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Observational studies have reported different effects of
adiposity on cardiovascular risk factors across age and
sex. Since cardiovascular risk factors are enriched in
obese individuals, it has not been easy to dissect the
effects of adiposity from those of other risk factors. We
used a Mendelian randomization approach, applying
a set of 32 genetic markers to estimate the causal effect
of adiposity on blood pressure, glycemic indices, circu-
lating lipid levels, and markers of inflammation and liver
disease in up to 67,553 individuals. All analyses were
stratified by age (cutoff 55 years of age) and sex. The
genetic score was associated with BMI in both non-
stratified analysis (P = 2.8 3 102107) and stratified anal-
yses (all P < 3.3 3 10230). We found evidence of a causal
effect of adiposity on blood pressure, fasting levels of in-
sulin, C-reactive protein, interleukin-6, HDL cholesterol,

and triglycerides in a nonstratified analysis and in the
<55-year stratum. Further, we found evidence of a smaller
causal effect on total cholesterol (P for difference = 0.015)
in the ‡55-year stratum than in the <55-year stratum,
a finding that could be explained by biology, survival bias,
or differential medication. In conclusion, this study
extends previous knowledge of the effects of adiposity
by providing sex- and age-specific causal estimates on
cardiovascular risk factors.

The incidence of overweight and obesity is increasing
rapidly on a global level. Adiposity constitutes an impor-
tant risk factor for cardiovascular disease (CVD), which is
the major cause of morbidity and mortality for both men
and women (1), although CVD generally occurs later in
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women than in men (2,3). There is strong evidence from
randomized clinical trials (4,5) that weight loss induced by
dietary change reduces the levels of cardiovascular risk
factors, such as blood pressure and circulating lipid levels.
However, intervention studies of weight loss are often
difficult to interpret because the intervention may affect

several separate pathways. For example, bariatric surgery
can affect glucose metabolism through pathways other
than weight loss (6). We and others (7,8) have previously
applied Mendelian randomization methods to assess and
confirm the causal role of adiposity in cardiometabolic
disease. In Mendelian randomization study designs, one
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or several genetic variants, usually single nucleotide poly-
morphisms (SNPs), associated with a modifiable risk fac-
tor are used as instrumental variables (IVs). The IVs
provide unbiased estimates of the causal relation
of the exposure to the risk factor (here, adiposity) with
an outcome of interest (here, other cardiovascular risk
factors) (9).

Age and sex differences in adiposity and body fat
distribution, as well as physiology of the heart and blood
vessels, are evident even before overt CVD becomes
evident (10,11). As an example, men are usually less sen-
sitive to insulin than women, given a certain BMI, which
may partly be explained by differences in fat distribution
(12). Moreover, the strength of association between obe-
sity and a number of cardiovascular risk factors, such as
blood pressure (13–15) and total serum cholesterol (16)
and fasting glucose (17) levels, has been reported to decline
with age. The role of weight loss as a health-promoting
intervention in older age groups has been debated lately
as large studies (18) have shown that the excess mortality
from obesity markedly declines with age and that the risk
of sarcopenia and osteoporosis increases with weight
loss. Improved understanding of the effect of adiposity
in different age and sex groups may advance prevention
of CVD through the possibility of efforts directed toward
groups with the largest causal effect. However, stratified
observational studies suffer from the risk of confounding
and reverse causation, problems that can be avoided us-
ing a Mendelian randomization design.

The objective of the current study was to use a Mendelian
randomization design to assess whether adiposity causally
affects known cardiovascular risk factors at a similar mag-
nitude in men and women and before and after 55 years
of age.

RESEARCH DESIGN AND METHODS

Study Population
Population-based studies of European ancestry enrolled in
the European Network for Genetic and Genomic Epide-
miology (ENGAGE) Consortium were invited to partici-
pate in the study. In total, 30 studies contributed to the
primary and/or secondary analysis in the current study
(Supplementary Table 1). A standardized analysis plan was
provided to all partners, and individual-level analyses were
performed at each center separately. The distributions of
age, BMI, and sex in the participating cohorts are shown in
Supplementary Table 2.

