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behavior-genetic studies of twins, siblings and other pairs of relatives are very useful to 

identify the heritable components of complex traits such as those related to well-being (WB). 

From these studies, we know that individual differences in well-being are accounted for by 

both genetic as well as environmental factors, although the range in estimates is large and 

varies between 0%
1
 and 64%

2
. From a recent systematic review study, we know that the 

average heritability for WB tends to hover around 40%
3
. These heritability studies, based on 

both classical and extended twin designs, are valuable, as they allow us to gauge the relative 

influence of our genetic make-up on WB. Nevertheless, it is important to note that classical 

twin designs do not give insight into the specific genomic regions that may be involved in 

explaining the heritability of well-being. One of the most exciting directions for research in 

behavioral genetics is the combination of quantitative behavioral genetics and molecular 

genetics in an attempt to identify the specific genes underlying the substantial heritability 

estimates of complex behaviors. Although the GWAS Era is in full bloom in 2018, many 

obstacles has to be conquered to get to this point. Therefore, the present chapter can be seen as 

an overview of molecular genetic studies trying to associate genetic variants to WB up until 

2014, the beginning of my PhD trajectory. 

Linkage analysis 

Traditionally, the search for genes involved in both normal behavior and behavioral disorders 

began with linkage aannnalysis, aimed at localizing genetic variants that regulate a trait of 

interest. It is well known that during recombination, deoxyribonucleic acid (DNA) is not 

copied straightforwardly from parents to offspring, but shuffled to create a “unique” DNA 

template. Linkage studies rely on the assumption that genes located closer to each other are 

more likely to be transmitted together (linked) than genes that are located separately on a 

chromosome. Therefore, within linkage analysis, the distance between a DNA marker (i.e., a 

landmark of known location in the genome) and a locus involved in a particular phenotype is 

analyzed in small numbers of large multigenerational pedigrees. For linkage analysis to 

succeed, markers that flank the trait of interest must co-segregate along familial lineages in 

extended pedigrees. This method has been very successful in mapping rare genetic diseases of 

large effect, such as DNA linkage for Huntington’s Disease on chromosome 4
4
.  

  

 

 



Linkage analysis: complex traits 

Although linkage analysis of large pedigrees has been very effective for locating genes for 

rare single-gene disorders, it is less powerful when many genes with small effect sizes are 

involved in the trait of interest. To overcome this problem, the “classical” linkage analysis has 

to be extended in a way to gain more power to detect genes with smaller effect sizes. With the 

development of the quantitative trait loci (QTL) linkage design, these problems could be 

(partly) addressed. Rather than studying large pedigrees in a few families, this method studies 

many families with a small number of relatives, usually siblings. QTL linkage examines allele 

sharing between two individuals of a sibling pair, also known as identity-by-descent (IBD). 

Full siblings receive each an allele from the father as well as an allele from the mother. The 

total IBD value of a sibling pair can therefore range between 0 and 2. QTL linkage is based on 

the assumption that linkage is supported if sibling pairs with two alleles IBD are significantly 

more alike on the (complex)-trait of interest than sibling pairs that share only 1 or 0 alleles 

IBD, respectively. The strength of linkage is denoted as a logarithm of odds (LOD) score, 

which compares the likelihood of whether two loci are indeed linked to the likelihood that the 

observed linkage is present purely by chance. The first success for QTL linkage studies came 

with the identification and replication of linkage for reading disability on chromosome 6 

(6p21)
5
, but QTL linkage has also been successful for complex traits. For instance, Cloninger 

et al.
6
 found a significant linkage between the personality trait Harm Avoidance, a measure of 

anxiety proneness, and a locus on chromosome 8 which explained 38% of the trait variance.  

Linkage analysis and well-being 

To date, only one genome-wide linkage study has been performed to disentangle sources of 

individual differences in happiness
7
. Happiness was assessed with the four-item Subjective 

Happiness Scale
8
, and a total of 1,157 offspring from 441 families were genotyped with an 

average of 371 micro-satellite markers per individual. Using QTL linkage, authors found 

suggestive linkage (LOD score of 2.73, p = .10) at the end of the long arm of chromosome 19 

(q13.43) and at the short arm of chromosome 1 (LOD score of 2.37, p = .21). This result 

indicates that happiness might be positively associated with particular genes located in these 

genomic regions. However, after closer inspection, none of the genes (e.g. DUXA, AURKC, 

USP29, and several zinc finger protein genes) appeared to play a plausible role in happiness. 

For instance, DUXA genes are thought to be involved in early embryonic development, 

whereas USP29 is associated with Angelman Syndrome. In addition, zinc finger proteins are 

one of the most abundant proteins in the genome with extreme diverse functioning, including 



DNA recognition, RNA packaging, and transcriptional activation
9
. 

Association studies 

Candidate genes 

Over the past few years, linkage analysis has lost its predominance in favor of allelic 

association analysis. In contrast to linkage studies, which are very systematic but often suffer 

from a lack of statistical power, association studies are more powerful but were initially less 

systematic. Association studies are more powerful because they do not rely on recombination 

within families as in linkage analysis, but simply compare allelic frequencies for groups such 

as low-scoring versus high-scoring individuals on a quantitative trait
10

. However, the strength 

of allelic association is also its biggest weakness, as allelic association can only be detected if 

a DNA marker is itself the functional genetic variant (i.e. direct association) or is located 

closely to the functional variant (i.e., indirect association or linkage disequilibrium). As a 

consequence, hundreds of thousands, or even millions of DNA markers must be genotyped in 

order to capture genetic variation across the genome. Therefore, for a long time, allelic 

association has been used primarily for fine-mapping of linkage regions and testing of 

potential candidate genes rather than scanning the genome in a systematic way. There are 

several strategies for the selection of candidate genes. For instance, the selection of genes 

based on their hypothesized involvement in physiological systems thought to influence the 

trait of interest or selection of chromosomal regions in animals that are known to influence the 

trait of interest as a starting point. To date, there are only two candidate gene studies that 

investigated subjective well-being (SWB), one involving the serotonin transporter gene (5-

HTTLPR) and the other the Monoamine oxidase A (MAOA) gene which encodes the MAO-A 

enzyme. 

Candidate genes: serotonin and life satisfaction 

The neurotransmitter serotonin is believed to play an important role in human mental states 

and is therefore one of the most intensively studied neurotransmitters in the central nervous 

system (CNS). When serotonin is released in the synaptic cleft, serotonin transporters that are 

placed in the cell wall will recycle most of it. The 5-HTT gene that encodes for this 

transporter contains a VNTR in the promotor region (5-HTTLPR). As a result, the serotonin 

transporter gene promotor region exists as a “long” or “short” variant, although three 

additional but more rare variants have recently been discovered
11

. Although these alleles all 

produce the same protein, the long allele (L-allele) is associated with a three times higher 



activity than the shorter allele (S-allele) and produces significantly more serotonin 

transporters
12

. The consequences of these different genetic variants are increasingly 

understood. For instance, it has been shown that in carriers of the S-allele, the amygdala was 

increasingly active to negative emotional stimuli
13,14

. In addition, another study found that 

individuals carrying the L-allele have a significant bias towards positive information and 

selectively avoid negative information
15

. Based on these studies, variation in the promotor 

region of 5-HTTLPR seems to be a promising candidate for individual differences in SWB. It 

is therefore no surprise that this gene was chosen in a study performed by De Neve and 

colleagues
16,17

, who hypothesized that the L-allele of the 5-HTTLPR gene would be 

associated with a higher level of life satisfaction than the S-allele.  

 

In their first study, genetic information was available from 2,574 individuals, including 

markers that identify alleles of the serotonin 5-HTT promotor gene. The included participants 

were asked to answer the following question: How satisfied are you with your life as a 

whole?, and response categories ranged from 1 (“very dissatisfied”) to 7 (“very satisfied”). By 

comparing allelic frequencies between low-scoring and high-scoring individuals, it was found 

that participants carrying the L-allele (i.e., the more efficient variant of the serotonin 

transporter gene) reported significantly higher levels of life satisfaction. Two independent 

samples were used to replicate this interesting finding
17

. The first sample consisted of 3,460 

individual’s that were genotyped using the European HAPMAP sample, which contain an 

alternative marker (rs2020933) associated with the transcription of serotonin transporters
18–20

. 

Participants were asked to answer the following life-satisfaction question: Indicate where you 

think you belong between these two extremes: (1) satisfied with job or home life, or (2) 

ambitious, want change. Respondents could provide an answer on a seven-point scale and the 

coded scale was reversed so that higher values indicated greater life satisfaction. Although 

both, the DNA marker as the life satisfactory question were slightly different from the first 

study, a positive and statistically significant association between the more efficient A-allele of 

the rs2020933 marker and increased life satisfactory was found. The second sample extended 

the first discovery study, which was made possible due to a new release of genomic data (N = 

10,163). Association models were identical to those described in the earlier mentioned 

discovery sample, but a significant association was no longer found between carriers of the L-

allele and life satisfaction in this new sample nor in a pooled sample consisting of the 

discovery sample and the new released genomic data (N = 12,391).  

 



Together, these results produce some mixed results indicating that more research is needed to 

test the hypothesis regarding the association between the 5-HTTLPR L-allele and life 

satisfaction. Moreover, the complete absence of any significant association between this gene 

variant and life satisfaction in the second replication study raises doubts whether this gene 

should be considered a suitable candidate gene for life satisfaction. Importantly, most 

molecular genetics studies have been studying this genetic polymorphism predominately in 

relation to depression and response to negative stimuli
13,14,21

. Given that the absence of 

depression of negative emotion is not the same as happiness, the role of 5-HTTLPR in 

processes related to well-being is currently unclear
22

, although some studies suggest that the 

5-HTTLPR short allele may increase the positive response to supportive exposures. 

Candidate genes: MAOA and happiness in women  

The second candidate gene study focused on a well-being phenotype, investigated the 

involvement of the monoamine oxidase A (MAOA) gene in modulating happiness
23

. The 

MAOA gene is located on the X chromosome
24

 and encodes the MAOA enzyme, which 

metabolizes (i.e., rendering inactive) neurotransmitters such as norepinephrine (NE), serotonin 

(5-HT), and dopamine (DA)
25

. Just as the serotonin transporter gene (5-HTTPR), the MAOA 

gene possesses a VNTR polymorphism resulting in a short allele that is associated with lower-

activity (L-allele) and a long allele which is associated with high activity (H-allele)
26

. In some 

studies, the L-allele has been associated with maladaptive outcomes such as alcoholism
27

, 

aggression
28

, and antisocial behavior
29

. Because of its putative involvement in mood 

regulation, it was hypothesized that the MAOA gene also plays a role in happiness. To test 

this hypothesis, 193 women and 152 men were assessed for the MAOA genotype. Happiness 

was assessed with the four-item Subjective Happiness Scale
8,30

 and responses were combined 

and averaged to provide a single continuous score, ranging from 1 to 7. Since MAOA is an X-

linked gene, women can be classified as having high (HH), intermediate (LH), or low (LL) 

MAOA activity, whereas men can only be classified by having high (H) or low (L) activity, 

since males only have one X chromosome.  

 

Among male participants, no differences in level of happiness were observed between carriers 

of the L-allele and H-allele variant of the MAOA gene. Interestingly, females carrying two L-

alleles reported significantly higher level of happiness (M = 5,83, SD = 0,75) compared to 

females carrying both the L- and H-allele (M = 5,50, SD = 1,00) or carrying two H-alleles (M 

= 5,30, SD = 0,97), respectively, indicating that there seems to be a gender difference in the 



association between MAOA genotype and perceived happiness. 

 

However, these results should be interpreted with caution. First, there is inconsistency in the 

literature about the role of L-allele in behavior. As mentioned, different studies associate this 

variant with stress, aggressiveness, and antisocial behavior
27–29

, although there are also studies 

suggesting that L-allele carriers are more susceptible to positive experiences
31

. Therefore, 

more research is needed in order to understand the relation between the MAOA genotype and 

behavior more generally. Second, the main effect is based on a relatively small, probably 

underpowered sample size. In candidate gene studies, first findings often suggest a strong 

genetic effect that tends to be a lot weaker or no longer significant in replication studies. This 

is also known as the winners-curse and replication of this study is therefore warranted. 

 

Genome complex trait analysis  

In summary, while linkage analysis is systematic but not powerful, candidate gene allelic 

association studies are the opposite—able to detect genes with small effect sizes but only with 

a priori knowledge. So far, using these two approaches, no convincing evidence emerged for 

the identification of specific genes associated with well-being. A valid question that could 

arise from these studies is whether we are currently able to explain any genetic variance in 

well-being at all. GCTA, a recently developed software tool, might provide an answer to this 

question
32

. Rather than testing the association of any particular SNP, GCTA estimates the 

variance that is explained by multiple SNPs on a genome-wide basis. In other words, GCTA 

estimates how much of the variance in a trait can be accounted for by the genetic variance 

based on common SNPs, resulting in a heritability estimate based on molecular genetic data. 

Unlike twin studies, GCTA does not require a sample of related individuals and can therefore 

discard the assumption of environmental and genetic resemblance between relatives. Although 

the method is relatively new, it has already been successfully applied to several phenotypes, 

including height
33

, intelligence
34,35

, personality traits
36

, and major depressive disorder
37

. 

Genome-wide complex trait analyses and well-being 

Recently, GCTA has been applied in order to estimate how much of the variance in well-

being could be explained by shared SNPs in a pooled sample of ~11.500 unrelated Swedish 

and Dutch individuals
38

. Well-being was measured using the positive affect items (“During 

the past week, I was happy” and “During the past week, I enjoyed life”) from the Center for 

Epidemiology Studies Depression Scale (CES-D)
39

. In addition to separate analyses for each 

item, scores of the two items were combined to generate an overall well-being measurement. 



Using GCTA, it was estimated that 5–10% of the variance in well-being was accounted for by 

shared SNPs of unrelated individuals when measured with single-item well-being questions. It 

is likely that this estimation is attenuated by measurement error given that well-being, as 

measured in this study, was based on only two questionnaire items. Hence, a correction for 

measurement error of the well-being measures was applied, which raised the point estimate to 

the range of 12–18%. This estimation is in line with a large twin study
40

 yielding an additive 

genetic effect in the 10–20% range. Together, these results imply that SNPs, measured on 

existing platforms, do explain a significant proportion of the population variance in well-

being. Therefore, future genome-wide large-scale efforts to search for SNPs associated with 

well-being are relevant and have potential for success.  

Genome-wide association 

The main reason why genetic association studies were not performed on a genome-wide 

scale—until recently—is easy to explain: they were simply too expensive. To illustrate this, 

genotyping of 500,000 SNPs in 1,000 individuals would require 500 million analyses. In the 

beginning of the allelic association era, such an effort would have cost tens of millions of 

dollars. This is why allelic association studies were initially restricted to candidate genomic 

regions. Nowadays, however, whole-genome SNP panels can be genotyped across many 

samples for relative low costs, and more than nine thousand studies for a great diversity of 

disease or traits have been published, which led to the discovery and replication of several 

novel gene loci for many phenotypes
41

. Such success was primarily restricted to medical and 

(some) psychiatric traits. However, a recent GWAS on educational attainment (N = 126,559) 

yielded three genome-wide significant SNPs which replicated Rietveld et al.
42

. 

 

GWAS are an extension of the allelic association model used in candidate gene studies. The 

ultimate aim of the GWAS design is to capture all common genetic variations across the 

genome and test for associations between this genetic variation and a trait of interest. In other 

words, GWAS is explicitly designed to detect genetic variants under the common-disease 

common-variant (CDCV) model for complex traits or diseases. The CDCV hypothesis 

postulates that a significant proportion of the phenotypic variation in a population is largely 

due to many common variants of small effects, suggesting that association with a given trait is 

largely due to common variants
43

. According to a recent review
44

, GWAS have identified 

>100 loci for schizophrenia (SCZ), while only 20 loci for Alzheimer’s Disease (AD), eight 

loci for bipolar disorders (BIP), one locus for autism disorder spectrum (ADS), and none for 



attention deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), major depressive 

disorder (MDD), obsessive compulsive disorder (OCD), and Tourette’s syndrome (TS). The 

overt success for SCZ could be largely explained by the large sample size, which was 

achieved by the Psychiatric Genomic Consortium (PGC) which combined data from more 

than fifty studies (>35,000 cases compared with a maximum of ~17,000 cases for any other 

disorder). Importantly, sample size is only one of several factors to be considered in GWAS. 

Another significant influence is the distribution of the phenotype in the population, with 

studies focused on less frequent phenotypes having generally more power to detect SNPs
45

. 

Higher ratings of well-being are likely to be more prevalent in the population than most 

psychiatric disorders. As a consequence, the sample size to detect SNPs associated with well-

being should be bigger than any existing GWAS of psychiatric illness. 

GWAS and well-being 

To accomplish such an enormous sample size, a large genome-wide association meta-analysis 

on SWB is currently under way within the Social Sciences Genetic Association Consortium 

(SSGAC) (<http://www.ssgac.org>). This study consists of at least 34 cohorts and will 

include ~150.000 individuals, which will yield a power of approximately 50% to detect SNPs 

with a minor allele frequency (MAF) of 3%. After the discovery and replication phase, meta-

analyses on positive affect and life satisfaction will be conducted in order to explain 

individual differences in SWB caused by genetic factors.  

The path between genes and behavior 

As already mentioned, quantitative behavioral genetic research consistently reports that 

heritable factors contribute substantially to the population variance in well-being
3
, but these 

studies do not give us insight into the specific genomic regions that are responsible for these 

differences. Molecular genetic research, which aims at identifying the specific genes 

responsible for the heritability estimates of well-being, are showing mixed results. However, 

although present efforts are somewhat disappointing, we should not forget that molecular 

research pertaining to SWB is still in its infancy. In summary, results of significant heritability 

estimates suggest that DNA variation is involved in behavioral variation and we (as 

behavioral genetics) need to puzzle out which genomic regions are associated with these 

complex traits in order to understand the molecular mechanisms, which requires not only the 

identification of genomic regions associated with well-being but also investigation of how 

these regions affect complex behavior.  



Gene expression 

A possible way to bridge this gap is the study of gene expression as a mechanism underlying 

genetics associations with complex traits. The genes that are expressed or transcribed from 

genomic DNA—sometimes referred to as the transcriptome—represent the major 

determinants of cellular phenotype and function. Transcription of genomic DNA to produce 

messenger RNA (mRNA) is the first step in the process of protein synthesis, and differences in 

gene expression are responsible for both morphological and phenotypic differences as well as 

being indicative of cellular responses to environmental stimuli and perturbation. Unlike the 

genome, the transcriptome is highly dynamic and changes rapidly and dramatically in 

response to perturbations, or even during normal cellular events such as DNA replication and 

cell division
46,47

. With the development of micro-arrays, expression of all genes in the 

genome can be assessed simultaneously using RNA transcripts as an outcome measurement.  

Gene expression and well-being 

To date, there is only one gene expression study involving SWB
48

. In their study, the 

conserved transcriptional response to adversity (CTRA) gene expression profile was used as a 

molecular reference space in which to map potentially distinct biological effects of hedonic 

and eudaimonic well-being. Hedonic well-being represents the sum of an individual’s positive 

affective experience
49

, whereas eudaimonic well-being results from striving toward meaning 

and a noble purpose beyond simple self-gratification
50

. Although eudaimonic well-being is 

sometimes explained as a “deeper” form of well-being, these two forms are highly correlated 

(r = .70) and tend to reciprocally influence one another
51,52

. CTRA is characterized by an 

increased expression of genes involved in inflammation (e.g., proinflammatory cytokines such 

as IL1B, IL6, IL8, and TNF), whereby genes involved in type I interferon antiviral responses 

(e.g., IF1-, OAS-, and MX-family genes) and IgG1 antibody synthesis (e.g., IGJ) are down-

regulated. Activation of the CTRA response is associated with several pathological 

phenotypes, such as inflammatory mediated cardiovascular and neurodegenerative diseases, 

and impaired host resistance to viral infections
53,54

. Differential expression of the leukocyte 

CTRA was assessed in genome-wide transcriptional profiles of peripheral blood mononuclear 

cells (PBMCs) in 80 participants for whom hedonic and eudaimonic well-being was measured 

using the eight-item Short Flourishing Scale
55

. 

 

It was shown that hedonic and eudaimonic well-being, although strongly correlated with each 

other, have divergent gene transcriptional correlates in human immune cells. Eudaimonic 



well-being was associated with decreased expression of the CTRA transcriptome (e.g., less 

antiviral responses and antibody synthesis), whereas CTRA gene expression was significantly 

up-regulated in association with increasing levels of hedonic well-being (e.g., increase in 

proinflammatory cytokines). Although high levels of hedonic and eudaimonic well-being 

seem to have a divergent gene-expression profile in human immune cells, these results should 

be interpreted with caution and are subject to debate
56–59

. The discussion focuses primarily on 

the fact that the complex analyses used in the study depend entirely on distinguishing the 

highly correlated constructs hedonic and eudaimonic well-being with a self-report 

measurement conducted in a small sample. The question that arises, therefore, is whether 

proper psychometric conditions could be met to see these two philosophic definitions of well-

being as two independent constructs.  

 

Strengths, weaknesses, and opportunities 

Strengths and weaknesses  

One of the most exciting directions for genetic research in well-being involves harnessing the 

power of molecular genetics to identify the specific genes responsible for the consistently 

reported, influence of genetics on well-being outcomes. The two major strategies for 

identifying genes associated with well-being are allelic association and linkage studies. Allelic 

association has a rather simple design and calculates the correlation between an allele and 

well-being. Linkage is—like association within families—tracing the co-inheritance of a DNA 

marker and well-being within families. A great strength of the linkage approach is that it 

systematically scans the genome with only a few hundred markers in order to test for 

violations of Mendel’s law of independent assortment between well-being and a DNA marker. 

However, in most complex traits, like well-being, it is likely that many genes with small effect 

sizes are involved. Therefore, using linkage is like using the Hubble telescope: it can scan 

planets in our galaxy (large QTL effects), but will go out of focus when trying to detect the 

Apollo landing sites on the moon (small QTLs). Furthermore, linkage studies are difficult to 

replicate, which was demonstrated in a review study by Altmüller et al.
60

, who found that 

many studies of the same disease were often showing inconsistency in their results. 

