing. The remaining SNPs represent the transmitted alleles
dataset. 20 PCs were calculated with Smartpca using LD-pruned 1000
Genomes-imputed SNPs genotyped on at least one platform, having
MAF > 0.05 and not present in the long-range LD regions. Using the—
tucc option of the Plink 1.07 software pseudo-controls for each
offspring were created, given the genotype data of their parents. This
resulted in the non-transmitted alleles dataset, as these pseudo-
controls correspond to the child’s non-transmitted alleles. To
determine the parental origin of each allele, the transmitted and non-
transmitted datasets were phased using the duoHMM option of the
ShapelT software. The phased datasets were then split based on
parental origin, resulting in a paternal and maternal haploid dataset
for the transmitted and non-transmitted alleles.

Statistical analyses
All statistical tests are two-sided, unless otherwise stated.

NonCog GWAS-by-subtraction. To generate NonCog summary
statistics, we implemented a GWAS-by-subtraction using Genomic
SEM following Demange et al.2020 using summary statistics of EA and
cognitive performance obtained in samples independent from our
polygenic score samples.

We ran a GWAS of Educational Attainment and Cognitive
Performance in UK Biobank (polygenic score sample left-out). We
meta-analysed them with the EA GWAS by Lee et al. excluding
23andMe, UK Biobank and NTR cohorts, and with the CP GWAS by
Trampush et al. respectively (EA total N=707,112 and CP N =238,113)
using Metal software release 2011-03-05. More information on these
methods and intermediate GWAS are found in Supplementary Note 2
and Supplementary Datal.

Following Demange et al.2020, we used EA and CP meta-analysed
summary statistics with GenomicSEM to create two independent
latent variables: Cog, representing the genetic variance shared
between EA and CP, and NonCog representing the residual genetic
variance of EA when regressing out CP (Supplementary Fig. 1). These
two latent factors were regressed on each SNP: we obtained
association for 1,071,804 SNPs (HapMap3 SNPs, as recommended
when comparing PGS analyses across cohorts). We calculate the

effective sample size of these GWAS to be 458,211 for NonCog and
223,819 for Cog.

Polygenic Score construction in UK Biobank, TEDS and NTR.
Polygenic scores of NonCog and Cog were computed with Plink
software (version 1.9 for NTR, 2 for UKB and TEDS)®*** based on
weighted betas obtained using the LDpred v1.0.0 software using
infinitesimal prior, a LD pruning window of 250 kb and 1000Gen-
omes phase3 CEU populationasLD reference. Weighted betas were
computed in a shared pipeline. In NTR, scores for non-transmitted
and transmitted genotypes were obtained for fathers and mothers
separately so we average them to obtain the mid-parent score.

Polygenic score model fitting

Each model included cognitive and non-cognitive polygenic scores
simultaneously and controlled for: 10 ancestry principal components
(PCs), sex and age, interaction between sex and age, and cohort-specific
platform covariate (NTR: genotyping platform, UKB: array, TEDS:
batch). Age was estimated by year of birth, age at recruitment or age at
testing depending on the cohorts, see Supplementary Data 2. Correla-
tions between NonCog and Cog PGS, as well as between and within-
family PGS are reported Supplementary Data 10.

Outcomes were standardized for each analysis group. Polygenic
scores were standardised as follows prior to analysis. For the non-
transmitted allele design, we summed the parental PGS and then
scaled the non-transmitted and transmitted PGS separately, following
Kong et al*. Note that the variances of the non-transmitted and
transmitted PGS were not significantly different prior to scaling (Cog
PGS: F=1.0088, p=0.71; NonCog PGS: F=0.9920, p = 0.73). For the
adoption design, we scaled the PGS in adopted and non-adopted
groups separately. There were no significant differences in variances
of adopted and non-adopted PGS prior to scaling (see Supplementary
Data11). For the sibling design, we scaled the PGS to have mean 0 SD 1
using the sibling group, and subsequently created the within-
sibling PGS.”

All regressions were linear models with Im() in R rather than
mixed models as in previous analyses”*® and our pre-registered
methods. See Supplementary Note 1 for the justification based on
simulated data. We obtained bootstrapped standard errors and bias-
corrected confidence intervals (normal approximation) for the
population, indirect and direct effects, as well as the ratios of indirect/
direct and indirect/population effect. We ran ordinary non-
parametric bootstraps using 10,000 replications with boot() inR. For
the sibling design, where two independent regressions are used, we
use the same bootstrap samples for both (both regressions were run
within the same boot object). For the adoption design, the boot-
strapped samples are drawn from the adopted and non-adopted
samples separately. The bootstrap estimates were used to test for the
difference between the direct and indirect effect in both Cog and
NonCog and the difference between the ratio indirect/population for
Cog and NonCog, using Z-tests.

Additional analyses (not pre-registered)

Meta-analyses. To estimate the overall indirect and direct effects of
NonCog and Cog polygenic scores, we meta-analysed estimates
across cohorts, designs and phenotypic outcomes.

To compare results obtained across the three different designs,
we meta-analysed effect sizes obtained from each design across
cohorts, but holding the outcome constant (educational attainment).
The adoption design was only applied to EA in UKB, hence no meta-
analysis was necessary.