Genetic Instruments
An individual nonweighted genetic risk score using the 32
SNPs (“lead SNPs”) reported by Speliotes et al. (19) was
used as the IV in 25 studies for the main analyses (listed in
Supplementary Table 3). The score was created by summing
the number of BMI-increasing alleles (0, 1, 2) for each of the
32 SNPs. When direct genotype data were not available for
an SNP in a particular study, we prioritized as follows: 1) im-
puted allele dosage data with high imputation quality
(IMPUTE proper_info$0.4 or MACH r2hat$0.3) (20); 2)

information from directly genotyped proxy SNPs from a pre-
defined list of variants that are in high linkage disequilib-
rium (LD) with lead SNPs; or 3) imputation to a prespecified
allele dosage (2*reported effect allele frequency from the
study by Speliotes et al. [19]). Eighteen of the studies
included in the genetic score analyses had directly geno-
typed or high-quality imputed genotype information on
all SNPs, while seven studies lacked information on three
SNPs each and used the prespecified allele dosage for
those three SNPs.

In secondary analyses, we used one SNP as the IV to
maximize the study sample (five additional ENGAGE
studies had information on this SNP only, for a total of
30 studies). For this instrument, we used direct genotype
information for the FTO variant rs9939609 from partici-
pating studies when possible (16 studies). If rs9939609 was
not genotyped directly, we prioritized as follows: 1) the
HapMap II CEU (European) reference panel imputed genetic
information (hapmap.ncbi.nlm.nih.gov) for rs9939609 (six
studies) or 2) genotype information from a predefined list
of proxies that are in high LD with rs9939609. We used
the directly genotyped proxies rs11075989 (four studies, r2

with rs9939609 = 1.0 in HapMap II), rs3751812 (one study,
r2 = 1.0), rs1558902 (one study, r2 = 0.93), and rs1421085
(two studies, r2 = 0.93). We estimated the effects of the
BMI-increasing A allele of rs9939609 or for the correspond-
ing alleles from proxies (using HapMap II CEU LD data) on
BMI and cardiovascular risk factors.

Individuals were excluded from analysis when the
overall genotyping array sample call rate was ,95%. All
studies reported SNPs with Hardy-Weinberg equilibrium
exact P values .0.0001 and a call rate .0.95 for geno-
typed SNPs.

Outcomes
We studied the following quantitative outcomes: 1) di-
astolic and systolic blood pressure where observed values
were increased with 15 mmHg for systolic blood pres-
sure and 10 mmHg for diastolic blood pressure in case of
reported hypertension medication; 2) circulating lipid
fraction (only in individuals not receiving lipid-lowering
medication) (concentrations of HDL cholesterol [HDL-C],
LDL cholesterol [LDL-C], total cholesterol, and triglycer-
ides); 3) measurements of glucose homeostasis in nondi-
abetic subjects using the following glycemic traits:
concentrations of fasting glucose, 2-h glucose from the oral
glucose tolerance test (OGTT), hemoglobin A1c (HbA1c), and
fasting insulin; 4) liver enzyme activity (alanine amino-
transferase [ALT], g-glutamyl transferase [GGT]); and
5) inflammation markers (concentrations of C-reactive
protein [CRP] and interleukin-6 [IL-6]). The measurement
methods used in each study and the respective matrix are
reported in Supplementary Tables 4, 5, and 6. The follow-
ing variables were transformed to the natural logarithmic
scale prior to further analysis due to their skewed distri-
bution when examining normal probability plots in pre-
liminary analysis (levels of fasting insulin, ALT, GGT,
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CRP, IL-6, and triglycerides). All quantitative phenotypes
including BMI were z score (SD) standardized prior to
further analysis to reduce heterogeneity across studies
and to make it possible to compare the adiposity effect
between outcomes.

Statistical Analysis

Association Analyses
We evaluated associations of BMI and IVs with each
outcome separately, as well as associations between IVs
and BMI. For all analyses, we used linear regressions in
each study separately, assuming an additive effect of the
number of BMI-increasing alleles. The associations between
BMI and outcomes are hereafter referred to as “observa-
tional.” All analyses were performed in the full study sam-
ple, as well as stratified by age at measurement (cutoff 55
years of age), and in men and women separately. If mea-
surements were available both before and after age 55 years
for the same individuals, these individuals were included
in both age strata (using the respective measurement).
Regression analyses were adjusted for age and sex (only
in the sex-pooled analysis) by including age at measure-
ment and sex as covariates. Individual studies were ad-
justed for additional study-specific covariates such as the
study center when relevant. Random-effects meta-analysis
(21,22) of the study-specific results was performed using the
rmeta package, in R version 3.0.0.