 

In addition, if linkage can be compared to the Hubble telescope, candidate gene studies are 

more like a microscope with theoretically enough power to detect genes with small effect 

sizes. However, a major drawback of this approach is that these studies require the ability to 

predict functional candidate genes a priori—knowledge which is still limited despite our 



increasing understanding of biochemical pathways and the etiology of quantitative traits. For 

instance, in existing candidate studies on well-being (5-HTTLPR and MAOA), the candidate 

gene of interest were chosen based on biological pathways that—at best—are only indirectly 

linked to well-being. Furthermore, just as with linkage, candidate genes studies are extremely 

difficult to replicate
61

. Most likely, the failure of replication is due to the fact that the largest 

effect sizes of genes involved in complex traits are still much smaller than initially expected. 

In other words, the existing candidate gene studies on well-being were most likely 

underpowered to defect any genetic effects in the first place. In contrast, GWAS are 

hypothesis free and provide a relatively unbiased screening of the human genome, thereby 

enabling the discovery of previously unsuspected genetic variants. At time of writing, the 

upcoming GWAS (~150 K) on SWB is still in the pipeline, but it will be exciting to see the 

first results in the near future, which will hopefully bring us a step closer to the identification 

of genes associated with SWB.  

Opportunities 

As mentioned, the field of molecular genetics and well-being is still in its infancy, meaning 

that there are many opportunities left to unravel the genetic architecture of this increasingly 

popular topic. An interesting approach that recently generated much interest is polygenic 

score analysis. Polygenic scores are created based on the weighted sum of multiple alleles 

associated with the outcome of interest in a discovery sample. It is then tested whether the 

same score predicts the outcome in an independent replication sample
62

. There is increasing 

evidence that a substantial proportion of the phenotypic variation might be better explained by 

a combination of multiple genetic variants rather than individual variants that often fail to 

reach significance in large GWAS studies. For instance, significant associations between 

polygenic scores and well-being would imply that a genetic signal is indeed present among 

the included markers. It would therefore be very interesting to construct such a polygenic risk 

score from the forthcoming GWAS meta-analysis on SWB.  

 

Furthermore, and as mentioned at the very beginning of this chapter, well-being is influenced 

by both genetic and environmental factors. Despite a rich epidemiologic literature that is 

focused either on environmental and social influences or genetic factors, few studies to date 

have examined the dynamic interplay between genetics and environment in the prediction of 

well-being. It would therefore be very interesting to (1) investigate whether genetic factors 

(based on promising SNPs of the forthcoming GWAS on SWB) predict specific preferences 



for particular (social) environment (gene–environment correlation), and (2) whether genetic 

factors predict different degrees of environmental sensitivity, including the sensitivity to 

positive exposures. To conclude, the field of molecular genetics is a scientific field that is 

constantly in development and changes very rapidly. Technical advances will ensure that we 

will be increasingly able to explain genetic variance that is associated with well-being. 

 

  



Outline of this thesis 

 

The overarching aim of this thesis is to increase knowledge on the causes of individual 

differences in well-being, and it relationship with related traits. This is achieved through a 

series of studies aimed at identifying genetic variants associated with well-being as well as 

identifying environmental influences through epigenetic measures. 

 

Chapter 2 looks at the etiology of the association between well-being and depressive 

symptoms over the lifespan using data from over 43 thousand twins. It was shown that 

especially in adolescence and in young adults, the phenotypic correlation between well-being 

and depressive symptoms are explained by genetic effects, while in childhood genetic and 

environmental factors are equally important.  

 

Chapter 3 reports the results of the first sufficiently powered GWAS of well-being, which 

identified three genome-wide significant associations. Additionally, we found the first two 

genetic variants associated with depressive symptoms and eleven genetic variants associated 

with neuroticism. Genetic correlations between these three traits revealed the existence of a 

large shared etiology.  

 

Chapter 4 introduces two methods for multivariate genome-wide meta-analysis (GWAMA). 

We applied these methods to jointly analyze measures of well-being, depressive symptoms 

and neuroticism, collectively referred to as the well-being spectrum. We identified 319 

genetic variants associated with this well-being spectrum. Moreover, extensive biological 

analyses including gene expression in brain tissue and single cells, showed that genes 

differentially expressed in the subiculum, the ventral tegmental area, and in GABAergic 

interneurons are enriched in their effect on the well-being spectrum.  

 

Chapter 5 describes the results of the first epigenome-wide association study (EWAS) 

approach to identify differentially methylated sites with individual differences in well-being. 

Subjects in this study, were part of the longitudinal survey studies of the Netherlands Twin 

Register (NTR). We found that two CpG probes were genome-wide significant after 

Bonferroni correction. Gene ontology (GO) analysis highlighted enrichment of several central 

nervous system categories among higher-ranking methylation sites 

 



Chapter 6 examines epigenome-wide analyses of well-being through direct measurement 

(EWAS) and Mendelian Randomization (SMR). We found little correlation between the 

EWAS and SMR analyses suggesting that the associations we observed in our EWAS are 

mainly driven by processes other than pleiotropy or a direct causal effect of CpG methylation 

on well-being. 

 

Chapter 7 provides a comprehensive review to investigate how much evidence there is for a 

conceptual overlap between subjective well-being (SWB) and psychological well-being 

(PWB). We found that SWB and PWB are related constructs that are likely domains of a 

general factor well-being. However, while the constructs are related, they are not 

interchangeable and can be distinguished both conceptually and biologically.  

 

Chapter 8 reports the first two genetic variants associated with eudaimonic well-being as well 

as six genetic variants associated with hedonic well-being. Moreover, a large shared genetic 

etiology between both measures was observed indicated by the large genetic correlation and 

similar patterns of genetic correlations with related traits (e.g. depressive symptoms, 

personality, and loneliness). 

 

Chapter 9 expands the interrelation among well-being, neuroticism, and depressive 

symptoms which we refer to as the 3-phenotype well-being spectrum (3-WBS). Based on 

polygenic scores and genetic correlation analyses of multiple related traits, we found that self-

rated health as well as loneliness are important aspects influencing well-being.  

 

Chapter 10 concludes with a reflection on the current state of the field of molecular genetics 

of well-being and provides a perspective on promising ways for future endeavors in the field.  
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Table 10.1 Overview of molecular genetic studies involved in subjective well-being NA = not available; VNTR = variable-number tandem repeat; 5-HTT 

= serotonin transporter; 5-HTTPLR = serotonin-transporter-linked polymorphic region; MAOA = Monoamine oxidase A;  = Cronbach’s alpha; GREML = 

genomic-relatedness-matrix restricted maximum likelihood; CES-D = Center for Epidemiologic Studies Depression scale; CTRA = conserved transcriptional 

response to adversity; PBMC = peripheral blood mononuclear cells 

Author Sample Design N Markers Gene of Interest Measurement Well-being Main Conclusion Study 

Bartels et al., 

2010 

3.412 subjects 

711 families 

Linkage 

Analysis 

752 autosomal 

22 X-linked 

Average: 371 

(250–782) 

Average Space 

4.78 cm 

NA Subjective Happiness Scale 

Items: 4 

7-point scale 

: .86 

Two suggestive linkage peaks 

Chromosome 19: LOD: 2.73 (p = 

.095) 

Chromosome 1: LOD: 2.37 (p = 

209) 

De Neve, 2011 2.574 

(Discovery 

sample) 

Candidate 

Gene 

(serotonin 

transporter 

gene) 

7 genetic markers 

(including 5-

HTTLPR allele 

markers) 

VNTR 

polymorphism 

marker for 5-HTT 

528 bp (more 

efficient) 

484 bp (less 

efficient) 

Single Item measuring Life 

Satisfaction 

“How satisfied are you with your 

life as a whole?” 

5-point scale  



 

Individuals with the more efficient 

version of 5-HTTLPR respond 

significant higher levels of 

satisfaction (p = .001) 

  



De Neve et al., 

2012 

2.843 

(Replication 1) 

  

10.163 

(Replication 2) 

Candidate 

Gene 

(serotonin 

transporter 

gene)  

2.543.887 SNPS 

(European 

ancestry HaPMap 

sample) 

7 genetic markers 

(including 5-

HTTLPR allele 

markers) 

Rs2020933 marker 

“A” allele more 

efficient 

VNTR 

polymorphism 

marker for 5-HTT 

528 bp (more 

efficient) 

484 bp (less 

efficient) 

“Indicate where you belong 

between these two extremes. 

Satisfied with job or home life OR 

ambitious, want change” 

7-point scale 



Single Item measuring Life 

Satisfaction 

“How satisfied are you with your 

life as a whole?” 

5-point scale 



Individuals carrying the more 

efficient “A” allele respond more 

significantly to satisfied with job 

or home (p = .05) 

No significant association between 

5-HTTPLR polymorphism and 

increased levels of satisfaction (p 

= .823) 

Chen et al., 2013 345 

(193 women 

and 152 men) 

Candidate 

Gene 

(MAOA gene) 

NA VNTR MAOA gene 

promoter 

(3.5–4 repeats: high 

activity) 

(3 repeats: low 

activity) 

Subjective Happiness Scale 

Items: 4 

7-point scale  

: .86 

Significant association between 

low expression of MAOA and 

greater happiness in women (p = 

.002). In contrast, no such 

association was found in men. 

  



Rietveld et al., 

2013 

~11.500 GREML >500.000 SNPS NA CES-D Scale positive affect 

subscale 

Items: 2 

: .85 

 

Fraction of variance in SWB 

explained by common 

polymorphisms is 5–10% and 12–

18% after correction for 

measurement error. 

Fredrickson et al., 

2013  

84 Gene 

expression 

NA CTRA related gene 

set  

 

Short Flourishing Scale 

Items 8 

: .87 

CES-D Scale  

Items: 20 

: .85 

Hedonic well-being was associated 

with increased expression of 

proinflammatory genes (p .0047). 

In contrast, eudaimonic well-being 

was associated with CTRA down-

regulation (p = .0045). 
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Abstract  

Whether well-being and depressive symptoms can be considered as two sides of the same 

coin is widely debated. The aim of this study was to gain insight into the etiology of the 

association between well-being and depressive symptoms across the lifespan. In a large 

twin-design, including data from 43,427 twins between age 7 and 99, we estimated the 

association between well-being and depressive symptoms throughout the lifespan and 

assessed genetic and environmental contributions to the observed overlap. For both well-

being (range 31% –47%) and depressive symptoms (range 50%-61%), genetic factors 

explained a substantial part of the phenotypic variance across the lifespan. Phenotypic 

correlations between well-being and depressive symptoms across ages ranged from -.34 

in childhood to -.49 in adulthood. In children, genetic effects explained 49% of the 

phenotypic correlation while in adolescents and young adults, genetic effects explained 

60% to 77% of the phenotypic correlations. Moderate to high genetic correlations 

(ranging from -0.60 to -0.66) were observed in adolescence and adulthood, while in 

childhood environmental correlations were substantial but genetic correlations small. 

Our results suggest that in childhood genetic and environmental effects are about 

equally important in explaining the relationship between well-being and depressive 

symptoms. From adolescence onwards, the role of genetic effects increases compared to 

environmental effects. These results provided more insights into the etiological 

underpinnings of well-being and depressive symptoms, possibly allowing to articulate 

better strategies for health promotion and resource allocation in the future.  

 

  



   
 

Well-being plays an important role in scientific disciplines such as psychology, medicine and 

public health policy
1–3

. Also, well-being is a topic of great interest in disciplines such as 

economics with increasing numbers of studies exploring the link between economics factors 

and well-being (e.g. “whether money buys happiness”, see
4,5

). In contemporary sciences, 

well-being is often defined by a continuous spectrum of positive feelings and subjective life 

assessments, which is in line with the description of Diener and colleagues (1999), who 

explained well-being as a broad category of phenomena that includes people’s emotional 

responses, and global judgments of life satisfaction. A considerable number of studies show 

that well-being is positively associated with physical health
7
, success

8
, and longevity

3,9
. 

Additionally, well-being is associated with less mental illness, notably mood disorders and 

depressive symptoms
10–12

. To this end, the world health organization (WHO) has 

recommended that national (mental)-health policies should actively promote well-being, 

rather than focusing exclusively on the prevention of (mental)-health disorders
13–15

. Crucial, 

however, to the possible use of well-being promotion to target depressive symptom is 

knowledge on the nature of the association between well-being and depressive symptoms 

throughout the lifespan. 

Traditionally, well-being and depressive symptoms have been considered as opposite ends of 

a continuum: that low scores on depressive symptoms are considered to be indicative of high 

levels of well-being and vice versa 
16

. However, measures of well-being and depressive 

symptoms are only moderately correlated between -0.40 and -0.55 in the general population
10–

12
. This suggests that well-being and depressive symptoms belong to separable but correlated 

dimensions
16,17

. For example, it is possible to score low on psychiatric problems but not 

necessarily score high on well-being, or to score high on psychiatric problems and exhibit 

high levels of well-being
11,17,18

. Whether well-being and depressive symptoms are two sides of 

the same coin is still widely debated, and more research is needed to understand the 

commonalities and specificities underlying this association.  

Twin-family studies are important in unraveling phenotypic associations. More specifically, 

twin studies can be used to examine the role of shared genetic and environmental influences in 

the relationship between traits
19

, and have demonstrated that genetic factors play a substantial 

role in explaining the observed phenotypic correlation between well-being and depressive 

symptoms
10,20–23

. For example, genetic influences explain between 33% and 66% of the 

phenotypic association between well-being and depressive symptoms in adolescents
10,20

. Twin 

studies on the association between well-being and depressive symptoms in adult populations 



   
 

yield similar bivariate heritability estimates ranging between 40% and 74%
21–23

. Additionally, 

these studies report genetic correlations (a quantification of the extent to which two traits are 

influenced by the same genes) between well-being and depression in the range of -0.55 to -

0.79, which is consistent with a recent large scale genome-wide association study that 

reported a genetic correlation of -0.75
24

.  

While these findings extend our knowledge on the association between well-being and 

depressive symptoms, some limitations exist. First, the current literature is limited to 

adolescent
10,20

 and adult samples
17,21–23

. Given the growing interest in well-being promotion 

across the lifespan
14,15

, and the interest of policy makers in early-years interventions to reduce 

childhood risks
25

, it is important to extend these studies to younger ages. Second, studies thus 

far focused on a specific age group, namely either adolescence or adulthood. As a result, the 

current literature lacks a perspective on the well-being - depressive symptom relationship 

throughout the lifespan. Given the complex development of depressive symptoms from 

childhood into adulthood
26

, the changing genetic and environmental architecture of depressive 

symptoms over age
27

, and the genetic stability of well-being
28,29

, it is possible that 

contributions of genetic or environmental factors to the relationship between well-being and 

depressive symptoms vary over the lifespan. Therefore, a genetically informed study from 

childhood to adulthood is required to provide the necessary insights into the sources of 

phenotypic overlap between well-being and depression and thereby detect possible vulnerable 

but also malleable periods.  

In sum, the aim of the present study is to evaluate the contributions of genetic and 

environmental factors to the association between well-being and depressive symptoms over 

the lifespan using an informative twin-design. Doing so, we provide better insight into the 

etiological underpinnings of the association, possibly articulating more targeted models of 

well-being promotion.  



   
 

Method 

Sample 

Participants were registered with the Netherlands Twin Registry (NTR), which consists of the 

Young NTR (YNTR)
30

 and the Adult NTR (ANTR)
31

. Subject recruitment is ongoing and is 

voluntary, for example, through the website of the register 

(https://www.tweelingenregister.org/) and through the “Dutch association for parents of 

multiples”, NVOM (https://www.nvom.nl/). The YNTR twins were registered with the NTR 

as newborns and were followed throughout childhood and adolescence. Parents completed 

questionnaires concerning their children when the children were approximately 1, 2, 3, 5, 7, 

9/10, and 12 years old. The parents were asked for consent to send their children self-report 

surveys from age 14 onwards. Given parental consent, twins and their non-twin-siblings 

received an online or a paper self-report survey when they were 14, 16, or 18 years old. When 

young twins reached the age of 18, they were enrolled in the ANTR. The ANTR includes 

adolescence and adults, who were recruited through city councils and by other means
31

, and 

who receive self-report questionnaires every 2 to 3 years. Participants are allowed to 

unsubscribe at any moment. 

The current study included all twins between the ages 7 and 99 years, with data on either or 

both well-being and depressive symptoms. Specifically, we included twins from the YNTR at 

age 7, 9/10, 12, 14, and 16 years old. Data from several age groups are collapsed, because of 

the relatively recent addition of well-being questions to the survey studies of the NTR. ANTR 

participants were divided in young adults (age-range 18-27 years) and adults (>27 years). We 

decided on the age bracket of 27 years for the following reasons. First, this cut-off is in line 

with earlier twin studies involving comparable traits
27

. Second, in the Dutch population, the 

late twenties are characterized by new “life events” such as fulltime working live, considering 

marriage and having children
32,33

. Third, in order to obtain reliable estimates a minimum 

sample size is essential. With a cut-off at age 27 reasonable sample sizes are obtained in each 

age group. The total dataset comprised 42,427 twins, including 16,089 monozygotic (MZ) and 

26,338 same-sex and opposite-sex dizygotic (DZ) twins. The majority (54.6%) participated in 

more than one NTR survey study; with 16.9% taking part 3 times or more. Participants came 

from all regions of the Netherlands, both rural and urban areas, and were primarily Caucasian. 

For a detailed overview of included participants in the different age bins for well-being and 

depressive symptoms respectively see Supplementary Table 1 and Supplementary Figure 

1.  



   
 

Measures 

Maternal and self-report ratings based on the Cantril ladder
34

 were analyzed for children and 

(young) adults. The ladder has 10 steps where step 10 indicates the best possible life, and step 

1 indicates the worst possible life. Participants were asked to indicate well-being by choosing 

the step which corresponded to the evaluation of their general well-being (self-ratings, age 14 

>) or the general well-being of their child (maternal ratings, age 7 – 12). In our previous 

work
35

, we report on moderate to strong positive correlations between the Cantril ladder and 

other measures of well-being (see also Adamson 2013; Helliwell et al. 2017). This measure is 

frequently used (e.g. see
5
. Test-retest analyses showed test-retest correlations between 0.66 

and 0.70;
37

 as well as a substantial degree of concurrent validity with multi-item well-being 

scales (correlation between 0.62-0.64;
38

). 

Depressive symptoms were assessed by the ‘Anxious/Depressed’ subscale of the age-

appropriate survey of the Achenbach’s System of Empirical Based Assessment (ASEBA). At 

ages 7, 9/10, and 12, maternal reports on the Child Behavior Checklist (CBCL/4-18;
39

 were 

collected. Participants in the age range 14-16 years, completed the Youth Self Report 

(YSR;
40

) and adults completed the Adult Self Report (ASR;
41

). The instruments were 

designed to measure comparable constructs over the ages. All instruments collect symptom 

information on a 3-point scale, ‘Not true’, ‘somewhat true or sometimes true’, ‘very or often 

true’. Reliability and validity tests of the ‘Anxious/Depressed’ subscale revealed test-retest 

correlations in the range of 0.74-0.82 with a Cronbach’s alpha of 0.84
39,41

.  

 

Strategy of Analyses 

Descriptive statistics and phenotypic correlations 

Descriptive statistics and phenotypic correlations between well-being and depressive 

symptoms were calculated in R
42

. Furthermore, we tested for main effects of sex and age on 

the two phenotypes.  

Bivariate Genetic Modelling 

We applied structural equation modelling to the twin data to estimate contributions of genetic 

and environmental factors to the phenotypic variance of well-being and depressive symptoms 

and to their phenotypic covariance. The classical twin design exploits the fact that 

monozygotic (MZ) twins are genetically identical and dizygotic twins (DZ) share on average 



   
 

50% of their genetic material to estimate genetic, shared, and unshared environmental 

variance components. We can estimate additive genetic (A), shared environmental (C), non-

shared environmental (E), and dominance genetic (D) components of variance and covariance. 

As C and D both increase the DZ correlation relative to the AE model they cannot be 

identified simultaneous in the presence of A and E and will therefore be modeled separately
43

. 

 

The depressive symptoms scores were strongly skewed (L-shaped distribution). Such non-

normality may bias estimates of environmental influences on the phenotype
44

. Thus, we 

categorized the depressive symptoms data into three (low, middle, high) groups, and analyzed 

it as an ordinal variable, assuming an underlying liability with a normal distribution and with 

two thresholds
45

. The variance in the liability is subject to the decomposition into genetic and 

environmental components. The two-threshold model determines the prevalence of the low, 

middle, and high depressive symptoms scores. The well-being measure was modestly skewed 

to the right, but largely characterized by a bell-shaped curve and was analyzed as a continuous 

variable.  

 

The bivariate genetic analyses were performed in OpenMx
46

. Within each age-group we 

estimated the summary statistics separately in the MZmales (MZM), DZmales (DZM), 

MZfemales (MZF), DZfemales (DZF) and Dizyogitic Opposite Sex (DOS) twin pairs. We 

estimated the thresholds of the ordinal variables separately in males and females. Sex 

differences in well-being mean scores and prevalence in depressive symptoms were analyzed 

by testing whether the means (well-being) or thresholds (depressive symptoms) of males and 

females could be constrained to be equal.  

 

We used the log-likelihood ratio test to evaluate the significance of parameter estimates. This 

involves fitting the model with and without the constraints of interest, and basing the test 

statistic on difference in minus twice the differences in loglikelihood of the models, i.e., the 

log likelihood ratio (LLR). If the constraints of interest are tenable, this statistic follows a 

central χ² distribution with degrees of freedom (df) equal to difference in number of free 

parameters in the two models. The more parsimonious model (i.e., including the constraints of 

interest) is rejected if the LLR statistic exceeds the value of p < 0.005
47

. If this is not the case, 

the more parsimonious model is retained.  



   
 

Figure I. The relationship between shared heritability and genetic correlation. g Represents 

genetic factors influencing either well-being or depressive symptoms; rg(WBDS) represents the genetic 

correlation between both phenotypes. Shared heritability equals the path rg(WBDS)hWBhDS, where hWB 

equals the square root of univariate heritability for well-being and hDS equals the square root of the 

univariate heritability for depressive symptoms.  

 

 

 

 

 

 

 

 

 

 

 

We estimated genetic and environmental contributions to the bivariate phenotypic covariance 

matrix by decomposing the phenotypic covariance matrix into (2x2) A, C, and E covariance 

matrices, or (2x2) A, D, and E covariance matrices. Bivariate heritability is a function of the 

heritability of the two traits and the genetic correlation (see figure 1). Bivariate heritability tell 

us what the contribution is of genetic factors to the phenotypic association of well-being and 

depressive symptoms. The genetic correlation quantifies the extent to which two traits are 

influenced by the same genes regardless of the magnitude of the contribution of genes (the 

bivariate heritability) to the phenotypic variance of the traits. We parameterized the 

covariance matrices using a bivariate Cholesky decomposition
46

. We first considered the full 

ACE or ADE bivariate models, and then fitted reduced models, in which we tested various 

parameters (e.g., the variance components due to shared environmental or dominance effects). 

