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BACKGROUND
Observation
Many phenotypes are expressed as sum scores 
based on a limited number of items

Problems

• Sum scores are ordinal measures

• Sum scores are often not normally distributed

• Items change over time

• Ceiling and floor effects

• Attenuated correlations

• What to do with subjects with missing items?

Consequences
Using common linear genetic models that assume
normal distributions, inferences regarding variance
components are biased (Derks et al., 2004)*

COMMON SOLUTIONS
- Transformations (e.g., log, √)

Problems: still ordinal, interpretation more 
difficult, missing items not resolved

- Threshold modelling: 
Problems: still not using all information, 
missing items problem not resolved

USING AN IRT MEASUREMENT MODEL
Advantages
- No problems when items are missing
- Avoid bias due to distribution violations: specify your own distribution
- Avoid bias due to limited set of items

Disadvantage
- Model estimation is a computational challenge!

Solution
Bayesian modelling with MCMC estimation

ITEM RESPONSE THEORY
We assume every subject has a score on a latent variable, θi

Whether an item is scored 0 or 1, depends on a subject parameter θ and an item 
parameter β

p( Yij = 1 | θi, βj ) = exp(θi – βj) / (1 + exp(θi – βj))

The higher the subject parameter, and the lower the item parameter, the more likely a 
positive response is to occur.

The βs can be conceived of as thresholds in the usual threshold model for nominal or
ordinal traits, except that we now have multiple items as indicators for only one latent 
variable

IRT models can be extended to include polytomous items, factor loadings, covariates, 
repeated measures, hierarchical structures, modelling of missing data, 
multidimensionality….

The variance of the subject parameters can be decomposed into genetic and non-
genetic parts. 

Var(θ) = A + D + C + E

θβ

P (Y = 1) = .84

ILLUSTRATION

Attention problems were measured in 3,021 adult twins aged 
18-30 using seven polytomous items. Liability θ was modelled 
using a one-parameter logistic model. Variance of θ was 
decomposed into additive genetic variance and non-shared 
environmental variance. Inference is based on the posterior 
marginal distributions using an MCMC algorithm implemented 
in WinBUGS.

Burn-in: 500 iterations, inference: 2 chains of 1500 iterations

Computation time: +/- 30 minutes

Results heritability for attention problems:

Mean: 0.71 SD:  0.04

Quantiles:   2.5%: 0.62   50%: 0.71   97.5%: 0.79

P (Y = 1) = .50

* Derks EM, Dolan CV, Boomsma DI (2004). Effects of censoring on parameter 
estimates and power in genetic modeling. Twin Res. 7(6):659-69. 
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