IV Analyses
We used IV estimators to quantify the strength of the
causal associations between adiposity and other cardiovas-
cular risk factors. The estimator (bIV) was calculated as the
ratio between the two regression coefficients determined
from association meta-analyses in each stratum (Eq. 1):
estimated genetic score or FTO effect on the given outcome
(bgenetic instrument_outcome), and estimated genetic score or
FTO effect on BMI (bgenetic instrument_BMI).

bIV ¼ bgenetic  instrument outcome

bgenetic  instrument BMI
(1)

For quantitative outcomes with a single instrument, the
IV estimator derived by Equation 1 is identical to that
derived by the widely used two-stage least squares
method (23). The SEs for the IV estimators were calcu-
lated using the delta method (Eq. 2), which we have pre-
viously evaluated for this purpose (7):

SEIV ¼

absðbIV Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
SEgenetic  instrument_BMI

bgenetic  instrument_BMI

!2
þ
 
SEgenetic  instrument_outcome

bgenetic  instrument_outcome

!2vuut
(2)

For each trait, we tested the null hypothesis of no difference
between the IV estimator and the observational regression-
based estimator via the z test. We also tested differences

between estimates for men and women and differences be-
tween the two age strata using the same approach.

Multiple Testing Correction
We used the Benjamini and Hochberg (24) procedure imple-
mented in the STATAmultproc procedure to correct the level of
significance to a 5% false discovery rate (FDR). The procedure
was applied to all 266 P values in the main analysis together.

RESULTS

Association of the Genetic Score With BMI
Random-effects meta-analysis of the association between
the genetic score and BMI in 25 studies (n = 81,764)
showed a positive effect (0.030 SD units of BMI per ad-
ditional allele [95% CI 0.028–0.033], P = 2.8 3 102107).
Stratum-specific point estimates were similar to those of
the pooled data, and no differences between strata were
found using the z test (Table 1).

Associations of BMI With Cardiovascular Risk Factors
We applied the FDR procedure to correct for all 266 tests
reported in Tables 2, 3, and 4. At a 5% FDR level, the
corrected critical P value was estimated to 0.022, which
should be considered as the P value threshold to denote
statistical significance in this report.

The random-effects meta-analysis showed that BMI
was associated with all quantitative phenotypes in all
strata (Tables 2, 3, and 4, observational analysis) with
the exception of the $55-year stratum, where no associa-
tion was found with LDL-C and total cholesterol levels
(Table 3).

Instrumental Variable Analysis Using the Genetic
Score
Nonstratified IV analysis using the genetic score showed
evidence for causal effects of adiposity on the following:
1) diastolic and systolic blood pressure (after adjustment
for blood pressure medication); 2) levels of HDL-C and
triglycerides (in individuals not receiving lipid-lowering
medication); 3) fasting levels of insulin; and 4) levels of
CRP and IL-6 (Table 2).

Stratified IV analysis showed consistent evidence for
causal effects of adiposity in all age and sex strata for
HDL-C. For the other outcomes, we found evidence of
causality in up to three of the strata (Tables 3 and 4).

Differences Between Age Strata for the Observational
and IV Analyses of the Association of Adiposity With
Outcomes
We observed significantly larger regression coefficients
in the observational analysis for BMI in the ,55-year
stratum than in the $55-year stratum for 6 of the 14
outcomes, as follows: diastolic blood pressure and levels
of LDL-C, total cholesterol, triglycerides, GGT, and CRP.
We found a smaller regression coefficient for the associ-
ation of BMI with fasting glucose levels in the ,55-year
stratum (Table 3).
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In line with the observational analysis, for these six
outcomes all IV point estimates were higher in the,55-year
stratum than in the $55-year stratum. However, these dif-
ferences were nonsignificant, except for the total cholesterol
analysis (P = 0.015).

Differences Between Sex Strata for the Observational
and IV Analyses of the Association of Adiposity With
Outcomes
In observational analyses, we observed larger regression
coefficients in men than in women for associations of
BMI with systolic and diastolic blood pressure and
levels of total cholesterol, triglycerides, ALT, GGT, and
fasting insulin. In line with the observational analysis
for these seven outcomes, all IV point estimates were
consistently higher (but not significantly different) in
men than in women, with the exception of triglycerides
and ALT. There were larger effects of adiposity on CRP
levels in women than in men in the observational
analysis, and, in line with this, the IV point estimate
was higher for women, but again was not significantly
different (Table 4).