Having established the best fitting bivariate models based on log likelihood tests, we 

calculated 95% confident intervals of all free parameters in the model of choice.  

  



   
 

Results 

Descriptives and phenotypic correlations 

Means, standard deviations, and thresholds of males and females in all age-groups are 

provided in Table 1. The means of both maternal and self-reported ratings of depressive 

symptoms were significantly higher in females (p < 0.005), with largest effect size observed at 

age 16 (Cohen’s d = -0.62). Sex differences in well-being scores were observed and strongest 

in adolescence at age 14. At this age, females reported lower levels of well-being (p < 0.005, 

Cohen’s d = 0.19), but the effect was smaller compared to sex differences in depressive 

symptoms scores. In general, depressive symptoms scores tended to increase with age, 

whereas well-being scores were more stable, but it shows a decrease from adolescence 

onwards in both sexes (Supplementary Table 1). Well-being and depressive symptoms are 

significantly correlated and the correlation increases with age, ranging from -.34 during 

childhood to -.49 in adulthood (see Table 2). 

 

Twin correlations  

MZ and DZ twin correlations and cross-twin-cross trait correlations for each age-group are 

displayed in Table 2. In childhood (i.e., age < 14 years), the MZ correlations of both 

phenotypes were lower than twice the DZ correlations indicating the contribution of additive 

genetic (A) shared environment (C) and unique environmental (E) effects to the phenotypes. 

In adolescence and adulthood, both MZ and DZ correlations decreased, resulting in MZ 

correlations being larger than twice the DZ correlations, which suggests a role for dominant 

genetic effects (D) besides additive genetic effects. In these age-groups, an ADE model was 

fitted to the data to establish the presence of dominance genetic influences. Twin correlations 

and cross-twin cross trait correlations for each of the five zygosity and age-groups are 

summarized in Supplementary Table 2. The MZ correlations were always higher than the 

DZ correlations, indicating that genetic effects play a role in explaining individual differences 

in well-being and depressive symptoms. Sex differences were investigated by constraining the 

correlations of MZ males to MZ females and DZ males to DZ females. We observed sex 

differences in the correlation for well-being at ages 7, 14, and 18-27, and differences for 

depressive symptoms at age 14. The largest difference in twin correlations was observed at 

age 7 for well-being between MZ males (r = 0.82) and MZ females (r = 0.89). However, since 

the differences were relatively rare and small (largest Cohen’s d is 0.3; Supplementary Table 

3), we decided not to model sex specific effects in the variance decomposition. However, we 

did retain sex differences in the means and thresholds, allowing for a main effect of sex.  



   
 

 

Table I. Mean and standard deviation for the raw data for all age groups, as well as the thresholds for 

the liability distribution and the percentages of twins in the three groups.  

 

 

Males 

Age 

7 

 

Age 

10 

 

Age 

12 

 

Age 

14 

 

Age 

16 

 

Age 

18-27 

 

Age 

27-99 

 
Mean Mean (sd) Mean (sd) 

 

Mean (sd) Mean (sd) 

 

Mean (sd) 

 

Mean (sd) 

 

Mean (sd) 

 

Well-being 8.39 (0.98) 

 

8.27 (1.05) 

 

8.22 (1.12) 

 

8.06 (1.03) 

 

7.82 (1.03) 

 

7.57 (1.10) 

 

7.76 (1.01) 

  

Depressive 

symptoms  2.19 (2.58) 

 

2.26 (2.79) 

 

1.99 (2.69) 

 

2.57 (2.83) 

 

2.63 (2.80) 

 

3.54 (3.81) 

 

2.77 (3.16) 

 
Categories 

             

  

Depressive 

symptoms                           

 
Threshold 1 0.05 

 

0.07 

 

-0.31 

 

0.31 

 

0.26 

 

-0.46 

 

-0.20 

 
Threshold 2 0.65 

 

0.69 

 

0.42 

 

0.90 

 

0.63 

 

0.38 

 

0.42 

 
Low 52.0% 

 

52.9% 

 

37.7% 

 

62.3% 

 

60.1% 

 

32.3% 

 

42.0% 

 
Middle 25.8% 

 

24.4% 

 

33.7% 

 

18.3% 

 

26.6% 

 

35.3% 

 

33.6% 

  High 22.2% 

 

22.7% 

 

28.5% 

 

19.4% 

 

13.3% 

 

32.4% 

 

24.4% 

 

 

Females 
             

 
Mean                           

 

Well-being 8.42 (0.95) 

 

8.37 (0.98) 

 

8.27 (1.16) 

 

7.85 (1.16) 

 

7.63 (1.13) 

 

7.51 (1.09) 

 

7.67 (1.12) 

  

Depressive 

symptoms  2.36 (2.61) 

 

2.44 (2.90) 

 

2.21 (2.76) 

 

4.51 (3.90) 

 

4.91 (4.08) 

 

5.25 (4.55) 

 

4.28 (3.86) 

 
Categories 

             

 

Depressive 

symptoms                           

 

Threshold 1 -0.04 

 

-0.01 

 

-0.45 

 

-0.34 

 

-0.46 

 

-0.92 

 

-0.71 

 

Threshold 2 0.59 

 

0.66 

 

0.38 

 

0.75 

 

0.46 

 

0.47 

 

0.4 

 

Low 48.2% 

 

49.6% 

 

32.7% 

 

36.6% 

 

32.3% 

 

17.7% 

 

23.6% 

 

Middle 27.8% 

 

25.6% 

 

35.3% 

 

22.5% 

 

32.2% 

 

32.0% 

 

34.6% 

  High 24.0% 

 

24.7% 

 

32.0% 

 

40.9% 

 

35.5% 

 

50.3% 

 

41.8% 



   
 

Bivariate Genetic analyses  

The proportions of phenotypic variance of well-being and depressive symptoms attributable to 

genetic variance, the heritability (h
2
), and environmental variance effects (i.e. c

2
 and e

2
) are 

displayed in Table 3 and Supplementary Figure 2. For both well-being and depressive 

symptoms, a substantial amount of the phenotypic variances was due to additive genetic 

effects. For well-being, genetic effects explained 31% to 47% of the phenotypic variation, 

while for depressive symptoms estimates were between 50% and 61%. Supplemental Table 

S4 shows the result of the Cholesky decompositions, illustrating the full model and sub-

models that were tested. Models in bold are judged to provide the best model fit. 

 

The bivariate Cholesky decomposition provide the decomposition of the variance of the two 

phenotypes and the decomposition of their covariance into genetic and environmental 

components (Supplementary Table 4). The results are presented in Figure 2 and Table 3. In 

childhood, additive genetic and shared environmental effects contribute significantly to the 

phenotypic correlations. The bivariate heritability ranged from 41% to 49% and bivariate 

shared environmental effects ranged from 23% to 30%. In adolescence and young adults, 

additive genetic and non-shared environmental factors contribute largely to the phenotypic 

correlation, with genetic effects explaining a slightly larger proportion of the phenotypic 

correlation (range 60% - 77%). In adults over 27 years, non-shared environmental effects 

explained 54% of the phenotypic correlation, with the rest explained by additive genetic 

effects.  

 

Figure 3 and Table 4 shows the genetic correlations (rG) and environmental (rC/rE) 

correlations between well-being and depressive symptoms for all age-groups. In childhood, 

we observe moderate genetic and environmental correlations, indicating that, while part of the 

genetic (correlations ranged between -0.34 to -0.37) and environmental (rC ranged from -0.27 

to -0.42 and rE ranging from -0.35 to -0.5) susceptibility to well-being and depressive 

symptoms overlap, there are substantial trait specific genetic and environmental influences. 

With increasing age, from adolescence onwards, genetic correlations seems to become more 

important (range -0.59 to -.66), while the environmental correlations decrease and become 

limited to non-shared environmental overlap (range -0.20 to -0.48).  

  



   
 

Table II: Phenotypic correlations, twin correlations and cross-twin cross-trait correlations for well-

being and depressive symptoms 

 

Phenotypic  MZ   DZ   

  WB WB DS WB DS 

WB y7 1 0.85 (0.83, 0.87) 

 

0.66 (0.62, 0.69) 

 DS y7 -0.34 (-0.38 - -0.28) -0.30 (-0.37, -0.22) 0.71 (0.68, 0.73) -0.36 (-0.41, -0,30) 0.46 (0.44, 0.48) 

WB y10 1 0.79 (0.76, 0.81) 

 

0.62 (0.59, 0.65) 

 DS y10 -0.41 (-0.45 - -0.35) -0.43 (-0.48, -0.35) 0.71 (0.68, 0.73)  -0.45 (-0.50, -0.41) 0.45 (0.42, 0.48)  

WB y12 1 0.83 (0.81, 0.85) 

 

0.63 (0.60, 0.65) 

 DS y12 -0.39 (-0.43 - -0.34) -0.34 (-0.40, -0.28) 0.70 (0.67, 0.72)  -0.39 (-0.43, -0.35) 0.46 (0.43, 0.48)  

WB y14 1 0.46 (0.42, 0.50) 

 

0.25 (0.21, 0.29) 

 DS y14 -0.44 (-0.48 - -0.38)  -0.38 (-0.43, -0.33) 0.60 (0.55, 0.64)   -0.38 (-0.42, -0.34) 0.28 (0.22, 0.33)  

WB y16 1 0.47 (0.42, 0.52) 

 

0.21 (0.16, 0.26) 

 DS y16 -0.47 (-0.50 - -0.40)  -0.44 (-0.50, -0.39) 0.52 (0.46, 0.57)   -0.40 (-0.44, -0.35) 0.23 (0.16, 0.29)  

WB y18-27 1 0.42 (0.37, 0.48) 

 

0.16 (0.11, 0.22) 

 DS y18-27 -0.57 (-0.59 - -0.50)  -0.51 (-0.56, -0.45) 0.56 (0.50, 0.62)   -0.53 (-0.58, -0.49) 0.28 (0.21, 0.35)  

WB >27y 1 0.30 (0.25, 0.35) 

 

0.11 (0.04, 0.19) 

 DS > 27y -0.49 (-0.54 - -0.45)  -0.50 (-0.55, -0.45) 0.49 (0.43, 0.54)   -0.56 (-0.60, -0.50)  0.15 (0.06, 0.23) 



   
 

Figure II. Dissection of phenotypic correlation between well-being and depressive symptoms 

over the lifespan by shared genetic -and environmental effects. A is the proportion of phenotypic 

correlation explained by shared genetic effects, C by shared environmental effects, and E by unique 

environmental effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table III: Standardized estimates (95 % CI) for additive genetic, shared and non-shared environmental influences on well-being and depressive symptoms 

and their covariance based on the best fitting model. 

 

  A   C   E   

  WB DS WB DS WB DS 

WB y7 0.43 (0.37-0.49) 0.43 (0.37-0.49) 0.13 (0.12-0.16) 

DS y7 0.49 (0.29-0.70) 0.49 (0.29-0.70) 0.29 (0.10-0.48) 0.20 (0.15-0.25) 0.21 (0.16-0.27) 0.29 (0.27-0.31) 

WB y10 0.40 (0.34-0.47) 0.41 (0.35-0.46) 0.20 (0.17-0.21) 

DS y10 0.41 (0.26-0.57) 0.53 (0.46-0.60) 0.30 (0.17-0.44) 0.18 (0.12-0.23) 0.28 (0.23 -0.34) 0.28 (0.27-0.31) 

WB y12 0.36 (0.31-0.41) 0.46 (0.41-0.50) 0.18 (0.17-0.20) 

DS y12 0.49 (0.32-0.66) 0.50 (0.43-0.58) 0.23 (0.08-0.38) 0.19 (0.14-0.26) 0.28 (0.22-0.34) 0.30 (0.27-0.32) 

WB y14 0.47 (0.43-0.50) - 

 

0.53 (0.50-0.57) 

DS y14 0.77 (0.70-0.84) 0.60 (0.57-0.65) - - 0.23 (0.16-0.30) 0.39 (0.35-0.43) 

WB y16 0.45 (0.32-0.50) - 

 

0.55 (0.51-0.59) 

DS y16 0.68 (0.47-0.78) 0.53 (0.42-0.58) - - 0.32 (0.25-0.40) 0.47 (0.42-0.52) 

WB y18-27 0.42 (0.37-0.47) - 

 

0.58 (0.53-0.63) 

DS y18-27 0.60 (0.52-0.67) 0.57 (0.52-0.62) - - 0.40 (0.33-0.48) 0.43 (0.38-0.48) 

WB >27y 0.31 (0.18-0.36) - 

 

0.69 (0.64-0.75) 

DS > 27y 0.46 (0.36-0.58) 0.50 (0.42-0.55) - - 0.54 (0.46-0.62) 0.50 (0.45-0.55) 



 

Figure III. Genetic and environmental correlations between well-being and depressive symptoms 

over the lifespan. (a) genetic correlation, (b) shared environmental correlation, and (c) unique 

environmental correlation. 

 

  



   
 

Table IV: Genetic (rg), shared environmental (rc) and unique environmental (re) correlations with their 

corresponding 95% confidence intervals.   

Age rg rc re 

7 -0.36 ( -0.49- -0.20) -0.33 (-0.54 - -0.11) -0.35 (-0.44- -0.27) 

10 -0.37 (-0.50 - -0.24) -0.47 (-0.67 - -0.27) -0.50 (-0.57 - -0.42) 

12 -0.39 (-0.51 - -0.26) -0.27 (-0.42 - -0.09) -0.41 (-0.48 - -0.33) 

14 -0.59 (-0.70 - -0.46) - -0.20 (-0.25 - -0.14) 

16 -0.60 (-0.66 - -0.53) - -0.28 (-0.32 - -0.21) 

18-17 -0.66 (-0.75 - -0.55) - -0.44 (-0.49 - -0.36) 

>27 -0.60 (-0.68 - -0.52) - -0.48 (-0.53 - -0.42) 

                                            

 

 

 

 

  



   
 

Discussion 

The aim of this study was to gain insight into the etiology of the association between well-

being and depressive symptoms across the lifespan. Phenotypic correlations between well-

being and depressive symptoms ranged from -.34 in childhood, to a correlation of -.49 in 

adulthood, with the highest correlations in young adults (-.57). Bivariate twin models revealed 

that shared environmental factors play an important role in explaining the relationship 

between well-being and depressive symptoms in childhood, while in adolescence and 

adulthood genetic factors become increasingly important.  

 

The results of our study go beyond the available literature in several ways. First, the few twin 

studies carried out so far focused either on adolescents
10,20

  or adults
17,21–23

. Our study is the 

first to extend these analyses to middle childhood, investigating the association between well-

being and depressive symptoms in a cohort-sequential design for age 7, 9/10 and 12, 

respectively. Results showed that common environmental factors (ranging between 23% and 

30%), unique environmental factors (ranging between 21% and 28%), and genetic factors 

(ranging between 41% and 49%), explain the phenotypic correlation between well-being and 

depressive symptoms in middle childhood.  

 

Second, instead of focusing on a specific age group, this study examined the association 

between well-being and depressive symptoms across the lifespan. This study allowed us to 

shed light on contributions of genetic and environmental factors at different ages. 

Remarkably, from childhood to adolescence a stark increase was found in the contribution of 

genetic factors. In adolescence, and young adults, 60% to 77% of the phenotypic association 

was explained by genetic factors, with no influence of the shared environment. When looking 

at the genetic correlations, indicating to what extend the same group of genes influence 

different traits, moderate to high genetic correlations (between rg =-0.59 and rg =-0.66) were 

observed in adolescence, while in childhood environmental correlations are substantial, but 

genetic correlations small (ranging between rg =-0.36 and rg =-0.39). These results show that 

environmental factors are important in explaining the relationship between well-being and 

depressive symptoms in childhood, while in adolescence genetic factors play a more 

substantial role. In adulthood, unique environmental effects showed to be increasingly 

important, explaining 54% of the phenotypic correlation (with bivariate heritability of 46%). 

Genetic correlations were high in adulthood, with rg = -0.60, showing overlap in genetic 



   
 

factors influencing both well-being and depressive symptoms. These results were consistent 

with the results of  Kendler et al. (2011), who reported similar genetic and phenotypic 

correlations. However, the proportion of the phenotypic correlation explained by genetic 

effects was larger in their study 86%, compared to 46% in our study. A possible explanation 

might be that the heritability of the latent factor mental well-being in Kendler et al. (2011) 

was substantially higher (72%) than the heritability of our measure of well-being (31%). This 

is attributable to their assessment of well-being which is modeled with a latent factor allowing 

to correct more explicitly for measurement error. In our design, not modelling well-being as a 

latent factor, part of the measurement error falls into the E component instead of the additive 

genetic component explaining the discrepancy in heritability estimates
49

.  

 

Overall, the moderate phenotypic correlations between well-being and depressive symptoms 

in the present study support the notion that well-being and depressive symptoms could belong 

to distinct, but correlated, dimensions. However, results of the genetic informative twin design 

shows that shared genetic effects explain a substantial part of this phenotypic correlation, 

especially from adolescence onwards. This finding raises the question whether different 

interventions are needed for promoting well-being and treating depressive symptoms, or 

whether we can use the promotion of well-being to reduce depressive symptoms. On the one 

hand, a growing body of literature suggests that, based on the unique environmental 

influences on both well-being and depressive symptoms, interventions targeting well-being 

may not necessarily have a direct impact on depressive symptoms
17,20

. On the other hand, 

empirical studies suggest that improved positive emotions enhance coping skills, weaken 

physiological effects of negative emotions and diminish relapses in depressed individuals
50–53

. 

Additionally, a recent meta-analysis on the effectiveness of positive psychology interventions, 

including 51 studies and 4,266 individuals, illustrate that, overall, enhancing well-being with 

positive psychology interventions significantly decrease depressive symptoms
54

. These 

findings, together with our results, suggest that well-being could be used in future studies as 

an index of mental health complementing other indices that focus  

on mental illness.  

  

Still, the question remains if these findings hold for the prevention of depressive symptoms by 

early screening and well-being promotion. Put differently, can we use measures of well-being 

to inform us about vulnerability to depression? Benefits of this approach include the low 

stigma associated with the content of well-being questionnaires compared to depressive 



   
 

symptom screening (i.e., people are more willing to answer questions on their quality of life 

than on their depressive symptoms), and the possibility of screening those at risk in a timely 

manner. The relatively strong genetic correlation implies that we can identify individuals 

characterized by low well-being, and offer them suitable interventions to improve their well-

being. Even stronger effect may be anticipated if we consider well-being promotion at a 

population level. Within epidemiology and somatic medicine, it has been proposed that larger 

benefits to overall public health are to be expected when the bell curve of mental health in the 

human population is shifted slightly to the healthy side, the so-called population strategy
55,56

 . 

Specifically, a relative slight increase in the level of well-being of the majority of the 

population may have a larger preventive effect, than targeting the much smaller group of 

people at high risk or in the early stages of depressive symptoms.  

 

Future studies should, however, focus on the direction of the relationship between well-being 

and depressive symptoms to use well-being as a possible candidate for novel approaches to 

reduce depressive symptoms. Recent methodological developments such as Mendelian 

randomization (MR) designs
57,58

  together with the availability of large scale molecular 

genetic data provide additional opportunities to address the process underlying the correlation 

between well-being and depressive symptoms.  

 

Limitations 

This study has several strengths and weaknesses. First, well-being is a complex phenotype 

consisting of two well-recognized constructs: Subjective Well-being (SWB) and 

Psychological Well-being (PWB), shaped by the philosophical concepts of hedonism and 

eudaimonism, respectively
59

. Hedonic well-being is centered around pleasure, or how good a 

person feels about his or her life, whereas eudaimonic well-being is centered around living 

well or doing well and the fulfillment of human capacities
60

. We recognize that, by using the 

Cantril ladder, the present study does not capture the complete construct of well-being, but 

rather focuses on SWB. We are confident however, that our results are representative for 

SWB as the different questionnaires measuring SWB used in social and behavioral sciences 

correlate highly with the Cantril ladder, both phenotypically and genetically
35

. Second, it is 

important to keep in mind that high scores on the CBCL, YSR, and ASR ‘Anxiety and 

Depressive symptoms’ subscales are good predictors of depressive symptoms
61

, but are not 

equivalent to a clinical diagnosis of depression
62

. Third, due to highly skewed scores, we 

analyzed the depressive symptoms data using a threshold model, resulting in lower statistical 



   
 

power compared to an analysis of continuous data
44

. However, the parameter estimates in a 

threshold model are more accurate than in an analysis of continuous data characterized by 

large skewness
63

 Fourth, in adolescence and adulthood, both MZ and DZ correlations 

decreased, resulting in MZ correlations being larger than twice the DZ correlations, 

suggesting a role for dominant genetic effects besides additive genetic effects. We recognize 

that this might be a methodological artifact as a result of the difference between parent rating 

(e.g. parents phenotype possibly contribute to similar ratings for both twins resulting in shared 

environmental influences) and self-rating scores (e.g., a twin’s own genetic architecture 

contributing to their own behavior and therefore self-rating scores on well-being and 

depressive symptoms)
27,49,64,65

. However, while differences in parent reports and child reports 

exist, earlier studies have illustrated sufficient agreement between child and parent reports on 

children’s quality of life
66

. Fifth, earlier research
67

 has postulated that a U-shaped pattern of 

well-being mean-scores over time exist. It is important to note that the method applied in this 

study focuses on variance decomposition, rather than mean comparison. Additional analyses 

specifically exploring the mean of well-being over time did not yield a U-shaped pattern. 

Therefore we believe this does not influence the results presented in our paper.  

 

Future recommendations 

As the genetic and environmental factors explaining the relation between well-being and 

depressive symptoms differ between the included age-bins, future studies are needed to study 

the etiology of the relationship between well-being and depressive symptoms in more depth. 