Meta-analyses were conducted using the command rma.mv()
in the R package metafor. Design was specified as a random
intercept factor, except when results were meta-analysed within-
design.
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Investigation of biases

Population stratification. Population stratification refers to the
presence of systematic difference in allele frequencies across
subpopulations, arising from ancestry difference due to non-random
mating and genetic drift. This leads to confounding in genetic
association studies. In a PGS analysis, bias due to population
stratification can arise from both the GWAS used to create the scores
and the target sample. We corrected for population stratification in
the target sample by adjusting analyses for PCs (although this may not
remove fine-scale stratification). For the GWAS summary statistics,
the ratio statistics LDSC output is a standard measure of population
stratification®”. As a rule of thumb, an LDSC intercept higher than 1
(inflated) indicates presence of population stratification. Because we
corrected the standard errors of the EA GWAS for inflation and
GenomicSEM corrects for inflation as well, the ratio statistics of the
Cog and NonCog GWAS are not a valid indication of population
stratification (ratio < O following GC correction). We therefore use the
ratio statistics of uncorrected EA and CP GWAS as proxies. Ratio and
LDscore intercept was assessed with the Idsc software®’.

Assortative mating. Assortative mating refers to the non-random
mate choice, witha preference for spouses with similar phenotypes. If
these preferred phenotypes have a genetic component, assortative
mating leads to anincreased genetic correlation between spouses, as
well as between relatives™. Assortative mating can therefore be
inferred from elevated correlations between polygenic scores in
siblings (correlations would be 0.5 without assortative mating) and
between parents (correlations would be O without assortative
mating). We estimated sibling intraclass correlations of Cog and
NonCog PGS in UKB, TEDS and NTR, and Pearson’s correlations of
paternal and maternal Cog and NonCog PGS in NTR. Notably, these
observed correlations cannot distinguish assortative mating from
population stratification.

Sibling effects. We performed three additional analyses to
investigate indirect genetic effects of siblings on educational
outcomes.

First, we ran a linear mixed model extending our main non-
transmitted alleles design to include polygenic scores of siblings (Eq.
(4)). To this end, we used data from NTR on DZ pairs and both of their
parents. Sample sizes of genotyped ‘quads’ with offspring CITO or EA
phenotypes were 657 and 788, respectively.

EA= 0(00 + BTCog (PGS(COg)T) + BTNonCUg (PGS(NonCOg)T)
+BnTcog (PGS(Cog)r) + BNTNonCog (PGS(NonCog)yr)

* Bsibling cog (PGS(COg)Sihling) *+ Bsivlingnoncog (PGS(NOUCOg)Siblmg)
+sex +age +sex*age + 10PCs + genotyping platform

“@)

Second, we canalsoassessthe presence of siblinggenetic effectsusing
monozygotic and dizygotic twins. Because monozygotic twins have
the same genotypes, the genetically mediated environment provided
by the cotwinis more correlated to the twin genotype in MZ twins than
in DZ twins. The sibling genetic effect is more strongly reflected in the
polygenic score prediction of the educational outcome for MZ twins
thanforDZ twins. Ifthe sibling genetic effect is negative, the polygenic
scoreeffect (betas) onthe outcome in people that have an MZ twin will
be lower than in people that have a DZ twin, it will be higher in those
with an MZ twin then those with an DZ twin if the sibling genetic effect
is positive. We therefore compare Betas from Eq. (2) in a subset of MZ
twins and in a subset of DZ twins (one individual per pair) in both NTR
(Nmz = 818 & Npz = 865 for CITO and Nyz = 1600 & Npz =1369 for EA)
and TEDS (Nyz = 546 & Npz =2709).

Third, the presence of sibling genetic effects can be assessed
using data on the number of siblings participants have. If an
individual has more siblings, we expect their polygenic scores to be

more correlated to sibling effects. As the number of siblings
increases (ifweassumelinearincrease) sodoesthe degreetowhicha
PGS captures sibling effects. If the sibling genetic effect is positive,
the effect of the Cog and NonCog PGS on the educational outcome
should increase with the number of siblings. However, family
characteristics and environment might differ across families
depending on the number of children. Therefore, changes in the
effect of the PGS on our outcome with the number of siblings could
be due to factors other than sibling genetic effects (for example,
there is a known negative genetic association between number of
children and EA®® which could result in confounding). By also
looking at changes in the effect of the Cog and NonCog PGS on the
educational outcome in adopted (unrelated) sibships, we break the
correlation between PGS and any sibling effects. If there is a change
in PGS effect on the educational outcome in adopted children
dependent on the number of (non-biological) siblings, we can
assume this effect to be caused by mechanisms other than a sibling
effect. We finally contrast the change in PGS depending on family
size in biological and adopted siblings to get an idea of the sibling
effectminusany other confounding effects of family size. We use the
total number of reported siblings (full siblings for non-adopted and
adopted siblings for adopted individuals, data-fields: 1873, 1883,
3972 &3982).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

For the original summary statistics of Cog and NonCog, including
NTR and UKBiobank siblings data, see®. The summary statistics for
Cog and NonCog generated for this study are available at: https://doi.
org/10.34894/MMXYPL. For UK Biobank dataset access, see: https://
www.ukbiobank.ac.uk/using-the-resource/. Netherlands Twin Register
data may be accessed, upon approval of the data access committee,
email: ntr.datamanagement.fgb@vu.nl. Researchers can apply for
access to TEDS data: https://www.teds.ac.uk/researchers/teds-data-
access-policy.

Code availability

All scripts used to run the analyses (empirical and simulated) are
available at our GitHub https://github.com/PerlineDemange/
GeneticNurtureNonCog/, which can be cited as Demange P., et al.
Estimating effects of parents’ cognitive and non-cognitive skills on
offspring education using polygenic scores, GitHub, https://doi.org/
10.5281/zenodo.6581326, 2022. All additional software used to
perform the analyses are available online. The pre-registration of the
study is available on OSF: https://osf.io/mk938/.
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