Differences Between Observational Analysis and IV
Analysis
We found the IV estimates for diastolic blood pressure and
fasting glucose level to be significantly reduced or abolished
compared with the observational estimates in the$55-year
stratum (Table 3). This finding implies the presence of con-
founding of the observational results for these outcomes in
the old stratum, which was not as prominent in the young
stratum. We also found that the IV was significantly smaller
than the observational estimate for fasting insulin levels,
both in nonstratified analysis and for ,55-year stratum.
Further, the IV estimates in women were found to be sig-
nificantly smaller than the observational estimates for di-
astolic blood pressure.

Instrumental Variable Analysis Using FTO
In secondary analyses, we performed random-effects
meta-analysis of the association between FTO variant
and BMI in the 30 studies (n = 141,800) that showed
a positive effect of the A-allele of rs9939609 on BMI
(0.081 SD units per additional A-allele [95% CI 0.070–
0.091], P = 1.4 3 10250) (Table 1). The results using
FTO as an IV are presented in Supplementary Tables 7,
8, and 9. Overall, the results were similar in directions
and effect sizes to those using the genetic score. Because
the sample size was much larger for the FTO instrument
for some outcomes, the FTO IV estimates were in some
instances more precise (smaller SEs) with respect to the
estimates using the genetic score. In addition to the find-
ings presented above, the FTO analysis provided evidence
of a causal effect of adiposity on ALT activity. Further, the
IV estimate using FTO was significantly higher for men
than for women for fasting insulin level (P = 0.01), a result
that is consistent with the observational estimate (Sup-
plementary Table 9).
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DISCUSSION

In this Mendelian randomization study, we extended
previous efforts to assess causal effects of adiposity on
cardiovascular risk factors by examining this relation across
age and sex groups. We based our estimations on associ-
ations of genetic instruments with 14 cardiovascular risk
factors in up to 67,553 individuals in primary analyses and
116,443 individuals in secondary analyses. We provide
evidence for causal effects of adiposity on blood pressure
(systolic and diastolic), circulating levels of lipids (HDL-C,
triglycerides), glucose homeostasis (fasting insulin levels),
and markers of inflammation (CRP, IL-6). Similar to what
was seen in the observational analysis, causal estimates for
the effect of adiposity on markers of inflammation, liver
damage, lipid levels, and blood pressure were consistently
larger in the ,55-year stratum than in the $55-year stra-
tum, although most of these differences were not statisti-
cally significant in the IV analyses. Further, in IV analyses,
the point estimates of the effect of adiposity on systolic
and diastolic blood pressure were larger in men than in
women. For markers of inflammation, we observed the
reverse (i.e., larger causal estimates in women than in
men). We observed a larger causal effect of adiposity on
fasting insulin levels in men than in women when using
the FTO instrument. We found that several estimates
from the observational analyses were significantly differ-
ent from the causal estimates in the old stratum.

Causal Effects of Adiposity on Cardiovascular Risk
Factors
We confirm previous evidence that adiposity causally
affects a broad range of cardiovascular risk factors.
Adipose tissue has been shown to secrete .50 hormones

and signaling molecules, many of them being proinflam-
matory or anti-inflammatory, and thereby exerting effects
on insulin sensitivity (25). Adipose cells from obese indi-
viduals have higher secretion of proinflammatory cyto-
kines such as tumor necrosis factor-a and IL-6 than
cells from lean individuals (26), as well as increased se-
cretion of adiponectin, which has been shown to increase
insulin sensitivity (27). Decreased insulin sensitivity (i.e.,
insulin resistance) has been suggested to be a major link
between obesity and cardiovascular risk factors such as
hypertension, dyslipidemia, nonalcoholic fatty liver dis-
ease, and type 2 diabetes (28–30). Nevertheless, the met-
abolic consequences of obesity are complex. For example,
nonalcoholic fatty liver disease is known to increase
insulin resistance regardless of obesity, and thereby to
increase the risk of diabetes. The results of the current
study do not elucidate the precise mechanisms of how
adiposity leads to the various metabolic phenotypes but,
rather, clarify and quantify the causal role of adiposity
and delineate its role in different age and sex groups.