Longitudinal twin designs such as the genetic simplex model or common factor model (with 

or without age specific influences) allow for estimation of the stability of the effects of genetic 

and environmental factors over age, and show to what extent genetic innovation come into 

play. Additionally, future studies are recommended to investigate key biological and 

environmental factors of relevance to well-being and depressive symptoms. For example, 

Routledge et al (2017) investigated the link between well-being , depression and cognitive 

functioning (and their genetic and environmental overlap). They illustrated some 

differentiation, with well-being in some cases related to specific cognitive functions 

independent of depression while for other cognitive functions they showed an overlap 

between well-being and depression. Additionally, the first genetic variants associated with 

both well-being and depressive symptoms are recently identified
24

. With the increasing 

availability of large-scale genetic data it would be interesting to study whether different 



   
 

genetic variants are associated with well-being over age and whether these variants have a 

protective effect on the development of depressive symptoms. Finally, further research should 

not isolate genetic and environmental influences and preferably apply multi-layer designs 

incorporate both aspects explaining the underlying etiology of well-being and depressive 

symptoms. Finally, although this study is about variance decomposition with relatively small 

sex differences we observed larger sex differences in mean scores especially from 

adolescence onwards. Future studies should focus on the origin of these differences especially 

in (pre)-clinical settings. Furthermore, larger studies are needed to investigate sex-differences 

in variance components as the presence or absence is still inconclusive (see also review 

Bartels, 2015) 

 

Conclusion 

In the present study we dissected the association between well-being and depressive 

symptoms from childhood to adulthood. We confirmed that well-being and depressive 

symptoms correlate moderately across the lifespan. Importantly, shared environmental factors 

play an important role in explaining the relationship between well-being and depressive 

symptoms in childhood. However, from adolescence onward, we found evidence for the 

prominence of shared genetic effects, with genetic factors explaining a substantial part of the 

phenotypic correlation from adolescence onward. Therewith, this study provided more 

insights into the etiological underpinnings of well-being and depressive symptoms, possibly 

allowing to articulate better strategies for health promotion and resource allocation in the 

future.  
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Supplementary Figure I. Overview of the survey collection. 

 

  



   
 

Supplementary Figure II. Proportion of phenotypic variance of well-being and depressive symptoms 

explained over the lifespan by genetic, shared environmental, and unique environmental effects. h
2 

represents the heritability, c
2
 represents shared environmental influences, and e

2
 represents unique 

environmental influences. 

 

 

 

 

 

  



   
 

SI. Sample size, mean scores and standard deviations for well-being and depression over the lifespan separated by age bin and gender. Significance (p) and 

effect size (cohen’s D) of mean differences are provided. ♂ = male and ♀ = female 

Well-being               Depressive Symptoms         

Age N Mean SD df t p cohen's d N Mean SD df t p cohen's d 

7 ♂ 2072 8.39 0.98 4035 -0.74 0.09 -0.02 

 

12235 2.19 2.58 24572 -5.124 0.014 -0.07 

7 ♀ 1965 8.42 0.95 

     

12339 2.36 2.61 

    10 ♂ 2699 8.27 1.05 5244 -3.53 0.12 -0.11 

 

9652 2.26 2.79 19526 -4.316 0.002 -0.06 

10 ♀ 2547 8.37 0.98 

     

9876 2.44 2.9 

    12 ♂ 3236 8.22 1.12 6438 -1.75 0.704 -0.04 

 

8186 1.99 2.69 16596 -5.325 < 0.01 -0.08 

12 ♀ 3204 8.27 1.16 

     

8412 2.21 2.76 

    14 ♂ 3759 8.06 1.03 8820 8.923 < 0.01 0.19 

 

3892 2.57 2.83 9141 -26.388 < 0.01 -0.55 

14 ♀ 5063 7.85 1.16 

     

5251 4.51 3.9 

    16 ♂ 2488 7.82 1.03 6103 6.58 < 0.01 0.17 

 

2696 2.63 2.8 6612 -25.33 < 0.01 -0.62 

16 ♀ 3617 7.63 1.13 

     

3918 4.91 4.08 

    18-27 ♂ 2852 7.57 1.1 8256 2.313 0.316 0.05 

 

3050 3.54 3.81 8779 -17.777 < 0.01 -0.38 

18-27 ♀ 5406 7.51 1.09 

     

5731 5.25 4.55 

    27-99 ♂ 7100 7.76 1.01 17968 5.172 < 0.01 0.08 

 

7991 2.77 3.16 19790 -28.894 < 0.01 -0.41 

27-99 ♀ 10870 7.67 1.12           11801 4.28 3.86         

 

  



   
 

 

SII. Twin correlations and cross-trait-cross-twin correlations for well-being and depression over the lifespan for all five zygosity. 

 

Age 7         Age 10       

Males     Females   Males   Females   

         MZM     MZF   MZM   MZF   

  WB DEP WB DEP WB DEP WB DEP 

WB 0.81 (0.77, 0.84) 

 

0.89 (0.86-0.91) 

 

0.79 (0.76, -0.83) 

 

0.79 (0.75, 0.82) 

 
DEP 

-0.30 (-0.39, -

0.19) 

0.69 (0.66, 

0.73) 

-0.30 (-0.41, -

0.19) 
0.72 (0.68, 0.74) 

-0.38 (-0.47, -

0.28) 

0.71 (0.67, 

0.74) 
-0.45 (-0.53, -
0.35) 

0.71 (0.67, 0.74) 

                  

DZM     DZF   DZM   DZF   

 

WB DEP WB DEP WB DEP WB DEP 

WB 0.61 (0.55, 0.68) 

 

0.67 (0.60, 0.73) 

 

0.60 (0.52, 0.65) 

 

0.64 (0.58, 0.69) 

 
DEP 

-0.38 (-0.48, -

0.26) 

0.43 (0.38, 

0.48) 

-0.37 (-0.48, -

0.25) 
0.44 (0.39, 0.49) 

-0.42 (-0.51, -

0.33) 

0.42 (0.36, 

0.48) 
-0.45 (-0.54, -
0.34) 

0.47 (0.41, 0.53) 

                  

Dos/males females       
Dos/males 

females 
      

 

WB DEP 

  

WB DEP 

  WB 0.68 (0.63, 0.72) 

   

0.63 (0.59, 0.67) 

   
DEP 

-0.33 (-0.42, -

0.25) 

0.49 (0.45-

0.52) 
    

-0.46 (-0.52, -

0.40) 

0.45 (0.41, 

0.49) 
    

           



   
 

         Age 12         Age 14       

Males     Females   Males   Females   

         MZM     MZF   MZM   MZF   

  WB DEP WB DEP WB DEP WB DEP 

WB 0.83 (0.80, 0.85) 

 

0.83 (0.80, 0.85) 

 

0.37 (0.29, 0.43) 

 

0.50 (0.45, 0.55) 

 
DEP 

-0.36 (-0.44, -

0.27) 

0.71 (0.67, 

0.75) 

-0.33 (-0.41, -

0.24) 
0.69 (0.65, 0.72) 

-0.33 (-0.41, -

0.24) 

0.47 (0.37, 

0.56) 
-0.41 (-0.47, -
0.34) 

0.66 (0.60, 0.71) 

                  

DZM     DZF   DZM   DZF   

 

WB DEP WB DEP WB DEP WB DEP 

WB 0.63 (0.57, 0.67) 

 

0.68 (0.63, 0.72) 

 

0.13 (0.04, 0.21) 

 

0.36 (0.28, 0.42) 

 
DEP 

-0.45 (-0.52, -

0.37) 

0.40 (0.34, 

0.45) 
-0.31 (-0.39, -0.21 0.51 (0.46, 0.57) 

-0.35 (-0.44, -

0.27) 

0.28 (0.16, 

0.40) 
-0.43 (-0.50, -
0.35) 

0.30 (0.20, 0.39) 

                  

Dos/males females       
Dos/males 

females 
      

 

WB DEP 

  

WB DEP 

  WB 0.60 (0.56, 0.64) 

   

0.25 (0.20, 0.31) 

   
DEP 

-0.41 (-0.47, -

0.35) 

0.46 (0.42, 

0.50) 
    

-0.35 (-0.41, -

0.29) 

0.26 (0.18, 

0.33) 
    

  



   
 

  
  

              

Age 16         Age 18-27       

Males      Females   Males   Females   

         MZM      MZF   MZM   MZF   

  WB DEP WB DEP WB DEP WB DEP 

WB 0.48 (0.40, 0.54) 

 

0.46 (0.39, 0.52) 

 

0.55 (0.46, 0.63) 

 

0.37 (0.30, 0.43) 

 
DEP 

-0.39, (-0.48, -

0.29) 

0.51 (0.40, 

0.60) 

-0.48 (-0.55, -

0.41) 
0.52 (0.44, 0.59) 

-0.49 (-0.58, -

0.38) 

0.57 (0.46, 

0.66) 
-0.52 (-0.58, -0.45) 0.55 (0.47, 0.62) 

                  

DZM      DZF   DZM   DZF   

 

WB DEP WB DEP WB DEP WB DEP 

WB 0.14 (0.02, 0.26) 

 

0.25 (0.15, 0.34) 

 

0.07 (0, 0.21) 

 

0.26 (0.17, 0.34) 

 
DEP 

-0.46 (-0.56, -

0.37) 

0.20 (0.04, 

0.34) 

-0.23 (-0.33, -

0.12) 
0.28 (0.17, 0.39) 

-0.50 (-0.59, -

0.39) 

0.24 (0.07, 

0.40) 
-0.56 (-0.63, -0.48) 0.35 (0.24, 0.45) 

                  

Dos/males females       
Dos/males 

females 
      

 

WB DEP 

  

WB DEP 

  WB 0.22 (0.14, 0.29) 

   

0.12 (0.03, 0.20) 

   
DEP 

-0.14 (-0.22, -

0.05) 

0.20 (0.10, 

0.29) 
    

-0.52 (-0.59, -

0.45) 

0.24 (0.14, 

0.34) 
    

  



   
 

         Age 27-99         

    Males         

    

         MZM      MZF   

      WB DEP WB DEP 

    WB 0.35 (0.24, 0.44) 

 

0.29 (0.22, 0.35) 

     
DEP 

-0.48 (-0.56, -

0.38) 

0.52 (0.41, 

0.62) 

-0.50 (-0.56, -

0.54) 

0.48 (-0.41, 

0.54) 

              

    DZM      DZF   

    

 

WB DEP WB DEP 

    WB 0.12 (0-0.28) 

 

0.14 (0.03, 0.25) 

     
DEP 

-0.57 (-0.68, -

0.44) 
0.11 (0, 0.32) 

-0.54 (-0.61, -

0.46) 
0.14 (0.02, 0.26) 

              

    Dos/males females       

    

 

WB DEP 

      WB 0.07 (0, 0.18) 

       
DEP 

-0.56 (-0.63, -

0.47) 

0.17 (0.04, 

0.30) 
    

     



   
 

SIII. MZmale/MZfemale and DZmale/DZfemale twin correlation differences and corresponding effect sizes. 

              Well-being           

Age MZM N MZF N Fishers'Z 
Cohen's 

D 
  DZM N DZF N Fishers'Z 

Cohen's 

D 

7 0.81 769 0.89 762 -5.76 -0.29 

 

0.61 697 0.67 598 0.16 0.01 

10 0.79 937 0.79 912 0 0 

 

0.6 887 0.64 760 -1.31 -0.06 

12 0.83 1074 0.83 1115 0 0 

 

0.63 1110 0.68 1033 -2.03 -0.09 

14 0.37 1234 0.5 1932 -4.41 -0.16 

 

0.13 1064 0.36 1391 -6.04 -0.25 

16 0.48 904 0.46 1377 0.6 0.03 

 

0.14 650 0.25 930 -2.23 -0.11 

18-27 0.55 748 0.37 1662 5.21 0.21 

 

0.07 549 0.26 1082 -3.73 -0.18 

27plus 0.35 718 0.29 1960 1.53 0.06   0.12 323 0.14 835 -0.31 -0.02 

                            Depression           

Age MZM N MZF N Fishers'Z 
Cohen's 

D 
  DZM N DZF N Fishers'Z 

Cohen's 

D 

7 0.69 4206 0.72 4673 -2.81 -0.059 

 

0.43 4142 0.44 3778 -0.55 -0.01 

10 0.71 3354 0.71 3819 0 0 

 

0.42 3122 0.47 2875 -2.41 -0.06 

12 0.71 2870 0.69 3245 1.53 0.04 

 

0.4 2640 0.51 2497 -4.98 -0.14 

14 0.47 1284 0.66 2003 -7.9 -0.28 

 

0.28 1115 0.3 1471 -0.55 -0.02 

16 0.51 970 0.52 1511 -0.33 -0.01 

 

0.2 706 0.28 1021 -1.73 -0.08 

18-27 0.57 791 0.55 1770 0.68 0.03 

 

0.24 547 0.35 1127 -2.31 -0.11 

27plus 0.52 777 0.48 2097 1.27 0.05   0.11 391 0.14 985 -0.51 -0.03 

  

 



   
 

 

SIV. Model fitting results explaining the relationship between well-being and depression. Bold 

represents the best fitting model.  

Age7                     

Model   -2LL   df   χ
2
   df   p 

ACE 

 

57449.441 

 

28598 

   

14 

  AE 

 

57636.112 

 

28601 

 

186.67057 11 

 

<0.001 

           Age10                     

Model   -2LL   df   χ
2
   df   p 

ACE 

 

50859.769 

 

24761 

   

14 

  AE 

 

51031.227 

 

24764 

 

171.45803 11 

 

<0.001 

           Age12                     

Model   -2LL   df   χ
2
   df   p 

ACE 

 

51464.688 

 

23025 

   

14 

  AE 

 

51730.210 

 

23028 

 

265.52208 11 

 

<0.001 

           Age14                     

Model   -2LL   df   χ
2
   df   p 

ADE 

 

43854.645  

 

17952 

   

14 

  AE 

 

43856.907  

 

17955 

 

2.26 

 

11 

 

0.52 

           Age16                     

Model   -2LL   df   χ
2
   df   p 

ADE 

 

31113.213 

 

12706 

   

14 

  AE 

 

31114.154 

 

12709 

 

0.94 

 

11 

 

0.82 

           Age18-27                     

Model   -2LL   df   χ
2
   df   p 

ADE 

 

33260.502 

 

13618 

   

14 

  AE 

 

33265.100 

 

13621 

 

4.6 

 

11 

 

0.20 

           Age27-99                     

Model   -2LL   df   χ
2
   df   p 

ACE 

 

28508.713 

 

11739 

   

14 

  AE 

 

28517.726 

 

11742 

 

9.01 

 

11 

 

0.03 
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Abstract 

We conducted genome-wide association studies of three phenotypes: subjective well-

being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). 

We identified three variants associated with subjective well-being, two with depressive 

symptoms, and eleven with neuroticism, including two inversion polymorphisms. The 

two depressive symptoms loci replicate in an independent depression sample. Joint 

analyses that exploit the high genetic correlations between the phenotypes (|�̂�| ≈ 𝟎. 𝟖) 

strengthen the overall credibility of the findings, and allow us to identify additional 

variants. Across our phenotypes, loci regulating expression in central nervous system 

and adrenal/pancreas tissues are strongly enriched for association. 

  



  

Introduction 

Subjective well-being—as measured by survey questions on life satisfaction, positive affect, 

or happiness—is a major topic of research within psychology, economics, and epidemiology. 

Twin studies have found that subjective well-being is genetically correlated with depression 

(characterized by negative affect, anxiety, low energy, bodily aches and pains, pessimism, and 

other symptoms) and neuroticism (a personality trait characterized by easily experiencing 

negative emotions such as anxiety and fear)
1–3

. Depression and neuroticism have received 

much more attention than subjective well-being in genetic-association studies, but the 

discovery of associated genetic variants with either of them has proven elusive
4,5

. 

In this paper, we report a series of separate and joint analyses of subjective well-being, 

depressive symptoms, and neuroticism. Our primary analysis is a genome-wide association 

study (GWAS) of subjective well-being based on data from 59 cohorts (N = 298,420). This 

GWAS identifies three loci associated with subjective well-being at genome-wide 

significance (p < 5×10
-8

). We supplement this primary analysis with auxiliary GWAS meta-

analyses of depressive symptoms (N = 180,866) and neuroticism (N = 170,910), performed by 

combining publicly available summary statistics from published studies with new genome-

wide analyses of additional data. In these auxiliary analyses we identify two loci associated 

with depressive symptoms and eleven with neuroticism, including two inversion 

polymorphisms. In depression data from an independent sample (N = 368,890), both 

depressive symptoms associations replicate (p = 0.004 and p = 0.015). 

In our two joint analyses, we exploit the high genetic correlation between subjective well-

being, depressive symptoms, and neuroticism (i) to evaluate the credibility of the 16 genome-

wide significant associations across the three phenotypes, and (ii) to identify novel 

associations (beyond those identified by the GWAS). For (i), we investigate whether our three 

subjective well-being-associated SNPs “quasi-replicate” by testing them for association with 

depressive symptoms and neuroticism. We similarly examine the quasi-replication record of 

the depressive symptoms and neuroticism loci by testing them for association with subjective 

well-being. We find that the quasi-replication record closely matches what would be expected 

given our statistical power if none of the genome-wide significant associations were chance 

findings. These results strengthen the credibility of (most of) the original associations. For (ii), 

we use a “proxy phenotype” approach
6
: we treat the set of loci associated with subjective 

well-being at p < 10
-4

 as candidates, and we test them for association with depressive 

symptoms and neuroticism. At the Bonferroni-adjusted 0.05 significance threshold, we 



  

identify two loci associated with both depressive symptoms and neuroticism and another two 

associated with neuroticism. 

In designing our study, we faced a tradeoff between analyzing a smaller sample with a 

homogeneous phenotype measure versus attaining a larger sample by jointly analyzing data 

from multiple cohorts with heterogeneous measures. For example, in our analysis of 

subjective well-being, we included measures of both life satisfaction and positive affect, even 

though these constructs are conceptually distinct
7
. In Supplementary Note and 

Supplementary Figure 1, we present a theoretical framework for evaluating the costs and 

benefits of pooling heterogeneous measures. In our context, given the high genetic correlation 

across measures, the framework predicts that pooling increases statistical power to detect 

variants. This prediction is supported by our results. 

Results 

GWAS of subjective well-being 

Following a pre-specified analysis plan, we conducted a sample-size-weighted meta-analysis 

(N = 298,420) of cohort-level GWAS summary statistics. The phenotype measure was life 

satisfaction, positive affect, or (in some cohorts) a measure combining life satisfaction and 

positive affect. We confirmed previous findings
9
 of high pairwise genetic correlation between 

life satisfaction and positive affect using bivariate LD Score regression
10

 (�̂� = 0.981 (SE = 

0.065); Supplementary Table 1). Details on the 59 participating cohorts, their phenotype 

measures, genotyping, quality-control filters, and association models are provided in Online 

Methods, Supplementary Note, and Supplementary Tables 2-6. 

As expected under polygenicity
11

, we observe inflation of the median test statistic (λGC = 

1.206). The estimated intercept from LD Score regression (1.012) suggests that nearly all of 

the inflation is due to polygenic signal rather than bias. We also performed family-based 

analyses that similarly suggest minimal confounding due to population stratification (Online 

Methods). Using a clumping procedure (Supplementary Note), we identified three 

approximately independent SNPs reaching genome-wide significance (“lead SNPs”). These 

three lead SNPs are indicated in the Manhattan plot (Figure 1a) and listed in Table 1. The 

SNPs have estimated effects in the range 0.015 to 0.018 standard deviations (SDs) per allele 

(each R
2 ≈ 0.01%). 

We also conducted separate meta-analyses of the components of our subjective well-being 

measure, life satisfaction (N = 166,205) and positive affect (N = 180,281) (Online Methods). 



  

Consistent with our theoretical conclusion that pooling heterogeneous measures increased 

power in our context, the life satisfaction and positive affect analyses yielded fewer signals 

across a range of p-value thresholds than our meta-analysis of subjective well-being 

(Supplementary Table 7). 

GWAS of depressive symptoms and neuroticism 

We conducted auxiliary GWAS of depressive symptoms and neuroticism (see Online 

Methods, Supplementary Note, and Supplementary Tables 8-12 for details on cohorts, 

phenotype measures, genotyping, association models, and quality-control filters). For 

depressive symptoms (N = 180,866), we meta-analyzed publicly available results from a study 

performed by the Psychiatric Genomics Consortium (PGC)
12

 together with new results from 

analyses of the initial release of the UK Biobank data (UKB)
13

 and the Resource for Genetic 

Epidemiology Research on Aging (GERA) Cohort
14

. In UKB (N = 105,739), we constructed a 

continuous phenotype measure by combining responses to two questions, which ask about the 

frequency in the past two weeks with which the respondent experienced feelings of 

unenthusiasm/disinterest and depression/hopelessness. The other cohorts had ascertained case-

control data on major depressive disorder (GERA: Ncases = 7,231, Ncontrols = 49,316; PGC: 

Ncases = 9,240, Ncontrols = 9,519). 

For neuroticism (N = 170,910), we pooled summary statistics from a published study by the 

Genetics of Personality Consortium (GPC)
4
 with results from a new analysis of UKB data. 

The GPC (N = 63,661) harmonized different neuroticism batteries. In UKB (N = 107,245), our 

measure was the respondent’s score on a 12-item version of the Eysenck Personality 

Inventory Neuroticism scale
15

. 

In both the depressive symptoms and neuroticism GWAS, the heterogeneous phenotypic 

measures are highly genetically correlated (Supplementary Table 1). As in our subjective 

well-being analyses, there is substantial inflation of the median test statistics (λGC = 1.168 for 

depressive symptoms, λGC = 1.317 for neuroticism), but the estimated LD Score intercepts 

(1.008 and 0.998, respectively) suggest that bias accounts for little or none of the inflation. 

For depressive symptoms, we identified two lead SNPs, indicated in the Manhattan plot (Fig. 

1b). For neuroticism, our meta-analysis yielded 16 loci that are independent according to our 

locus definition (Fig. 1c). However, 6 of these reside within a well-known inversion 

polymorphism
16

 on chromosome 8. We established that all genome-wide significant signals in 

the inversion region are attributable to the inversion, and we confirmed that the inversion is 



  

associated with neuroticism in both of our neuroticism datasets, the GPC and the UKB 

(Online Methods and Supplementary Note). In our list of lead SNPs (Table 1), we only 

retain the most strongly associated SNP from these 6 loci to tag the  

chromosome 8 inversion.



  

Fig. 1. Manhattan plots of GWAS results. (a) Subjective well-being (N = 298,420), (b) Depressive symptoms (N = 180,866), (c) Neuroticism (N = 170,911). 

The x-axis is chromosomal position, and the y-axis is the significance on a −log10 scale. The upper dashed line marks the threshold for genome-wide 

significance (p = 5×10
−8

); the lower line marks the threshold for nominal significance (p = 10
−5

). Each approximately independent genome-wide significant 

association (“lead SNP”) is marked by ×. Each lead SNP is the lowest p-value SNP within the locus, as defined by our clumping algorithm (Supplementary 

Note).  
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Table 1. Summary of polymorphisms identified across analyses. EA: effect allele. EAF: effect allele 

frequency. All effect sizes are reported in units of SDs per allele. “Quasi-Repl.”: phenotypes for which SNP was 

found to be nominally associated in quasi-replication analyses conducted in independent samples. *significant at 

the 5%-level, **significant at the 1%-level, ***significant at the 0.1%-level.  #inversion-tagging polymorphism 

on chromosome 8. ##inversion-tagging polymorphism on chromosome 17.  †proxy for rs6904596 (R
2
 = 0.98). 

 

           Panel A. Genome-Wide Significant Associations 
     

           
Subjective Well-Being (SWB, N = 298,420) 

      SNPID CHR BP EA EAF Beta SE R2 p-value  N Quasi-Repl 

rs3756290 5 130,951,750 A 0.24 -0.0177 0.0031 0.011% 9.6×10-9 286,851 

 rs2075677 20 47,701,024 A 0.76 0.0175 0.0031 0.011% 1.5×10-8 288,454 DS** 

rs4958581 5 152,187,729 T 0.66 0.0153 0.0027 0.011% 2.3×10-8 294,043 DS*** 

           Neuroticism (N = 170,908) 

 SNPID CHR BP EA EAF Beta SE R2 p-value  N Quasi-Repl 

rs2572431#  8 11,105,077 T 0.41 0.0283 0.0035 0.039% 4.2×10-16 170,908 SWB* 

rs193236081##  17 44,142,332 T 0.77 -0.0284 0.0045 0.028% 6.3×10-11 151,297 
 

rs10960103 9 11,699,270 C 0.77 0.0264 0.0038 0.024% 2.1×10-10 165,380 𝐷23𝑎𝑛𝑑𝑀𝑒
∗  

rs4938021 11 113,364,803 T 0.34 0.0233 0.0037 0.024% 4.0×10-10 159,900 
𝐷23𝑎𝑛𝑑𝑀𝑒
∗∗∗ , 

SWB* 

rs139237746 11 10,253,183 T 0.51 -0.0204 0.0034 0.021% 2.6×10-9 170,908 
 

rs1557341 18 35,127,427 A 0.34 0.0213 0.0036 0.021% 5.6×10-9 165,579 𝐷23𝑎𝑛𝑑𝑀𝑒
∗∗  

rs12938775 17 2,574,821 A 0.47 -0.0202 0.0035 0.020% 8.5×10-9 163,283 SWB* 

rs12961969 18 35,364,098 A 0.2 0.0250 0.0045 0.020% 2.2×10-8 156,758 
 

rs35688236 3 34,582,993 A 0.69 0.0213 0.0037 0.019% 2.4×10-8 161,636 
 

rs2150462 9 23,316,330 C 0.26 -0.0217 0.0038 0.018% 2.7×10-8 170,907 
 

rs12903563 15 78,033,735 T 0.50 0.0198 0.0036 0.020% 2.9×10-8 157,562 𝐷23𝑎𝑛𝑑𝑀𝑒
∗ ,SWB* 

           
Depressive Symptoms (DS, N = 180,866) 

 SNPID CHR BP EA EAF Beta SE R2 p-value  N Quasi-Repl/Repl 

rs7973260 12 118,375,486 A 0.19 0.0306 0.0051 0.029% 1.8×10-9 124,498 𝐷23𝑎𝑛𝑑𝑀𝑒
∗  

rs62100776 18 50,754,633 A 0.56 -0.0252 0.0044 0.031% 8.5×10-9 105,739 𝐷23𝑎𝑛𝑑𝑀𝑒
∗∗ ,SWB* 

           Panel B.  SNPs Identified via Proxy-Phenotype Analyses of SWB Loci with p-value<10-4 
 

           
Depressive Symptoms in Non-Overlapping Cohorts 

    

SNPID CHR BP EA EAF BetaDS SEDS R2 pDS Bonferroni NDS 

rs4346787† 6 27,491,299 A 0.113 -0.023 0.0059 0.011% 9.8×10-5 0.0160 142,265 

rs4481363 5 164,483,794 A 0.524 0.014 0.0038 0.009% 3.1×10-4 0.0499 142,265 

           Neuroticism in Non-Overlapping Cohorts 
  

   SNPID CHR BP EA EAF Betaneuro SEneuro R2 pneuro Bonferroni Nneuro 

rs10838738 11 47,663,049 A 0.49 0.0178 0.0039 0.016% 5.0×10-6 0.0009 131,864 

rs10774909 12 117,674,129 C 0.52 -0.0150 0.0039 0.011% 1.2×10-4 0.0203 131,235 

rs6904596 6 27,491,299 A 0.09 -0.0264 0.0072 0.012% 2.5×10-4 0.0423 116,335 

rs4481363 5 164,474,719 A 0.49 0.0151 0.0040 0.011% 1.9×10-4 0.0316 122,592 

 

  



  

Another lead SNP associated with neuroticism, rs193236081, is located within a well-known 

inversion polymorphism on chromosome 17. We established that this association is 

attributable to the inversion polymorphism (Online Methods and Supplementary Note). 

Because this inversion yields only one significant locus and is genetically complex
17

, we 

hereafter simply use its lead SNP as its proxy. Our neuroticism GWAS therefore identified 11 

lead SNPs, two of which tag inversion polymorphisms. A concurrent neuroticism GWAS 

using a subset of our sample reports similar findings
18

. 

As shown in Table 1, the estimated effects of all lead SNPs associated with depressive 

symptoms and neuroticism are in the range 0.020 to 0.031 SDs per allele (R
2
 ≈ 0.02% to 

0.04%). In the UKB cohort we estimated the effect of an additional allele of the chromosome 

8 inversion polymorphism itself on neuroticism to be 0.035 SDs (Supplementary Table 13). 

The inversion explains 0.06% of the variance in neuroticism (roughly the same as the total 

variance explained jointly by the 6 SNPs in the inversion region). 

Genetic overlap across subjective well-being, depressive symptoms, and neuroticism 

Figure 2a shows that the three pairwise genetic correlations between our phenotypes, 

estimated using bivariate LD Score regression
10

, are substantial: -0.81 (SE = 0.046) between 

subjective well-being and depressive symptoms, -0.75 (SE = 0.034) between subjective well-

being and neuroticism, and 0.75 (SE = 0.027) between depressive symptoms and neuroticism. 

Using height as a negative control, we also examined pairwise genetic correlations between 

each of our phenotypes and height and, as expected, found all three to be modest, e.g., 0.07 

with subjective well-being (Supplementary Table 1). The high genetic correlations between 

subjective well-being, depressive symptoms, and neuroticism may suggest that the genetic 

influences on these phenotypes are predominantly related to processes common across the 

phenotypes, such as mood, rather than being phenotype-specific. 

Quasi-replication and Bayesian credibility analyses 

We assessed the credibility of our findings using a standard Bayesian framework
19,20

 in which 

a positive fraction of SNPs have null effects and a positive fraction have non-null effects 

(Online Methods). For each phenotype, the non-null effect sizes are assumed to be drawn 

from a normal distribution whose variance is estimated from the GWAS summary statistics. 

As a first analysis, for each lead SNP’s association with its phenotype, we calculated the 

posterior probability of null association after having observed the GWAS results. We found 

that, for any assumption about the fraction of non-null SNPs in the range 1% to 99%, the 



  

probability of true association always exceeds 95% for all 16 loci (and always exceeds 98% 

for 14 of them). 

To further probe the credibility of the findings, we performed “quasi-replication” exercises 

(Online Methods) in which we tested the subjective well-being lead-SNPs for association with 

depressive symptoms and neuroticism. We similarly tested the depressive symptoms lead-

SNPs and the neuroticism lead-SNPs for association with subjective well-being. Below, we 

refer to the phenotype for which the lead SNP was identified as the first-stage phenotype and 

the phenotype used for the quasi-replication as the second-stage phenotype. To avoid sample 

overlap, for each quasi-replication analysis we omitted any cohorts that contributed to the 

GWAS of the first-stage phenotype. 

Results of the quasi-replication of the three subjective well-being lead-SNPs are shown in 

Figure 3a. For ease of interpretation, the reference allele for each association in the figure is 

chosen such that the predicted sign of the second-stage estimate is positive. We find that two 

out of the three subjective well-being lead-SNPs are significantly associated with depressive 

symptoms (p = 0.004 and p = 0.001) in the predicted direction. For neuroticism, where the 

second-stage sample size (N = 68,201) is about half as large, the subjective well-being-

increasing allele has the predicted sign for all three SNPs, but none reach significance. 

Figures 3b and 3c show the results for the depressive symptoms and neuroticism lead-SNPs, 

respectively. In each panel, the blue crosses depict results from the quasi-replications where 

subjective well-being is the second-stage phenotype. We find that the two depressive 

symptoms lead-SNPs have the predicted sign for subjective well-being, and one is nominally 

significant (p = 0.04). Finally, of the eleven neuroticism lead-SNPs, nine have the predicted 

sign for subjective well-being. Four of the eleven are nominally significantly associated with 

subjective well-being, all with the predicted sign. One of the four is the SNP tagging the 

inversion on chromosome 8
16

. That SNP’s association with neuroticism (and likely with 

subjective well-being) is driven by its correlation with the inversion (Supplementary Fig. 2). 

To evaluate what these quasi-replication results imply about the credibility of the 16 GWAS 

associations, we compared the observed quasi-replication record to the quasi-replication 

record expected given our statistical power. We calculated statistical power using our 

Bayesian framework, under the hypothesis that each lead SNP has a non-null effect on both 

the first- and second-stage phenotypes. Our calculations take into account both the imperfect 

genetic correlation between the first- and second-stage phenotypes and inflation of the first-

stage estimates due to the well-known problem of winner’s curse (Online Methods). Of the 19 



  

quasi-replication tests, our calculations imply that 16.7 would be expected to yield the 

anticipated sign and 6.9 would be significant at the 5% level. The observed numbers are 16 

and 7. Our quasi-replication results are thus consistent with the hypothesis that none of the 16 

genome-wide significant associations are chance findings, and in fact strengthen the 

credibility of our GWAS results (Supplementary Table 14). 

  



  

Fig. 2. Genetic correlations with bars representing 95% confidence intervals. The correlations are 

estimated using bivariate LD Score (LDSC) regression. (a) Genetic correlations between subjective 

well-being, depressive symptoms, and neuroticism (“our three phenotypes”), as well as between our 

three phenotypes and height. (b) Genetic correlations between our three phenotypes and selected 

neuropsychiatric phenotypes. (c) Genetic correlations between our three phenotypes and selected 

physical health phenotypes. In (b) and (c), we report the negative of the estimated correlation with 

depressive symptoms and neuroticism (but not subjective well-being). 

 
a 

 
b 
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Fig. 3. Quasi-replication and lookup of lead SNPs. In quasi-replication analyses, we examined whether (a) lead SNPs identified in the subjective well-being 

meta-analyses are associated with depressive symptoms or neuroticism, (b) lead SNPs identified in the analyses of depressive symptoms are associated with 

subjective well-being, and (c) lead SNPs identified in the analyses of neuroticism are associated with subjective well-being. The quasi-replication sample is 

always restricted to non-overlapping cohorts. In a separate lookup exercise, we examined whether lead SNPs for depressive symptoms and neuroticism are 

associated with depression in an independent sample of 23andMe customers (N = 368,890). The results from this lookup are depicted as green crosses in (b) 

and (c). Bars represent 95% CIs (not adjusted for multiple testing). For interpretational ease, we choose the reference allele so that positive coefficients imply 

that the estimated effect is in the predicted direction. Listed below each lead SNP is the nearest gene. 

 
a 

 

b 

 

  

c  
 

 



  

Lookup of depressive symptoms and neuroticism lead-SNPs  

Investigators of an ongoing large-scale GWAS of major depressive disorder (N = 368,890) in 

the 23andMe cohort shared association results for the loci identified in our depressive 

symptoms and neuroticism analyses (Online Methods and Supplementary Table 15)
21

. 

Because the depression sample overlaps with our subjective well-being sample, we did not 

request a lookup of the subjective well-being-associated SNPs.  

In Figures 3b and 3c, the results are depicted as green crosses. For interpretational ease, we 

chose the reference allele so that positive coefficients imply that the estimated effect is in the 

predicted direction. All 13 associations have the predicted sign. Of the 11 neuroticism 

polymorphisms, four are significantly associated with depression at the 5% level. Both of the 

depressive symptoms lead-SNPs replicate (p = 0.004 and p = 0.015), with effect sizes (0.007 

and -0.007 SDs per allele), close to those predicted by our Bayesian framework (0.008 and -

0.006) (Supplementary Table 14 and Supplementary Table 15). 

Panel A of Table 1 summarizes the results for the 16 lead SNPs identified across our separate 

GWA analyses of the three phenotypes. The right-most column summarizes the statistical 

significance of the quasi-replication and depression lookup analyses of each SNP. 

Proxy-phenotype analyses 

To identify additional SNPs associated with depressive symptoms, we conducted a two-stage 

“proxy phenotype” analysis (Online Methods). In the first stage, we ran a new GWAS of 

subjective well-being to identify a set of candidate SNPs. Specifically, from each locus 

exhibiting suggestive evidence of association (p < 10
-4

) with subjective well-being, we 

retained the SNP with the lowest p-value as a candidate. In the second stage, we tested these 

candidates for association with depressive symptoms at the 5% significance threshold, 

Bonferroni-adjusted for the number of candidates. We used an analogous two-stage procedure 

to identify additional SNPs associated with neuroticism. The first-stage subjective well-being 

sample differs across the two proxy-phenotype analyses (and from the primary subjective 

well-being GWAS sample) because we assigned cohorts across the first and second stages so 

as to maximize statistical power for the overall procedure. 

For depressive symptoms, there are 163 candidate SNPs. 115 of them (71%) have the 

predicted direction of effect on depressive symptoms, 20 are significantly associated at the 5% 

significance level (19 in the predicted direction), and two remain significant after Bonferroni 

adjustment. For neuroticism, there are 170 candidate SNPs. 129 of them (76%) have the 



  

predicted direction of effect, all 28 SNPs significant at the 5% level have the predicted sign, 

and four of these remain significant after Bonferroni adjustment (Supplementary Fig. 3 and 

Supplementary Tables 16 and 17). Two of the four are the SNPs identified in the proxy-

phenotype analysis for depressive symptoms.  

Table 1 lists the four SNPs in total identified by the proxy-phenotype analyses. 

Biological analyses 

To shed some light on possible biological mechanisms underlying our findings, we conducted 

several analyses. 

We began by using bivariate LD Score regression
10

 to quantify the amount of genetic overlap 

between each of our three phenotypes and ten neuropsychiatric and physical health 

phenotypes. Figures 2b and c display the estimates for subjective well-being and the negative 

of the estimates for depressive symptoms and neuroticism (since subjective well-being is 

negatively genetically correlated with depressive symptoms and neuroticism). Subjective 

well-being, depressive symptoms, and neuroticism have strikingly similar patterns of pairwise 

genetic correlation with the other phenotypes. 

Figure 2b shows the results for the five neuropsychiatric phenotypes we examined: 

Alzheimer’s disease, anxiety disorders, autism spectrum disorder, bipolar disorder, and 

schizophrenia. For four of these phenotypes, genetic correlations with depression (but not 

neuroticism or subjective well-being) were reported in Bulik-Sullivan et al.
10

. For 

schizophrenia and bipolar disorder, our estimated correlations with depressive symptoms, 0.33 

and 0.26, are substantially lower than Bulik-Sullivan et al.’s point estimates but contained 

within their 95% confidence intervals. By far the largest genetic correlations we estimate are 

with anxiety disorders: −0.73 with subjective well-being, 0.88 with depressive symptoms, and 

0.86 with neuroticism. Genetic correlations estimated from GWAS data have not been 

previously reported for anxiety disorders. 

Figure 2c shows the results for five physical health phenotypes that are known or believed to 

be risk factors for various adverse health outcomes: body mass index (BMI), ever-smoker 

status, coronary artery disease, fasting glucose, and triglycerides. The estimated genetic 

correlations are all small in magnitude, consistent with earlier work, although the greater 

precision of our estimates allows us to reject null effects in most cases. The signs are 

generally consistent with those of the phenotypic correlations reported in earlier work 



  

between our phenotypes and outcomes such as obesity
22

, smoking
23,24

, and cardiovascular 

health
25

. 

Next, to investigate whether our GWAS results are enriched in particular functional 

categories, we applied stratified LD Score regression
26

 to our meta-analysis results. In our first 

analysis, we report estimates for all 53 functional categories included in the “baseline model”; 

the results for subjective well-being, depressive symptoms, and neuroticism are broadly 

similar (Supplementary Tables 18-20) and are in line with what has been found for other 

phenotypes
26

. In our second analysis, the categories are groupings of SNPs likely to regulate 

gene expression in cells of a specific tissue. The estimates for subjective well-being, 

depressive symptoms, and neuroticism are shown in Figure 4a, alongside height, which is 

again included as a benchmark
27

 (see also Supplementary Table 21). 

We found significant enrichment of CENTRAL NERVOUS SYSTEM for all three phenotypes and, 

perhaps more surprisingly, enrichment of ADRENAL/PANCREAS for subjective well-being and 

depressive symptoms. The cause of the ADRENAL/PANCREAS enrichment is unclear, but we 

note that the adrenal glands produce several hormones, including cortisol, epinephrine, and 

norepinephrine, known to play important roles in the bodily regulation of mood and stress. It 

has been robustly found that blood serum levels of cortisol in patients afflicted by depression 

are elevated relative to controls
28

.  

While the above analyses utilize the genome-wide data, we also conducted three analyses 

(Online Methods) restricted to the 16 GWAS and four proxy-phenotype SNPs in Table 1. In 

brief, we ascertained whether each SNP (or a variant in strong linkage disequilibrium (LD) 

with it) falls into any of the following three classes: (i) resides in a locus for which genome-

wide significant associations with other phenotypes have been reported (Supplementary 

Table 22), (ii) is nonsynonymous (Supplementary Table 23), and (iii) is an eQTL in blood 

or in one of 14 other tissues (although the non-blood analyses are based on smaller samples) 

(Supplementary Table 24). Here we highlight a few particularly interesting results. 

We found that five of the 20 SNPs are in loci in which genome-wide significant associations 

have previously been reported. Two of these five are schizophrenia loci. Interestingly, one of 

them harbors the gene DRD2, which encodes the D2 subtype of the dopamine receptor, a 

target for antipsychotic drugs
29

 that is also known to play a key role in neural reward 

pathways
30

. Motivated by these findings, as well as by the modest genetic correlations with 

schizophrenia reported in Figure 2b, we examined whether the SNPs identified in a recent 

study of schizophrenia
31

 are enriched for association with neuroticism in our non-overlapping 



  

UKB sample (N = 107,245). We conducted several tests and found strong evidence of such 

enrichment (Supplementary Note). For example, we found that the p-values of the 

schizophrenia SNPs tend to be much lower than the p-values of a randomly selected set of 

SNPs matched on allele frequency (p = 6.50×10
-71

). 

Perhaps the most notable pattern that emerges from our biological analyses is that the 

inversions on chromosomes 8 and 17 are implicated consistently across all analyses. The 

inversion-tagging SNP on chromosome 8 is in LD with SNPs that have previously been found 

to be associated with BMI
32

 and triglycerides
33

 (Supplementary Table 22). We also 

conducted eQTL analyses in blood for the inversion itself and found that it is a significant cis-

eQTL for 7 genes (Supplementary Table 24). As shown in Figure 4b, all 7 genes are 

positioned in close proximity to the inversion breakpoints, suggesting that the molecular 

mechanism underlying the inversion’s effect on neuroticism could involve the relocation of 

regulatory sequences. Two of the genes (MSRA, MTMR9) are known to be highly expressed in 

tissues and cell types that belong to the nervous system, and two (BLK, MFHAS1) in the 

immune system. In the tissue-specific analyses, we found that the SNP tagging the inversion 

is a significant eQTL for two genes, AF131215.9 (in tibial nerve and thyroid tissue analyses) 

and NEIL2 (tibial nerve tissue), both of which are also located near the inversion breakpoint. 

  



  

Fig. 4. Results from selected biological analyses. (a) Estimates of the expected increase in the 

phenotypic variance accounted for by a SNP due to the SNP’s being in a given category (𝜏𝑐), divided 

by the LD Score heritability of the phenotype (ℎ2). Each estimate of 𝜏𝑐 comes from a separate 

stratified LD Score regression, controlling for the 52 functional annotation categories in the “baseline 

model.” The bars represent 95% CIs (not adjusted for multiple testing). To benchmark the estimates, 

we compare them to those obtained from a recent study of height
27

. (b) Inversion polymorphism on 

chromosome 8 and the 7 genes for which the inversion is a significant cis-eQTL at FDR < 0.05. The 

upper half of the figure shows the Manhattan plot for neuroticism for the inversion and surrounding 

regions. The bottom half shows the squared correlation between the SNPs and the principal component 

that captures the inversion. The inlay plots the relationship, for each SNP in the inversion region, 

between the SNP’s significance and its squared correlation with the principal component that captures 

the inversion. 

a 

 
b 

 
  



  

The SNP tagging the chromosome 17 inversion is a significant cis-eQTL for five genes in 

blood and is an eQTL in all 14 other tissues (Supplementary Table 24). It alone accounts for 

151 out of the 169 significant associations identified in the 14 tissue-specific analyses. 

Additionally, the SNP is in near-perfect LD (R
2
 > 0.97) with 11 missense variants 

(Supplementary Table 23) in three different genes, one of which is MAPT. MAPT, which is 

also implicated in both the blood and the other tissue-specific analyses, encodes a protein 

important in the stabilization of microtubules in neurons. Associations have been previously 

reported between SNPs in MAPT (all of which are in strong LD with our inversion-tagging 

SNP) and neurodegenerative disorders, including Parkinson’s disease
34

 and progressive 

supranuclear palsy
35

, a rare disease whose symptoms include depression and apathy. 