Sex Differences in the Effects of Adiposity on
Cardiovascular Risk Factors
Men and women show a sexual dimorphism in body fat
proportion and distribution, and for a given BMI, women
have more adipose tissue than men. However, men are
more likely to deposit visceral fat in the abdominal region,
while women tend to deposit their fat subcutaneously and
in their lower extremities. Excess adipose tissue in the
abdominal region, especially visceral fat, is associated with
many of the cardiovascular risk factors (31). We found
a stronger association of BMI with blood pressure, insu-
lin, liver markers, and circulating lipids in men than in

Table 2—Nonstratified observational and IV analyses based on a genetic score of the association of adiposity with
cardiovascular risk factors

Observational analyses IV analyses

n b (95% CI) P* n b (95% CI) P* PIV-obs*

Diastolic blood pressure 117,230 0.25 (0.23–0.27) 2.5 3 102136 66,997 0.15 (0.03–0.26) 0.01 0.08

Systolic blood pressure 117,781 0.22 (0.20–0.24) 2.3 3 102101 67,553 0.16 (0.04–0.28) 0.01 0.31

Fasting glucose 69,110 0.19 (0.15–0.22) 2.9 3 10226 37,181 0.09 (20.01 to 0.19) 0.07 0.06

2-h post-OGTT glucose 22,204 0.19 (0.11–0.27) 5.9 3 1026 4,596 0.11 (20.19 to 0.40) 0.48 0.61

HbA1c 29,451 0.16 (0.11–0.21) 5.1 3 10210 26,901 0.19 (0.01–0.36) 0.03 0.79

ln fasting insulin 40,165 0.48 (0.44–0.52) 1.2 3 102127 24,614 0.31 (0.17–0.45) 9.6 3 1026 0.02

ln CRP 71,960 0.33 (0.30–0.36) 2.7 3 102102 47,781 0.30 (0.20–0.41) 8.8 3 1029 0.56

ln IL-6 11,878 0.13 (0.06–0.19) 2.0 3 1024 10,285 0.26 (0.08–0.45) 0.01 0.18

HDL-C 93,015 20.28 (20.29 to 20.26) 5.8 3 102211 58,387 20.33 (20.42 to 20.24) 1.1 3 10212 0.29

LDL-C 86,793 0.11 (0.08–0.14) 5.7 3 10217 52,858 0.08 (20.02 to 0.19) 0.11 0.64

Total cholesterol 107,741 0.08 (0.06–0.10) 9.7 3 10215 59,329 0.00 (20.11 to 0.11) 0.97 0.17

ln triglycerides 101,709 0.31 (0.30–0.32) ,1 3 102300 54,417 0.23 (0.12–0.34) 2.7 3 1025 0.18

ln ALT 45,473 0.23 (0.19–0.26) 6.5 3 10231 23,927 0.09 (20.09 to 0.26) 0.32 0.13

ln GGT 71,859 0.22 (0.20–0.24) 4.3 3 10287 26,831 0.15 (0.00–0.29) 0.04 0.35

All models were adjusted for sex and age. b (95% CI), effect per SD change of BMI on trait (SD scale); PIV-obs, P value from test of
difference between observational and IV analyses. *A nominal P value of ,0.022 is considered significant at a 5% FDR level.
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women in the observational analyses. Also, our results
from the causal analyses using the FTO as an instrument
suggest that a given increase in overall adiposity causes
larger detrimental effects on insulin sensitivity in men
than in women. This observation is consistent with pre-
vious observational studies and extends these results by
demonstrating the difference in causal (IV) estimates
(12,32). Moreover, in the observational analyses, we ob-
served larger effect estimates of adiposity on CRP in
women than in men, which is consistent with previous
findings (33). It has been speculated that this sex hetero-
geneity could originate from differences in adipose endo-
crine function (34–36).

Age Differences in the Effects of Adiposity on
Cardiovascular Risk Factors
The proportion of visceral adipose tissue generally
increases with age, particularly among men and post-
menopausal women, leading to increased insulin resis-
tance (11,37). Weight loss in older people has been shown
to reduce inflammatory markers but also to reduce muscle
mass and bone mass density. This has led to a debate
about whether weight loss interventions should be recom-
mended at all to elderly obese individuals (38). Because of
this apparent differential effect of weight changes in older
and younger people, we carried out the analyses after
stratification of participants according to age (,55 or
$55 years). We chose the age cutoff of 55 years for the
following reasons: 1) to achieve comparable numbers of
studies with information available for the two age strata
and 2) most women have entered menopause by 55 years
of age. For power reasons, we could not stratify on more
than two age groups. We found associations between ad-
iposity and markers of inflammation, liver damage, blood
pressure, and lipid concentrations to be attenuated by age
and only the association with fasting glucose to be aug-
mented. Differences in causal point estimates between
the two age strata were more extreme than the differ-
ences in observational estimates, with an almost abol-
ished effect of adiposity on several traits such as blood
pressure in the $55-year stratum using IV analysis, al-
though formal statistical tests for differences were, in
general, nonsignificant (likely due to the inherent lower
precision of causal than observational estimates). Our ge-
netic score instrument was stronger in the ,55-year age
group than in the $55-year age group, as can be seen
from a fourfold difference in F statistic values. This dif-
ference yielded slightly larger SEs for the IV estimates in
the $55-year-old group, but should not bias the point
estimates. The observed age-declining effects of adiposity
on nonglycemic traits, such as blood pressure and circu-
lating lipid levels, are in line with the limited prior liter-
ature (13,15). We speculate that these results could be
caused by age-related changes in vascular biology and
lipid metabolism, or could be explained by survival bias
or a greater prescription of lipid-lowering therapy in
older obese individuals. Further, we found that several