Discussion 

The discovery of genetic loci associated with subjective well-being, depression, and 

neuroticism has proven elusive. Our study identified several credible associations for two 

main reasons. First, our analyses had greater statistical power than prior studies because ours 

were conducted in larger samples. Our GWAS findings—three loci associated with subjective 

well-being, two with depressive symptoms, and eleven with neuroticism—support the view 

that GWAS can successfully identify genetic associations with highly polygenic phenotypes 

in sufficiently large samples
5,36

. A striking finding is that two of our identified associations are 

with inversion polymorphisms. 

Second, our proxy-phenotype analyses further boosted power by exploiting the strong genetic 

overlap between our three phenotypes. These analyses identified two additional loci 

associated with neuroticism and two with both depressive symptoms and neuroticism. 

Through our quasi-replication tests, we also demonstrated how studying genetically 

overlapping phenotypes in concert can provide evidence on the credibility of GWAS findings. 

Our direct replication of the two genome-wide significant associations with depressive 

symptoms in an independent depression sample provides further confirmation of those 

findings (Fig. 2b and Supplementary Table 15). 

We were able to assemble much larger samples than prior work in part because we combined 

data across heterogeneous phenotype measures. Our results reinforce the conclusions from our 

theoretical analysis that doing so increased our statistical power, but our strategy also has 

drawbacks. One is that mixing different measures may make any discovered associations 

more difficult to interpret. Research studying higher quality measures of the various facets of 

subjective well-being, depressive symptoms, and neuroticism is a critical next step. Our 



  

results can help facilitate such work because if the variants we identify are used as candidates, 

studies conducted in the smaller samples in which more fine-grained phenotype measures are 

available can be well powered. 

Another limitation of mixing different measures is that doing so may reduce the heritability of 

the resulting phenotype, if the measures are influenced by different genetic factors. Indeed, 

our estimates of SNP-based heritability
10

 for our three phenotypes are quite low: 0.040 (SE = 

0.002) for subjective well-being, 0.047 (SE = 0.004) for depressive symptoms, and 0.091 (SE 

= 0.007) for neuroticism. We correspondingly find that polygenic scores constructed from all 

measured SNPs explain a low fraction of variance in independent samples: ~0.9% for 

subjective well-being, ~0.5% for depressive symptoms, and ~0.7% for neuroticism (Online 

Methods). The low heritabilities imply that even when polygenic scores can be estimated 

using much larger samples than ours, they are unlikely to attain enough predictive power to be 

clinically useful. 

According to our Bayesian calculations, the true explanatory power (corrected for winner’s 

curse) of the SNP with the largest posterior R
2
 is 0.003% for subjective well-being, 0.002% 

for depressive symptoms, and 0.011% for neuroticism (Supplementary Table 14). These 

effect sizes imply that in order to account for even a moderate share of the heritability, 

hundreds or (more likely) thousands of variants will be required. They also imply that our 

study’s power to detect variants of these effect sizes was not high—for example, our statistical 

power to detect the lead SNP with largest posterior R
2
 was only ~13%—which in turn means 

it is likely that there exist many variants with effect sizes comparable to our identified SNPs 

that evaded detection. These estimates suggest that many more loci will be found in studies 

with sample sizes realistically attainable in the near future. Consistent with this projection, 

when we meta-analyze the 54 SNPs reaching p < 10
-5

 in our analyses of depressive symptoms 

together with the 23andMe replication sample for depression, the number of genome-wide 

significant associations rises from 2 to 5 (Supplementary Table 15).  
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ONLINE METHODS 

This article is accompanied by a Supplementary Note with further details. 

GWAS of subjective well-being. Genome-wide association analyses were performed at the 

cohort level according to a pre-specified analysis plan. Genotyping was performed using a 

range of common, commercially available genotyping arrays. The analysis plan instructed 

cohorts to upload results imputed using the HapMap2 CEU (r22.b36) reference sample
37

. We 

meta-analyzed summary association statistics from 59 contributing cohorts with a combined 

sample size of 298,420 individuals. Before meta-analysis, a uniform set of quality-control 

(QC) procedures were applied to the cohort-level summary statistics, including but not 

limited to the EasyQC
38

 protocol. All analyses were restricted to European-ancestry 

individuals. 

We performed a sample-size-weighted meta-analysis of the cohort-level summary statistics. 

To adjust standard errors for non-independence, we inflated them using the square root of the 

estimated intercept from a LD Score regression
10

. We also performed secondary, separate 

meta-analyses of positive affect (N = 180,281) and life satisfaction (N = 166,205) and a post 

hoc genome-wide analysis of subjective well-being in cohorts with 1000G-imputed data (N = 

229,883); see Supplementary Figures 4-6. 

Detailed cohort descriptions, information about cohort-level genotyping and imputation 

procedures, cohort-level measures, and quality-control filters are shown in Supplementary 

Tables 2-6. Supplementary Table 7 reports association results from the following four 

meta-analyses: the primary subjective well-being analysis, the life satisfaction analysis, the 

positive affect analysis, and the post hoc subjective well-being analysis. For each phenotype, 

we provide association results for the set of approximately independent SNPs that attained a 

p-value smaller than 10
-5

. We identify these SNP using the same clumping algorithm as for 

the lead SNPs, but with the p-value threshold set at 10
-5

 instead of genome-wide significance. 

GWAS of depressive symptoms and neuroticism. Our auxiliary genome-wide association 

studies of DS and neuroticism were conducted in 1000G-imputed data, combining new 

genome-wide association analyses with publicly available summary statistics from previously 

published studies. We applied a similar QC protocol to that used in our primary subjective 

well-being analysis. In the DS meta-analysis (N = 180,866), we weighted the UKB analysis 

by sample size and the two case-control studies by effective sample size. In the neuroticism 



  

meta-analysis, we performed a sample-size-weighted fixed-effects meta-analysis of the UKB 

data and the publicly available summary statistics from a previous GWAS of neuroticism.  

Detailed cohort descriptions, information about cohort-level genotyping and imputation 

procedures and quality-control filters are provided in Supplementary Tables 8-12. See 

Supplementary Figure 7 for quantile-quantile plots of the neuroticism and DS meta-analysis 

results. Association results for the set of approximately independent set of SNPs that attained 

a p-value smaller than 10
-5

 are supplied in Supplementary Table 25. 

Population stratification. To quantify the fraction of the observed inflation of the mean test 

statistic that is due to bias, we used LD Score regression
10

. The estimated LD Score 

regression intercepts were all close to 1, suggesting no appreciable inflation of the test 

statistics attributable to population stratification in any of our subjective well-being, 

depressive symptoms, or neuroticism meta-analyses (Supplementary Fig. 8). For all three 

phenotypes, our estimates suggest that less than 2% of the observed inflation of the mean test 

statistic was accounted for by bias. 

In our primary GWAS of subjective well-being, we also used two family-based analyses to 

test for and quantify stratification biases. These analyses used within-family (WF) estimates, 

the coefficients from regressing the difference in phenotype across siblings on the difference 

in siblings’ genotype (and controls). These WF estimates are not biased by population 

stratification because siblings share their ancestry entirely, and therefore differences in 

siblings’ genotypes cannot be due to the siblings being from different population groups. We 

meta-analyzed association statistics from WF analyses conducted in four cohorts. 

In the first analysis, we estimated the fraction of SNPs for which the signs of the WF 

estimates were concordant with the signs of the estimates obtained from a GWAS identical to 

our primary subjective well-being GWAS except with the four family cohorts excluded. For 

the 112,884 approximately independent SNPs considered, we found a sign concordance of 

50.83%, which is significantly greater than 50% (p = 1.04 × 10
-8

). Under the null hypothesis 

of no population stratification, the observed sign concordance matches the expected rate after 

winner’s curse adjustment nearly perfectly, 50.83% (Supplementary Fig 9). 

The second analysis utilized the WF regression coefficient estimates (i.e., not only their 

signs) to estimate the amount of stratification bias. For each SNP 𝑗, let �̂�𝑗 denote the GWAS 

estimate, and let �̂�𝑊𝐹,𝑗 denote the WF estimate. Under the assumption that the causal effect of 



  

each SNP is the same within families as in the population, we can decompose the estimates 

as: 

�̂�𝑗 = 𝛽𝑗 + 𝑠𝑗 + 𝑈𝑗  

�̂�𝑊𝐹,𝑗 = 𝛽𝑗 + 𝑉𝑗, 

where 𝛽𝑗 is the true underlying GWAS parameter for SNP 𝑗, 𝑠𝑗 is the bias due to stratification 

(defined to be orthogonal to 𝛽𝑗 and 𝑈𝑗), and 𝑈𝑗 and 𝑉𝑗 are the sampling variances of the 

estimates with E(𝑈𝑗) = E(𝑉𝑗) = 0. Whenever 𝑠𝑗 ≠ 0, the GWAS estimate of �̂�𝑗 is biased 

away from the population parameter 𝛽𝑗. The proportion of variance in the GWAS coefficients 

accounted for by true genetic signals can be written as: 

Var(𝛽𝑗)

Var(𝛽𝑗) + Var(𝑠𝑗)
. 

In Supplementary Note, we show that with estimates �̂�𝑗 and �̂�𝑊𝐹,𝑗 (and their standard 

errors) from independent samples, it is possible to consistently estimate the above ratio. The 

95% confidence interval for the ratio implies that between 72% and 100% of the signal in the 

GWAS estimates is a result of true genetic effects on subjective well-being rather than 

stratification. 

Analyses of inversion polymorphisms. Two genome-wide significant SNPs for the 

neuroticism analysis are located within well-known inversion polymorphisms, on 

chromosomes 8 and 17. Using the genotypic data available for UKB participants, we called 

the inversion genotypes for UKB participants using a PCA-mixture method. For both 

inversions, the method clearly distinguishes 3 clusters of genotypes, corresponding to 

inversion genotypes (Supplementary Fig. 10). We validated the PCA-mixture procedure 

using existing methods designed to call inversion genotypes
39

 (Supplementary Table 26). 

For both inversions, we established that the inversion-tagging SNPs were always located in 

close proximity of the inversion region (Fig. 3b and Supplementary Figs. 10-11). 

Supplementary Tables 27-28 list the twenty variants that most strongly correlate with the 

PCs that capture the inversion polymorphisms on chromosome 8 and 17, respectively. In 

additional analyses, we confirmed that the inversion is associated with neuroticism and 

subjective well-being in independent cohorts (Supplementary Tables 29-30 and 

Supplementary Fig. 12-13). 



  

Proxy-phenotype analyses. In these analyses, we used a two-stage approach that has been 

successfully applied in other contexts
6
. In the first stage, we conducted a meta-analysis of our 

first-stage “proxy phenotype” and used our clumping procedure to identify the set of 

approximately independent SNPs at the p-value threshold of 10
-4

. In the second stage, we 

tested SNPs identified in stage 1 (or high-LD proxies for them) for association with a second-

stage phenotype in an independent (non-overlapping) sample. In our analyses, we used our 

primary phenotype of subjective well-being as the proxy-phenotype. We conducted one 

analysis with depressive symptoms as the second-stage phenotype, and one analysis with 

neuroticism as the second-stage phenotype. In the analyses, we omit cohorts from the first-

stage or second-stage as needed to ensure that the samples in the two stages are non-

overlapping. Supplementary Table 31 lists the cohort restrictions imposed. These cohort 

restrictions, as well as the p-value threshold of 10
-4

, were chosen before the data were 

analyzed on the basis of statistical power calculations. 

To test for cross-phenotype enrichment, we used a non-parametric procedure that tests 

whether the lead SNPs are more strongly associated with the second-stage phenotype than 

randomly chosen sets of SNPs with a similar distribution of allele frequencies 

(Supplementary Note). 

To test the individual lead SNPs for experiment-wide significance, we examined whether any 

of the lead SNPs (or their high-LD proxies) are significantly associated with the second-stage 

phenotype at the Bonferroni-adjusted significance level of 0.05/Y. 

Genetic correlations. We used bivariate LD Score regression
10

 to quantify the amount of 

genetic heterogeneity among the phenotypic measures pooled in each of our three separate 

meta-analyses. For subjective well-being, we estimated a pairwise correlation of 0.981 (SE = 

0.065) between life satisfaction and positive affect, 0.897 (SE = 0.017) between “wellbeing” 

(our measure that combines life satisfaction and positive affect) and life satisfaction, and 

1.031 (SE = 0.019) between positive affect and wellbeing. For depressive symptoms, we 

estimated a genetic correlation of 0.588 (SE = 0.242) between GERA and PGC, 0.972 (SE = 

0.216) between GERA and UKB, and 0.797 (SE = 0.108) between UKB and PGC. Finally, 

we estimated a genetic correlation of 1.11 (SE = 0.14) between the measures of neuroticism 

in the UKB analyses and the summary statistics from a previously published meta-analysis
4
. 

Bayesian credibility analyses. To evaluate the credibility of our findings, we use a standard 

Bayesian framework
19

 in which our prior distribution for any SNP’s effect is: 



  

𝛽~ {
𝑁(0, 𝜏𝑗

2) with probability 𝜋

0 otherwise.
. 

Here, 𝜋 is the fraction of non-null SNPs, and 𝜏𝑗
2 is the variance of the non-null SNPs for trait 

j ∈ {subjective well-being, depressive symptoms, neuroticism}. In this framework, credibility 

is defined as the probability that a given SNP is non-null. 

We begin with univariate analyses of the GWAS results that do not incorporate the additional 

information from the quasi-replication analyses of the 16 lead SNPs reported in Table 1. We 

use the three subjective well-being-associated SNPs to illustrate our approach, but we use 

analogous procedures when analyzing depressive symptoms and neuroticism. We calculate 

credibility for each value 𝜋 ∈ {0.01,0.02,… ,0.99}. For each assumed value of 𝜋, we estimate 

𝜏𝑆𝑊𝐵
2  by maximum likelihood (Supplementary Note). For each SNP, we use Bayes’ rule to 

obtain a posterior estimate of credibility for each of the assumed values of 𝜋. Supplementary 

Figure 14 shows that for all considered values of 𝜋 and all three SNPs, the posterior 

probability that the SNP is null is below 1%. Similar analyses of the depressive symptoms 

and neuroticism SNPs show that the posterior probability never exceeds 5%. 

In our joint analyses, we consider two phenotypes with genetic correlation 𝑟𝑔. We make the 

simplifying assumption that the set of null SNPs is the same for both phenotypes. The joint 

distribution of a SNP’s effect on the two phenotypes is then given by 

[
𝛽1
𝛽2
]~

{
 

 𝑁([
0
0
] , [

𝜏1
2 𝜏1𝜏2𝑟𝑔

𝜏1𝜏2𝑟𝑔 𝜏2
2 ]) with probability 𝜋

[
0
0
]                                           otherwise.

 

With coefficient estimates, �̂�1 and �̂�2, obtained from non-overlapping samples, the variance-

covariance matrix of the estimation error will be diagonal. We denote the diagonal entries of 

this matrix, which represent the variances of the estimation error in the two samples, by 𝜎1
2 

and 𝜎2
2. This gives us the joint prior distribution 

[
�̂�1
�̂�2
]~

{
 
 

 
 𝑁([

0
0
] , [

𝜏1
2 𝜏1𝜏2𝑟𝑔

𝜏1𝜏2𝑟𝑔 𝜏2
2 ] + [

𝜎1
2 0

0 σ2
2])           with probability 𝜋

𝑁 ([
0
0
] , [
𝜎1
2 0

0 σ2
2]).                                               otherwise.

 

To select parameter values for the prior, we use the estimates of 𝑟𝑔 reported in 

Supplementary Table 1, and we estimate the parameters 𝜋, 𝜏1
2, and 𝜏2

2 from GWAS 



  

summary statistics using a maximum likelihood procedure. For this procedure, we make the 

standard assumption
10,40

 that the variance of a SNP’s effect size is inversely proportional to 

the variance of its genotype, 2 ×MAF × (1 − MAF).  

The credibility estimates follow from applying Bayes’ Rule to calculate either the probability 

that the SNP is non-null (an event denoted 𝐶) given only the first-stage estimate, 𝑃(𝐶 | �̂�1), 

or the probability that the SNP is non-null conditional on the results of both the first-stage 

GWAS and the quasi-replication analysis, 𝑃(𝐶 | �̂�1, �̂�2). Credibility estimates for our lead 

SNPs are in Supplementary Table 14. 

To calculate the expected record of a replication or quasi-replication study, we assume that 

the SNP is non-null for both phenotypes. (This is analogous to a standard power calculation 

for a single phenotype, in which the SNP is assumed to be non-null.) Under this assumption, 

�̂�1 and �̂�2 are jointly normally distributed, implying that the conditional distribution of �̂�2 

given �̂�1 is 

(�̂�2 | �̂�1, 𝐶)~𝑁 [
𝜏1𝜏2𝑟𝑔

𝜏1
2 + 𝜎1

2 �̂�1,
(𝜏1
2 + 𝜎1

2)(𝜏2
2 + 𝜎2

2) − 𝜏1
2τ2
2𝑟𝑔

2

𝜏1
2 + 𝜎1

2 ]. 

Using this equation, we can calculate the probability that the GWAS estimates will have 

concordant signs across the two phenotypes, or that the GWAS estimate of the second-stage 

phenotype will reach some level of significance. These probabilities can be summed over the 

set of lead SNPs to generate the expected number of SNPs meeting the criterion. 

To obtain effect-size estimates for a SNP that are adjusted for the winner’s curse 

(Supplementary Table 32), we use the mean of the posterior distribution of the SNP’s 

effect, conditional on the quasi-replication result and the SNP being non-null. We derive the 

posterior distribution and expected 𝑅2 in the Supplementary Note.  

Lookup of depressive symptoms and neuroticism-associated SNPs in an independent 

depression study. We partnered with the investigators of an ongoing large-scale GWAS of 

major depressive symptoms (N = 368,890) to follow up on the associations identified in the 

depressive symptoms and neuroticism analyses. The participants of the study were all 

European-ancestry customers of 23andMe, a personal genomics company, who responded to 

online survey questions about mental health. We did not request results for the SNPs 

identified in the subjective well-being or proxy-phenotype analyses, since these were both 

conducted in samples that overlap with 23andMe’s depression sample. For details on 



  

association models, quality-control filters, and the ascertainment of depression status, we 

refer to the companion study
21

. The p-values we report are based on standard errors that have 

been inflated by the square by the intercept from an LD score regression
10

.  

Polygenic prediction. To evaluate the predictive power of a polygenic score derived from 

the subjective well-being meta-analysis results, we used two independent hold-out cohorts: 

the Health and Retirement Study (HRS
41

) and the Netherlands Twin Register (NTR
42,43

). To 

generate the weights for the polygenic score, we performed meta-analyses of the pooled 

subjective well-being phenotype excluding each of the holdout cohorts, applying a minimum-

sample-size filter of 100,000 individuals (Supplementary Note). The results from these 

analyses are reported in Supplementary Table 33 and depicted in Supplementary Figure 

15. 

Biological annotation. For the biological annotation of the 20 SNPs in Table 1, we 

generated a list of LD partners for each of the original SNPs. A SNP was considered an LD 

partner for the original SNP if (i) its pairwise LD with the original SNP exceeded R
2
 = 0.6 

and (ii) it was located within 250kb of the original SNP. We also generated a list of genes 

residing within loci tagged by our lead SNPs (Supplementary Table 34). 

We used the NHGRI GWAS catalog
44

 to determine which of our 20 SNPs (and their LD 

partners) were in LD with SNPs for which genome-wide significant associations have been 

previously reported. Since the GWAS catalog does not always include the most recent 

GWAS results available, we included additional recent GWAS studies. We used the tool 

HaploReg
45

 to identify nonsynonymous variants in LD with any of the 20 SNPs or their LD 

partners. 

We examined whether the 20 polymorphisms in Table 1 were associated with gene 

expression levels (Supplementary Table 24 and Supplementary Note). The cis-eQTL 

associations were performed in 4,896 peripheral-blood gene expression and genome-wide 

SNP samples from two Dutch cohorts measured on the Affymetrix U219 platform
42,43,46

. We 

also performed eQTL lookups of our 20 SNPs in the Genotype-Tissue Expression Portal
47,48

. 

We restricted the search to the following trait-relevant tissues: hippocampus, hypothalamus, 

anterior cingulate cortex (BA24), putamen (basal ganglia), frontal cortex (BA9), nucleus 

accumbens (basal ganglia), caudate (basal ganglia), cortex, cerebellar hemisphere, 

cerebellum, tibial nerve, thyroid, adrenal gland, and pituitary. 



  

Finally, using a gene co-expression database
49

, we explored the predicted functions of genes 

co-locating with the 20 SNPs in Table 1 (Supplementary Table 35).  
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Abstract 

Traits related to well-being (life satisfaction, positive affect, neuroticism, and depressive 

symptoms), are genetically highly correlated (rg > 0.70). We introduce two novel methods 

for multivariate genome-wide meta-analysis (GWAMA) of related traits that also correct 

for sample overlap. We applied these methods to the abovementioned traits, collectively 

referred to as the well-being spectrum (Nobs = 2,370,390), and found 319 significant 

independent signals. This 32% increase over the 241 independent signals found in the 

four univariate GWAS analyses was paired to an increase (~38%) in the predictive 

power of polygenic risk scores. A broad range of simulation scenarios supports the 

added value of our multivariate methods relative to univariate GWASs. Bioinformatic 

analyses based on the multivariate GWAMA, including gene expression in brain tissue 

and single cells, showed that genes differentially expressed in the subiculum, the ventral 

tegmental area, and in GABAergic interneurons are enriched in their effect on the well-

being spectrum. 

  

 

 



   

Main 

Well-being plays an important role in psychology and medicine, as well as in economics
1,2

.
 

Well-being
 
owes its interdisciplinary prominence to its associations with physical and mental 

health, and its role as a desired socio-economic outcome and index of economic 

development
3
. Most existing research on the genetics of well-being is characterized by a focus 

on separate traits including life satisfaction
4
, positive affect

4
, neuroticism

5
, and depressive 

symptoms
6
, despite the high phenotypic and genetic correlations between these traits. This 

overlap is strongly suggestive of a common underlying biology. Acknowledging this, we 

performed two multivariate genome-wide meta-analyses (Nobs= 2,370,390) of these four traits 

to increase the power to identify associated genetic variants (Supplementary Table 1).  

Our analyses leveraged published univariate GWAMA of life satisfaction
4,7

 (Nobs = 80,852; 2 

studies), positive affect
4,7,8

 (Nobs = 410,603; 3 studies), neuroticism
4,7–9

 (Nobs = 582,989; 6 

studies), and depressive symptoms
4,7,8,10,11

 (Nobs = 1,295,946; 10 studies), which show strong 

genetic correlations (Fig. 1 (upper triangle)). Overall, the mean genetic correlations between 

different measures of the same trait were higher (LS, rg = 0.68, PA, rg = 0.9, NEU, rg = 0.84, 

and DS, rg = 0.89) than the mean genetic correlations between measures of different traits (rg 

= 0.7). This justifies our two-stage approach by first meta-analyze the datasets measuring the 

same traits (LS, PA, NEU, and DS). Secondly, we meta-analyze these four datasets into what 

we refer to as the well-being spectrum (Nobs = 2,370,390; Supplementary Fig. 1). For the 

purpose of the multivariate GWAMA, we reversed the estimated SNP effects on neuroticism 

and depressive symptoms to ensure a positive correlation with life satisfaction and positive 

affect. The dependence between effect sizes (error correlation) induced by sample overlap was 

estimated from the genome-wide summary statistics obtained from the univariate GWAMA 

analyses using LD score regression
12,13

 (see online methods and Fig. 1 (lower triangle)). 

Knowledge of the error correlation between univariate meta-analyses allowed dependent 

samples to be meta-analyzed, providing a gain in power while guarding against inflated type 1 

error rates (see online methods).  

 

  



   

Fig 1: Genetic correlations and error correlations (cross-trait intercepts) between the included 

GWAMA data sets. Upper triangle: genetic correlations. Lower triangle: error correlation representing 

the magnitude of inflation due to population stratification. Red boxes indicate trait-specific genetic 

correlations and error correlation. Note, UKB1 represents Caucasian UK Biobank participants living 

in the UK. UKB2 represents Caucasian UK Biobank participants living in the UK that are relatives 

from UKB1, and UKB3 represents Caucasian UK Biobank participants not living in the UKB. 



   

 

We recognize that the measures included in the well-being spectrum are not necessarily 

interchangeable. Therefore, we performed two types of multivariate analyses; 1) N-weighted 

multivariate GWAMA (N-GWAMA), which assumes a single underlying construct with a 

unitary effect of the SNP on all traits (see online methods); 2) model averaging GWAMA 

(MA-GWAMA), where we relaxed the assumption of a unitary effect of the SNP on all traits. 

The latter resulting in a separate estimate of effect for the four traits of interest for each SNP, 

allowing for a certain degree of heterogeneity (see online methods). We performed 

simulations to elucidate in which scenarios multivariate N-GWAMA and MA-GWAMA 

outperform univariate GWAMA, in which scenarios N-GWAMA outperforms MA-GWAMA 

and in which scenarios the reverse is true. Using the N-GWAMA results we proceeded with 

biological annotation to elucidate the etiology of the well-being spectrum through 

transcriptome-wide (TWAS) and methylome-wide (MWAS) association, and stratified LD 

score regression based on histone modification, brain region differential gene expression, and 

nerve cell-type specific gene expression.  

Validation of multivariate methods 

Simulations  

To validate the two multivariate methods we simulated GWAS summary statistics for a range 

of different scenarios. For each scenario we simulated four heritable traits (hSNP
2
 = 30%) 

affected by 80K SNPS using data for 100,000 individuals sampled from the UK Biobank 
8
. 

We choose parameters that far exceed the reported SNP h
2
 for these traits

4–6
, which allows us 

to simulate at smaller sample sizes (100K) and reduce the computational burden. The genetic 

correlation between the four traits varied between .1 and .9 (see online methods). We found 

that in the presence of genetic correlations equal or higher than .5, both N-GWAMA and MA-

GWAMA outperform univariate GWAS (Supplementary Table 2). The added value of 

multivariate analyses disappears when traits showed lower genetic correlations (≤ 0.4) 

(Supplementary Fig. 2). To validate MA-GWAMA, we simulated data where the assumption 

of a unitary effects of the SNP on all traits was relaxed (see online methods). We found that, in 

the scenario where a SNP has an effect on at least three out of four traits, N-GWAMA and 

MA-GWAMA perform equally. However, when a SNP has an effect on two out of four traits 

or one out of four traits, MA-GWAMA outperforms N-GWAMA (Supplementary Table 3).  



   

 

GWAMA results 

In our N-GWAMA, we identified 222 independent (250kb window LD > 0.1) loci associated 

with the well-being spectrum (Fig. 2A, Supplementary Table 4 ), whereas MA-GWAMA 

identified 103 (LS), 149 (PA), 234 (NEU), and 201 (DS) loci (Fig. 2B-E), some of which 

overlap, resulting in 277 independent signals (Supplementary Table 5 -8). Of these 

independent MA-GWAMA signals, 154 were within a 50kb window of the independent 

signals present in the N-GWAMA analysis (69,4%). Considering both multivariate methods, 

we found 319 independent genome-wide signals associated with the well-being spectrum. 

This is a 32 % increase over the independent signals found in univariate GWAMAs (LS, PA, 

NEU and DS (Supplementary Table 9 and Supplementary Fig. 3A-D). The low LD-score 

intercepts for all our analyses, confirmed that the inflation in test statistics was due to an 

increase in signal, rather than population stratification or inaccurate accounting for sample 

overlap (see online methods, Supplementary Table 10).  

We performed a lookup for the genome-wide significant loci reported in published studies of 

related traits. We identified 27 loci in close proximity (< 250 kb) to the 44 genome wide 

significant loci (61%) Wray et al reported for the recent major depressive disorder MDD
6
. In 

addition, we identified 62 loci in close proximity to the 79 loci identified using an alternative 

multivariate method considering the same traits (78.4%) in a subset of the data we used
14

. 

Using height as a negative control, we identified 38 loci in close proximity to the 697 loci 

associated with height (5,5%)
15

.  

Polygenic prediction 

We compared the predictive power of polygenic scores constructed from univariate GWAMA 

against N-GWAMA and MA-GWAMA to confirm the gain in power. Prediction of measures 

of LS, PA, NEU, and DS was performed in samples of the Netherlands Twin Register (NTR: 

meanN = > 8,100) and Understanding Society (US: meanN > 8,846) 
7,16

. We evaluated the 

predictive power of each polygenic score by its incremental R
2 

value, defined as the increase 

in R
2
 of the regression including the polygenic score as independent variable together with a 

set of controls (age, age
2
, sex, and ten principal components) over a regression omitting the 

polygenic score. Univariate GWAMA polygenic scores had an incremental R
2
 value of 0.13% 

for LS, 0.49% for PA, 1.53% for NEU, and 1.22% for DS. The corresponding N-GWAMA 

and MA-GWAMA had larger incremental R
2
 for LS: 0.87% and 0.88%, for PA: 0.88% and 

0.93%, and 1.53% and 1.45% for DS. For NEU, prediction was comparable for N-GWAMA 



   

 

(1.52%) and lower for MA-GWAMA (1.27%). On average, N-GWAMA improved prediction 

by 42% and MA-GWAMA improved prediction by 34% (Supplementary Fig 4 and 

Supplementary Table 11).  



   

 

Fig. 2. Manhattan plots of N-weighted and model averaging GWAMA. (a) N-weighted GWAMA. Model averaging GWAMA of (b) life satisfaction, (c) 

positive affect, (d) neuroticism, (e) depressive symptoms. All plots in all panels are based on the same set of SNPs. The x-axis represents the chromosomal 

position, and the y-axis represents the significance on a –log10 scale. Each approximately independent genome-wide significant association (“lead SNP”) is 

marked by Δ. 

 

 



   

 

Transcriptome -and Methylome-wide Analyses 

Both flavors of multivariate GWAMA aggregate the effect of a single SNP across multiple 

traits, informed by prior knowledge of the genetic correlation between these traits. We next 

proceeded to aggregate the effect across multiple SNPs based on prior knowledge that some 

of these SNPs influence the expression level of a gene transcript or the methylation level at a 

CpG site (mQTL) measured in whole blood. Applying these methods (known as 

TWAS/MWAS) can identify genes involved in complex traits 
17–19

. Given the equal 

performance of both multivariate GWAMAs and to avoid multiple testing, we used the results 

of the N- GWAMA for TWAS and MWAS and further analyses. In TWAS, we uncovered 87 

transcript-trait associations (45 loci) at a Bonferroni corrected significance level (p < 4.29 x 

10
-6

). For 23 TWAS hits (18 loci), the corresponding locus (1000 kb around the transcript) did 

not contain a significant N- GWAMA SNP. For 46 out of the 87 transcripts (13 loci), the 

maximum LD between the TWAS model SNPs and N-GWAMA top SNP in the corresponding 

locus is larger than 0.8 (Supplementary Table 12). Furthermore, we found 852 CpG 

methylation-trait associations mapping to 131 loci at a Bonferroni corrected significance 

level. For 72 out of 852 CpG methylation-trait associations, the corresponding locus did not 

contain a N-GWAMA significant signal. For 381 CpG methylation-trait associations (76 loci), 

the maximum LD between the MWAS model SNPs and a N-GWAMA top SNP is larger than 

0.8 (Supplementary Table 13).  

A locus of particular interest was found within the major histocompatibility complex. Recent 

work has identified 3 individual signals related to schizophrenia in the MHC region, one of 

which is linked to complement 4 (C4A) gene expression and synapse elimination during 

puberty
20

. The genome-wide significant signal for the well-being spectrum in the MHC region 

is not in strong LD with lead eQTL’s for C4A gene expression. Rather, a second independent 

signal tagged by rs13194504 is associated with both schizophrenia and well-being. TWAS 

results for the MHC region implicate the expression of TRIM38 in the etiology of well-being 

(Supplementary Fig. 5). 

Bioinformatics: Stratified LD Score Regression 

We performed further biological annotation using stratified LD score regression
12,13

. Our first 

analysis aimed to confirm the involvement of the central nervous system (CNS) in the 

etiology of the well-being spectrum. Our second analysis aimed to pinpoint specific locations 



   

 

in the brain. Our final analysis used single cell sequencing data to confirm the specific cell 

type involvement.  

We considered the enrichment in the N-GWAMA derived SNP set of 220 genomic annotations 

(33 brain and 187 non-brain annotations), which reflected the locations of four specific 

histone marks (H3K4me1, H3K4me3, H3K27ac, or H3K9ac) in 54 tissues in their effect on 

the well-being spectrum
21

. This allow detection of, for example, enrichment of regions of the 

genome which are histone modified in the prefrontal cortex. Such enrichment would suggest 

the involvement of processes in the prefrontal cortex in the etiology of the wellbeing 

spectrum.  

Our analyses revealed significant enrichment of 68 annotations characterized by 32 histone 

marks in 10 brain tissues (Supplementary Table 14 and Supplementary Figure 6). Note 

that the top 15 significant annotations involved brain tissues. Among these brain tissues were 

the mid-frontal and inferior-temporal lobe, fetal brain, cingulate and angular gyrus, germinal 

matrix (a highly cellular and highly vascularized region in the brain from which cells migrate 

out during brain development), hippocampus anterior caudate, substantia nigra, and the 

neurosphere.  

In order to more accurately pinpoint brain regions where genes relevant to the well-being 

spectrum are differentially expressed, we computed stratified LD scores based on differential 

gene expression in an anatomically comprehensive set of 210 brain regions, based on 3707 

measurement in 6 human brains
22

. For each brain region, genes were selected that showed 

higher expression compared to all other regions (global differential gene expression). The LD 

scores were significantly enriched at FDR < 0.05 at multiple gyri in the cortex 

(Supplementary Table 15). Differential gene expression appeared driven mainly by 

transcriptional differences between gross anatomical structures in the brain (cortex, sub-

cortical structures, brainstem, and cerebellum). To reveal regions related to the well-being 

spectrum within these structures, we divided the 210 regions into four sets (brain stem, cortex, 

sub cortex, and cerebellum) based on their locations and computed differential gene 

expression across the regions within each structure (local differential gene expression). Our 

results showed a significant enrichment (Bonferroni corrected) of N-GWAMA signal for 

genes specifically expressed in the in the subiculum (Z = 3.60, p < 0.001; Fig. 3A-C).The 

subiculum is considered part of the hippocampal formation and plays a key role in 

hippocampal-cortical interaction
23

 in the inhibition of the Hypothalamic-Pituitary-Adrenal-



   

 

axis and the human response to stress
24

. Additionally, we identified enrichment of N-

GWAMA signal for genes specifically expressed in the Ventral Tegmental Area (VTA; Z = 

3.34, p < 0.001; Fig. 3D-F, Supplementary Table 16-19). The VTA is a group of neurons 

located close to the midline on the floor of the midbrain. The VTA is the origin of the 

dopaminergic cell bodies of the mesocortico-limbic dopamine system and has a central role in 

reward-related and goal-directed behaviors
25

. 

We repeated the analyses using GWAMA summary statistics of educational attainment (EA)
26

 

and schizophrenia
27

, two traits in which the CNS has been implicated in their etiologies 

before. In particular, we wanted to see whether the signal observed in the subiculum and the 

VTA were specific to the well-being spectrum. As a negative control, we considered the 

enrichment of genes differentially expressed in all brain regions using height GWAMA 

summary statistics
28

. We found no enrichment of genes differentially expressed in the 

subiculum on EA (Z=1.251; p=0.105), but did found an effect on schizophrenia (Z=2.938; 

p=0.002). Genes differentially expressed in the VTA showed no enrichment on EA (Z=0.016; 

p=0.494), but were nominal significant in their effect on schizophrenia (Z=2.121; p=0.017). 

No region was significantly enriched in their effect on height, both when considering global 

and local differential gene expression (all p > 0.05). All results of the differential gene 

expression analysis were mapped to the MNI coordinates at which the tissue samples were 

obtained, allowing future integration of our findings and other neuroimaging modalities 

(Supplementary Table 20).  

Finally, we obtained the publicly available matrix of gene counts generated based on single 

nuclei (N = 14,963) from the prefrontal cortex and hippocampus of multiple human donors by 

Habib et al (2017)
29

. We divided these nuclei into 7 types of neurons, 2 subtypes of astrocytes, 

oligodendrocytes, oligodendrocyte precursors cells, microglia, endothelial cells and 

unclassified cells (hippocampus and prefrontal cortex) and computed cell type specific genes 

for the different types of neurons (see online methods). Using LD Score regression we then 

tested the enrichment in the N-GWAMA and found enrichment in the CA1 (Z = 2.36; p = 

0.005) and CA3 (Z = 2.5; p = 0.003) parts of the hippocampus as well as in the prefrontal 

cortex for glutamatergic neurons (Z = 2.58; p = 0.002). Additionally, we found enrichment for 

GABAergic interneurons expressed in the hippocampus (GABA1; Z = 3.55; p = 2.41 X 10
-6

 

and GABA2 Z = 3.7; p = 8.52 X 10
-7

; Supplementary Table 21 and Fig 3G).  

  



   

 

Fig. 3 Local differential gene expression between subcortical structures identifies enrichment of 

genes specifically expressed in the subiculum (Z = 3.60, p < 0.001) and ventral tegmental area (Z = 

3.34, p < 0.001), in their effect on the well-being spectrum. (a,d) coronial view (b,e) sagittal view (c,f) 

axial view. The location of the samples of brain tissues which were used to measure gene expression 

by Hawrylycz et al. (2012) is projected to a standard MNI template brain (“Colin27”). The figure is 

centered on the averaged MNI coordinates of brain samples which are part of the annotation “left 

Subiculum” (x = 77, y = 90 and z = 60).(g) bar graph representing the cell-type specific enrichment of 

mainly glutamatergic and GABAergic neurons. Dashed line indicate Bonferroni corrected significance. 

(OPC = oligodendrocyte precursors cells, ODC1 = oligodendrocytes, MG = microglia, GABA = 

GABAergic interneurons, exPFC = glutamatergic neurons from the prefrontal cortex, exDG = granule 

neurons from the hip denate gyrus, exCA1/3 = pyramidal neurons from the hippocampus CA region, 

endothelian = endothelian cells, ASC = astrocytes. 

 

 

 

Discussion 



   

 

We have introduced N-GWAMA and MA-GWAMA, two novel methods for conducting meta-

analysis of GWAS summary statistics for related traits that are robust to sample overlap. 

While previous univariate analyses of traits in the well-being spectrum were moderately 

successful, we gained power by the use of multivariate analyses. MA-GWAMA identified 

many additional loci associated with some, but not all, traits in the well-being spectrum, and 

provides flexibility in terms of model specification. Model averaging can in fact incorporate 

any multivariate GWAMA or GWAS model for which the per SNP model fit can be expressed 

in terms of an AICc fit statistic. The averaging procedure is done per locus, allowing for 

heterogeneity across traits and loci. Both N-GWAMA and MA-GWAMA are complementary 

of each other and can be used together to identify genetic variants associated with clusters of 

genetically correlated traits. Given the equal performance between our two methods and to 

lower the multiple testing burden, we used the N-GWAMA analyses for our follow-up 

analyses. We further confirm that TWAS and MWAS can further increase the identified pool 

of loci related to variation in complex traits, like well-being by aggregating the effect across 

multiple SNPs based on prior knowledge that some of these SNPs influence the expression 

level of a gene transcript or the methylation level at a CpG site. 

By leveraging the genome-wide results, LD score regression, and an atlas of brain gene 

expression we were able to pinpoint brain regions where region specific gene expression 

exists for genes enriched in their effect on well-being, and we report evidence for enrichment 

of genes differentially expressed in the VTA, as well as in the subiculum. Furthermore, we 

find enrichment for glutamatergic neurons in the CA1 and CA3 of the hippocampus and in the 

prefrontal cortex as well as enrichment for GABAergic interneurons.  

In the regions for which we have cell types available (hippocampus and prefrontal cortex) we 

find specific cell type enrichment for the wellbeing spectrum. However, it stands to reason 

that the same cell type specific enrichment in other regions exists, which we now missed. 

Gene expression is known to vary systematically between cell-types within the brain
30

 (e.g 

neurons, microglia, astrocytes) and developmental phases
31

 (prenatally, childhood, adulthood 

and old age), and likely even between sub-types of a single cell type. Differences in gene 

expression across or within cell types may induce differences between regions as cell type 

composition might differ between regions. This limitation needs to be addressed in future 

well-being research, capitalizing on ongoing efforts to categorize gene expression across the 

human brain at increased (single cell) resolution. Single cell sequencing (e.g. drop-seq based 

anatomically comprehensive survey of the brain), based on donors deceased at different ages, 



   

 

could disentangle cell type specific from region specific differential gene expression as well 

as age specific gene expression
32

.  

Our study showed, through simulations, that multivariate GWAMA of traits with genetic 

correlation higher than 0.5 always outperform univariate GWAMA. With summary statistics 

from large-scale GWAS publicly accessible for an even-increasing number of traits, it is 

becoming increasingly feasible to detect clusters of genetically correlated traits. Both N-

GWAMA and MA GWAMA can be used to detect genetic variants associated with the shared 

etiology of these genetically correlated traits, while simultaneously correcting for population 

stratification. The results of our new multivariate GWAMA methods could be meaningfully 

mapped to brain regions based on a coordinate system used within multiple other 

neuroscientific disciplines, facilitating future integration of genetic and neuroscientific 

research on the well-being spectrum.  

  



   

 

Online Methods 

N-weighted multivariate GWAMA. 

We obtained summary statistics from previous published studies
4,7–11

 , where multiple cohorts 

contributed to the univariate GWAMAs of life satisfaction, positive affect, neuroticism and 

depressive symptoms http://www.thessgac.org/. To quantify the dependence between the 

univariate GWAMAs, we estimated the cross trait LD score intercept (CTI)
12,13

: 

 

𝐶𝑇𝐼 =  
𝑁𝑠 ∗  𝑟𝑝

√𝑁1𝑁2

 

 

Where Ns equals the sample overlap, N1 the sample size for trait 1 and N2 the sample size for 

trait 2, 𝑟𝑝 equals the phenotypic correlation between trait one and two. The CTI is 

approximately equal to the covariance between the test statistics obtained in a GWAMA of 

trait 1 and trait 2. We assume that the estimated CTI is equal to the true CTI, though note the 

uncertainty in the estimated CTI is generally low. Given the estimated covariance between 

effect sizes, we can meta-analyse the four dependent GWAMAs and obtain a multivariate test 

statistic per SNP: 

Ζ𝑘 =  
∑ 𝑤𝑖𝑘 ∗ 𝑍𝑖𝑘

4
𝑖=1

√∑ 𝑤𝑖𝑘 ∗ 𝑉𝑖𝑘
4
𝑖=1 + ∑ ∑ √𝑤𝑖𝑘 ∗ 𝑤𝑗𝑘 ∗ 𝐶𝑖,𝑗,𝑘 (𝑗 ≠ 𝑖)4

𝑗=1
4
𝑖=1  

 

 

Where wik is the square root of the sample size for SNP k in the GWAMA of trait i, Zik is the 

test statistic of SNP k in the GWAMA of trait i; Vik is the variance of the test statistic for SNP 

k in the GWAMA of trait i (i.e 1 given that Z is a standardized test statistic) and Ci,j,k is the 

covariance between test statistics for SNP k between GWAMA of trait i and trait j (where C 

equals CTI obtained from cross trait LD score regression between trait i and trait j). The 

multivariate test statistic Ζ𝑘, is a standardized sum of tests statistics, all of which follow a 

normal distribution under their respective null distributions. The statistic Ζ𝑘 follows a 

standard normal distribution under the null hypothesis of no effect. 

Model averaging GWAMA 

http://bla.bla.bla/


   

 

Consider the following model: 

 

𝛽 = 𝑀𝑉𝑁(𝛾𝑋 + 𝑒, 𝑉) 

 

Where 𝛽 (1xn) is a multivariate normal vector of effect sizes obtained from the regression of n 

standardized traits on a standardized genotype (SNP). The matrix V (nxn) is the variance-

covariance matrix of effect sizes, matrix X a design matrix (pxn), and 𝛾 the corresponding 

vector of parameters (1xp). The indexed p denotes the number of variables included in the 

means model of the response vector 𝛽. 

In this context, a regular GWAMA restricts the design matrix X to a unit vector (i.e. we model 

a single genetic effect, which is assumed identical across cohorts, and any observed variation 

is attributed to sample fluctuation). Generally, matrix V is diagonal, and contains the squared 

standard errors of elements in 𝛽. A regular GWAMA is the most restricted model one can 

consider. However, when considering multivariate GWAMA (i.e. the elements in β reflect 

SNP effects on separate yet correlated traits), this model might be too restrictive. Even when 

traits have a substantial genetic correlation, not all genetic effects need to be shared between 

traits or be identical in magnitude. The least restrictive model is to consider the SNP effects in 

𝛽 independent (i.e. run univariate GWAMA of the correlated traits). In between the most 

restrictive and least restrictive model, a manifold of models can be specified, equating the 

effects in y across combinations of traits, while allowing it to differ between other 

combinations of traits. These models can be specified by ways of the design matrix X.  