of the estimates derived from cross-sectional observa-
tional analysis were significantly larger than IV estimates
in the $55-year stratum. We believe that the IV estimates
are better estimates of the causal effect of adiposity
on cardiovascular risk factors, and that observational
estimates in this age group should be interpreted with
caution. We speculate that the observed error in the
observational analysis is caused by confounders, such
as the presence of other diseases or subclinical CVD,
not accounted for in the models that can affect both
BMI and CVD risk factors.

Strengths and Limitations
The main strengths of the present investigation include
the large study size, allowing for age and sex stratification
and the examination of a wide range of cardiovascular risk
factors. The limitations are mainly related to the validity
of the assumptions underlying causal interpretation
within Mendelian randomization studies, as follows: 1)
independence between the instrument and confounders
(i.e., genotypes are randomized); 2) a reliable association
between the genetic variant and intermediate phenotype;
and 3) conditional independence between the genetic var-
iant and the outcome, given the intermediate phenotype
and the confounders (i.e., lack of pleiotropy) (9).

Possible violations of the first and the third assumptions
include population stratification, pleiotropic effects, cana-
lization, epigenetic effects, and the presence of genes
associated with confounders and outcomes in LD with
the genetic variants used. Neither the first nor the third
assumption can be tested statistically, and conclusions
about the validity of these assumptions in a given study
have to be based on previous biological knowledge. In the
current study, all association analyses were performed
within each study separately (including individuals from
a similar genetic background), and all studies included only
individuals of European ancestry. Hence, bias from pop-
ulation stratification is deemed unlikely. With regard to the
possibility of pleiotropic effects by genes included in the
genetic score, we acknowledge that for most loci, neither
the causal genes nor their precise effects are known. A
combined genetic score, such as the one used in our study,
has been suggested to balance the possible pleiotropic
effects of some included SNPs (39), but there is controversy
about this notion (40). Some of the SNPs with the largest
effect on BMI, such as for variants in the close vicinity to
FTO and MC4R, also come up in genome-wide association
studies for other traits, such as HDL-C. The effects on non-
BMI traits are usually proportional to their effects on BMI
itself, which is a sign of mediation rather than a sign of
these SNPs being pleiotropic (41). Finally, we found similar
results when using the genetic score compared with those
using the single SNP instrument, which argues against
strong pleiotropic effects as the explanation of our results.

Another limitation is that, despite the very large sample
size and strong associations of the instruments with BMI,
our analysis still obtained results with wide CIs for the IV
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estimators, highlighting modest power. The sample sizes in
IV analyses varied with phenotype and strata from 2,077
individuals (age ,55 years, 2-h post-OGTT glucose levels)
to 67,553 individuals (nonstratified analysis, systolic blood
pressure), yielding larger SEs in the smaller groups, and
lower statistical power to detect causal effects and differ-
ences between strata. This should be taken into consider-
ation when interpreting the results. Based on a pilot study
(data not shown), we chose to use a nonweighted genetic
score. The use of such a nonweighted score compared with
a weighted score in IV analysis has been evaluated by
Burgess and Thompson (40) under different settings, and
was found to yield less power but unbiased IV estimates.
They further conclude that mis-specifications of the genetic
model, such as nonlinear genetic effects, or effect modifi-
cations by variant-variant or variant-environment interac-
tions do not lead to significant bias.

Conclusion
For the first time in a large Mendelian randomization
study, we applied stratified analysis to assess differences
in the causal effect of adiposity on cardiovascular risk
factors across age and sex groups. For total cholesterol
levels, causal and observational estimates were larger in
the ,55-year stratum than in the $55-year stratum,
a finding that could be explained by biology, survival
bias, or differential medication in older obese subjects.
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