One could consider a manifold (z) of models (m), each with a different design matrix X. 

 

𝛽1 = 𝑀𝑉𝑁(𝛾1𝑋1 + 𝑒, 𝑉) 

𝛽2 = 𝑀𝑉𝑁(𝛾2𝑋2 + 𝑒, 𝑉) 

𝛽𝑧 = 𝑀𝑉𝑁(𝛾𝑧𝑋𝑧 + 𝑒, 𝑉) 

 



   

 

When considering i correlated traits, a simple expansion of X is to allow for 2 vectors (p =2), 

a unit vector and a second vector which is coded dichotomously (0,1), where the coding varies 

over each of the m models. Other codings, based on analysis of the genetic correlation 

between traits (i.e. PCA or Cholesky decomposition), can be applied to summary statistics and 

included in the average. Practically, this allows for the existence of 2 distinct genetic effect. 

This procedure results in . 5 ∗ 𝑘2 models. The 1df model with a unit vector for X and (.5 ∗

𝑘2 −  1) 2-df models with a unit vector and a second vector which codes for all possible 

combinations of pairs of k traits. However, simply considering m models for all SNPs across 

the genome results in a prohibitive increase of the already substantial multiple testing burden. 

Given m possible models, each of which predict a different vector 𝛾, and uncertainty for the 

predicted elements in 𝛾, a possible way forward is to average the model predictions. The 

models are weighted by the relative proportion of evidence for each model. Specifically, the 

weights can be based on the AICc
33

 information criteria. The AICc for model m equals: 

 

𝐴𝐼𝐶𝑐𝑚 =  − ln(𝐿𝑜𝑔𝐿𝑖𝑘𝑚) +  2𝑘𝑚 +  
2𝑘𝑚(𝑘𝑚 + 1)

𝑛 − 𝑘𝑚 − 1
 

 

For each AICc we compute the delta (Δm) to the best (i.e lowest) AICc value, and from these 

we compute the model weights (g) for the k models as: 

 

𝑔𝑚 =
exp (− 

1
2 Δm)

∑ exp (− 
1
2 Δm)𝑧

𝑚=1

  

 

  



   

 

We predict the vector β using each of the models 

�̂�𝑚 =  𝛾𝑚𝑋𝑚  

 

One can aggregate the prediction over all models as:  

 

𝛽𝑎 =  ∑
�̂�𝑚 ∗ 𝑔𝑚

∑ 𝑔𝑚
𝑧
𝑚=1

𝑧

𝑚=1

 

 

And we aggregate the uncertainty within and between models to obtain 𝑣𝑎𝑟 (𝛽𝑎): 

𝑣𝑎𝑟(𝛽𝑎) =  [ ∑ gm√var(�̂�𝑚) +  (�̂�𝑚 −  �̂̅�)2

z

m=1

]

2

 

 

The resulting vector 𝛽𝑎contains the model averaged effect sizes for the effect of a particular 

SNP on the traits subjected to multivariate analysis. Note how the variance estimate contains a 

variance component which reflects within model variability (var(�̂�𝑚)) which equals the 

square of the standard error, and a variance component between model variability ((�̂�𝑚 −

 �̂̅�)2) in estimate, which ensures no overfitting occurs.  

Our procedure boosts power if the SNP effect is concordant between traits, while retaining 

strongly discordant SNP effects if the model favors these. Model averaging offers several 

avenues for extension. One can constrain the SNP effects across multiple SNPs based on 

biological knowledge of the relation between the SNPs and gene expression, or CpG 

methylation (analog to TWAS). Alternatively, it might be beneficial to average the AICc 

weights across regions of the genome. Model averaging can in principle accommodate any 

model for which the AICc information criterion can be expressed. These models should result 

in a vector of SNP effects (𝛽) and an asymptotic variance for the SNP effects. In the current 

application, models per SNP are estimated in R using the “metafor” package and models are 

averaged using the “AICcmodavg” package
34,35

.  

Simulations 



   

 

To assess N-GWAMA, which assumes a single underlying construct, we used ten different 

scenarios. For each scenario we simulated four heritable traits (hSNP
2
 = 30%) effected by 80K 

SNPS. The genetic correlation between the four traits varied between .1 and .9. Using real 

genotypes and simulated effects, we simulated phenotypic data for 100,000 individuals 

sampled from the UK Biobank
8
. In all these analyses, we included the 656,284 genotyped 

SNPs (MAF > 0.01). From these 100K individuals we sample 40K individuals to conduct 

univariate GWASs. This introduced partial sample overlap between the univariate GWASs. 

Next, we performed N-GWAMA and MA-GWAMA analyses and correlated the true SNP 

effects with the estimated SNP effects obtained from the univariate GWASs, N-GWAMA and 

MA-GWAMA. 

To validate MA-GWAMA, we simulated data where the assumption of a unitary effects of the 

SNP on all traits was relaxed. We again simulated four traits, which were affected by 80K 

SNPs. The SNP effects are perfectly correlated, however, we replaced true effects with zero in 

a way that guarantees that 10K SNPs have a true effect on only one trait, 10K SNPs have a 

true effect on two traits, and 10K SNPs have a true effect on three traits. Based on these effect 

sizes and genotypes we simulated traits for 100K individuals and performed univariate 

GWAS, N-GWAMA, and MA-GWAMA analyses as described above.  

Polygenic Prediction 

To confirm the gain in power of our multivariate GWAMA results, we performed polygenic 

score prediction (PRS) in two independent samples; 1) the Netherlands Twin Register 

(NTR)
1616,36

 and 2) Understanding Society (UKHLS)
7
. We predicted the traits in the well-

being spectrum (life satisfaction, positive affect, neuroticism, and depressive symptoms). In 

NTR, LS and PA data is available in 9,143 and 6,836 genotyped participants, respectively. LS 

was measured longitudinally using the Satisfaction with Life Scale consisting of five items 

(e.g., “My life is going more or less as I wanted”) with responses given on a seven-point scale, 

resulting in a minimum score of five and a maximum score of 35
37

. PA is also measured 

longitudinally using four questions that were adapted from the Subjective Happiness Scale
38

 

(e.g., “On the whole, I am a happy person”) with responses on a seven-point scale, resulting in 

a minimum score of four and a maximum score of 28. Neuroticism data is available for 8,527 

genotyped participants. The Big Five personality traits (including neuroticism) were measured 

by using the NEO-FFI
39

, a sixty-item personality questionnaire consisting of five subscales: 

neuroticism, extraversion, openness, agreeableness and conscientiousness. The responses 



   

 

were given on a five-point scale (0-4). Subscale scores were constructed for each time point 

by taking the sum across the twelve subscale-specific items (after recoding opposite-stated 

items), and were set to missing if ten or more items of the total scale were unanswered. When 

subjects had fewer than ten missing items, missing items were scored at two (which is neutral 

given the 0-4 scale). Depressive symptoms were obtained from the DSM-oriented Depression 

subscale of the age-appropriate survey from the ASEBA taxonomy
40

 and were available for 

7,898 participants. To measure depressive symptoms, fourteen questions are used (e.g., 

“Enjoys little ”) and responses were given on a three-point scale ranging from zero (“not 

true”) to two (“very true”). The DSM-oriented subscale was constructed for each time point 

by taking the sum across the fourteen subscale-specific items and was set to missing if more 

than twenty percent of the total survey items were unanswered. When less than twenty percent 

of items were missing for a participant, the missing items were replaced by the participant’s 

mean score.  

In UKHLS data were available for 9,944 participants. LS was measured longitudinally (waves 

1-6). Participants were asked how satisfied they were “with life overall” with responses given 

on a seven-point scale, resulting in a minimum score of one and a maximum score of seven. 

PA was also measured longitudinally (waves 1 and 4 only) using The Warwick-Edinburgh 

Mental well-being scale (WEMWBS). SWEMWBS is a shortened version of WEMWBS. 

This 7-item short version (see Tennant et al., 2007) is scored on a 5-point Likert scale, from 

“none of the time” to “all of the time”, and summed to give a total score, ranging from 7 to 35. 

Neuroticism data were available for 8,198 genotyped participants from wave 3. The Big Five 

personality traits (including neuroticism) were measured using The Big Five Inventory (BFI), 

a 44-item personality questionnaire consisting of five subscales: neuroticism, extraversion, 

openness, agreeableness and conscientiousness. The responses were given on a seven-point 

scale (1-7). The neuroticism score combines three items on the neuroticism subdomain. 

Component scores were calculated as the average item response if no more than one of the 

three input responses was missing. Depressive symptoms (DS) were measured longitudinally 

(waves 1-6) and was obtained from The General Health Questionnaire (GHQ), which was 

available for 9,203 participants. The 12 question GHQ was used containing questions relating 

to concentration, loss of sleep and general happiness. The 12 questions are scored on a four-

point scale (1-4). Valid answers to the 12 questions of the GHQ-12 were converted to a single 

scale by recoding 1 and 2 values on individual variables to 0, and 3 and 4 values to 1, and then 

summing, giving a scale running from 0 (the least distressed) to 12 (the most distressed).  



   

 

The weights used for the polygenic scores were based on the four univariate GWAMAs as 

well as our two flavors of multivariate GWAMAs. Scores were based on the intersection of 

SNPs available in any of these GWAMAs. In the NTR, SNPs were imputed to a common 

reference. SNPs with MAF < 0.005, Hardy-Weinberg Equilibrium (HWE) with p < 10
-12

, and 

call rate < 0.95 were removed. Individuals were excluded from the analyses if the genotyping 

call rate was < 0.90, the inbreeding coefficient as computed in PLINK
48

 (F) was < -0.075 or > 

0.075), the Affymetrix Contrast QC metric was < .40, if the Mendelian error rate was > 5 

standard deviations (SDs) from the mean, or if the gender and Identity-by-State (IBS) status 

did not agree with known relationship status and genotypic assessment. In UKHLS, SNPs 

were imputed to a common reference (1000 Genomes project March 2012 version 3). SNPs 

with MAF < 0.01, HWE p < 10
-4

 and call rate < 0.98 were removed. In NTR 1,224,793 SNPs 

passed QC and were used to construct polygenic scores and in UKHLS, 955,441 SNPs passed 

QC and were used to construct polygenic scores. The traits were regressed on sex and age as 

well as principal components, which were included to correct for ancestry, and the polygenic 

scores. Results can be found in Supplemental Table 11. 

Summary-Based transcriptome wide (TWAS) and methylome wide (MWAS) association studies 

We used the tool DIST
41

 to impute the HapMap reference based results for the N-weighted 

GWAMA to the 1000Genomes Phase1 reference. We aggregated SNP effects informed by 

their common effect on expression level of gene or CpG methylation, as proposed by Gusev et 

al.
19

 We used the BIOS eQTL resource as eQTL reference set to build imputation models that 

predict gene expression using multiple eQTL SNPs
42

. Models were built per gene (gene 

models) by identifying independent eQTL SNPs based on stepwise conditional regression.
42

 

The z-score for each eQTL SNP was used in TWAS as a weight (q). The eQTLs used are 

available at http://genenetwork.nl/biosqtlbrowser/. Based on the gene models, N-weighted 

GWAMA summary statistics and LD based on the GONL reference
43

, TWAS was performed. 

That is, for each gene- prediction-model containing eQTLs S1- SN with weights q=q1,q2,...,qn, 

the corresponding GWAMA z-scores z=z1,z2,...,zn and LD, an n-by-n correlation matrix for 

eQTLs S1- SN, were used to construct a test statistic: 

 

𝑍𝑡𝑤𝑎𝑠 =  
∑ qizi

n
i=1 

√q ∗ LD ∗ q  
 

 

http://genenetwork.nl/biosqtlbrowser/


   

 

MWAS was performed following the same procedure to build imputation models to predict 

CpG site methylation of the DNA strand using multiple mQTL SNPs. The methylation site 

specific weights were obtained from the BIOS mQTL study
44

.  

Stratified LD score regression 

To determine whether specific genomic regions are enriched for genetic effects on the well-

being spectrum traits, we used LD Score regression
12,13

. We were specifically interested in 

regions of the genome which are histone modified in a specific tissue. For example, regions of 

the genome which are histone modified in the prefrontal cortex can be transcribed more 

frequently in prefrontal tissue. The enrichment of these genomic regions in their effect on the 

well-being spectrum suggest the involvement of processes in the prefrontal cortex in the 

etiology of the wellbeing spectrum. 

 LD Score regression is based on the relationship between the observed chi-square of a SNP 

and the degree of LD between a SNP and its neighbor. SNPs in strong LD are more likely to 

tag causal effects on complex traits and therefore have a higher expected chi-square. The 

procedure can be extended to stratified LD score regression, where multiple LD scores are 

created, each of which captures the LD for a SNP with other SNPs of a specific category of 

interest, for example SNPs in a histone modified region of the genome. 

We followed the exact procedure described by Finucane et al.
21

, and estimated stratified LD 

Score regression for the “baseline” model, which contains 53 categories. The model consists 

of a category containing all SNPs, 24 categories corresponding to main annotations of interest, 

24 categories corresponding to 500-bp windows around the main annotations, and categories 

corresponding to 100-bp windows around ChIP-seq peaks (i.e. regions that are Sensitive to 

DNase1 or associated with histones bearing the modification marks H3K4me1, H3K4me3, 

H3K27ac or H3K9ac). In addition to the analyses of the baseline model, we performed 

analyses using cell type-specific annotations for the four histone marks, which correspond to 

specific chemical modifications of the histone protein, which in turn packages and orders the 

DNA molecule. Epigenetic modifications of histones, specifically histones bearing the marks 

H3K4me1, H3K4me3, H3K27ac or H3K9ac, are associated with increased transcription of 

DNA into RNA. Each cell type-specific annotation corresponds to a histone mark in a specific 

cell obtained from distinct human tissue, for example H3K27ac in Fetal Brain cells, 

generating 220 combinations of histone modification by tissue. When generating estimates of 

enrichment for the 220 Histone marks(?) by tissue annotations, we controlled for overlap with 



   

 

the functional categories in the full baseline model, but not for overlap with the 219 other cell 

type specific annotations. Then for our well-being trait, we ran LD Score regression on each 

of the 220 models (one for each histone by tissue combination) and ranked the histone by 

tissue annotations by P-value derived from the Z-values of the coefficient. Results are 

displayed in Supplementary Table 14. 

Stratified LD score regression of local gene expression across the human brain. 

We downloaded the normalized and QC’ed gene expression measured in an anatomically 

comprehensive set of brain regions from http://www.brain-map.org/. The data contains 3707 

measurements across 6 adult human brains. The procedures used to measure standardized 

gene expression across the brains are described in Hawrylycz et al
22

. Based on these data we 

computed differential gene expression for 48154 probes which map to 20724 unique genes 

(probes which did not map to genes were omitted). We considered differential gene expression 

across 210 regions for which at least 3 measurements were available. As Hawrylycz et al.
22

 

found little evidence for lateral difference in gene expression, regions in the left and right 

hemisphere were collapsed into a single region. For each gene in each region a t-test was 

performed, testing the difference in standardized expression between the region in question 

and all other brain regions. The top 10% of probes ranked in terms of t-statistic per region 

were retained. The unique genes mapped to this set of probes were extracted (mapping ~2900-

3500 genes to each region). The correlation between t-statistics for the 48154 probes revealed 

fairly strong differential expression between the cortex, brainstem, and cerebellum and 

clustering of differential expression within these regions. 

A partitioned LD score with respect to the genomic regions spanned by these genes (using 

gencode v19 as a reference), and a 100 kilobase window around each gene, was computed. 

The heritability of well-being was partitioned across the 54 baseline annotations developed by 

Finucane et al
21

 and each of the 210 brain regions (the regions are considered separately). The 

substantial differences in gene expression between gross anatomical brain regions 

(cerebellum, cortex, sub-cortical regions and brainstem) dominated the results ( 

Supplementary Table 15). We therefore proceeded to compute differential gene expression 

within the cerebellum, cortex, sub cortical regions, and brainstem. In this analysis we omitted 

the fibre bundles as these are anatomically distinct from both the cortex and the sub cortical 

regions, yet not measured densely enough to warrant the computation of differential 

expression within the fibre bundle tissues. The procedure to compute differentially expressed 

http://www.brain-map.org/


   

 

genes is identical to the procedure used to compute differential expression across the whole 

brain, but considers the gross anatomical regions separately. New LD scores were computed 

based on the local differential gene expression analyses (Supplementary Table 16-19). All 

analyses were repeated using height as a negative control trait. The genomic regions spanning 

genes differentially expressed in these 210 brain regions were not significantly enriched with 

SNP effects on height.  

Stratified LD score regression of Single nuclei for 7 types of neurons 

We obtained the publicly available matrix of gene counts generated based on single nuclei 

from the prefrontal cortex and hippocampus of multiple human donors by Habib et al 

(2017)
29

. To compute differential enrichment we deviated from the procedure outlined for 

regional brain expression as the zero inflated nature of single nuclei expression violates 

assumptions off the t-test. The matrix contained counts for 32111 genes measured in 14964 

nuclei. The nuclei were divided into 7 types of neurons, 2 subtypes of astrocytes, 

oligodendrocytes, oligodendrocyte precursors cells, microglia, endothelial cells and 

unclassified cells. We omitted genes for which the total count across cells < 150, or for which 

less than 30 cells have a count above 0, retaining 11719 genes for analysis. For each gene we 

computed the ratio of count per nuclei type over the total number of nuclei measured of the 

specific type (generating the average gene count in each nuclei type). We next computed the 

ratio of the average count per nuclei type over the average count of the gene across all nuclei 

(generating the nucleic type specific fold change in average expression). We then defined, for 

each nuclei type, the nuclei type specifically expressed set of genes as the 1600 genes with the 

highest nucleic type specific fold change in average expression. For each of the gene sets we 

constructed an LD score with respect to genes in the set, in order to compute the gene set 

specific enrichment in h2 in our multivariate GWAMA. 

Our method to determine cell-type specific expression purely relies on the relative expression 

in one cell type over the other, whereas others have developed different statistics to assess 

differential expression
45

. Application of both methods to the same gene expression dataset 

(GTEX) and subsequent differential enrichment analysis for wellbeing yielded highly 

concordant test statistics (r=.83). 
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Supplementary Information 

 

Supplementary Figure 1: Flowchart of the study design showing the trait-specific studies that were 

combined in the four univariate GWAMA’s: Life Satisfaction, Positive Affect, Neuroticism, and 

Depressive Symptoms. 

 



   

 

Supplementary Figure 2: Barplot of nine simulation scenarios in which the rg between the four traits 

varied between .9 and .1. The red line represents the mean correlation (of the four traits) between the 

Beta’s of the univariate GWAS and the true effects. Blue represents the correlation of the beta’s 

obtained from the N-GWAMA with the true effects. Green represents the correlation of the beta’s 

obtained from the MA-GWAMA and the true effects. 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

 

Supplementary Figure 3. Manhattan plots of univariate GWAMA. (a) life satisfaction, (b) positive 

affect, (c) neuroticism, (d) depressive symptoms. The x-axis represents the chromosomal position, and 

the y-axis represents the significance on a –log10 scale. Each approximately independent genome-wide 

significant association (“lead SNP”) is marked by Δ. 

 

  



   

 

Supplementary Figure 4. The result of polygenic risk prediction based on univariate discovery 

GWAMA, N-weighted discovery GWAMA or model averaging discovery GWAMA. The unit on the 

Y-axis is the R-squared in percentage, obtained from a regression of the trait on the PRS, age, sex and 

10 principle components (a) displays the polygenic prediction results from the Netherlands Twin 

Register and (b) displays the polygenic results from Understanding Society, and (c) displays the 

combined N-weighted polygenic score results.  . LS is life satisfaction, PA is positive affect, NEU is 

neuroticism, and DS is depressive symptoms. 

 

  



   

 

Supplementary Figure 5. Local association in the MHC region. (a) provides a local Manhattan plot 

for the MHC region with interposed on top the LD with a strong eQTL for the C4 gene linked to 

neuronal pruning in adolescence and schizophrenia by Sekar et al
27

. (b) is a scatter plot for the –

log10(p) against the R2 with the C4 eQTL. (c) provides a local Manhattan plot for the MHC region 

with interposed on top the LD with SNP rs13194504, the strongest MHC signal found for 

schizophrenia. (d) is a scatter plot of the –log10(p) against the R2 with rs13194504. Round symbols 

represent SNPs, square symbols represent gene transcripts and triangle symbols represent CpG sites. 

 



   

 

Supplementary Figure 6. 220 Cell specific histone modified region enrichment. The bar plot is reflecting the FDR adjusted p-value for tissue specific histone 

modified regions of the genome, as estimated using partitioned LD-score regression. Blue bars represent brain regions, black bars represent non-brain regions. 
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Abstract 

Well-being (WB) is a major topic of research across several scientific disciplines, partly 

driven by its strong association with psychological and mental health. Twin-family 

studies have found that both genotype and environment play an important role in 

explaining the variance in WB. Epigenetic mechanisms, such as DNA methylation, 

regulate gene expression and may mediate genetic and environmental effects on WB. 

Here, for the first time, we apply an epigenome-wide association study (EWAS) 

approach to identify differentially methylated sites associated with individual differences 

in WB. Subjects were part of the longitudinal survey studies of the Netherlands Twin 

Register (NTR) and participated in the NTR biobank project between 2002 and 2011. 

WB was assessed by a short inventory that measures satisfaction with life (SAT). DNA 

methylation was measured in whole blood by the Illumina Infinium 

HumanMethylation450 BeadChip (HM450k array) and the association between WB and 

DNA methylation level was tested at 411,169 autosomal sites. Two sites (cg10845147, p = 

1.51 * 10
-8 

and cg01940273, p = 2.34 * 10
-8

) reached genome-wide significance following 

Bonferroni correction. Four more sites (cg03329539, p = 2.76* 10
-7

; cg09716613, p = 3.23 

* 10
-7

; cg04387347, p = 3.95 * 10
-7

 and cg02290168, p = 5.23 * 10
-7

) were considered to be 

genome-wide significant when applying the widely used criterion of a FDR q-value < 

0.05. Gene ontology (GO) analysis highlighted enrichment of several central nervous 

system categories among higher-ranking methylation sites. Overall, these results provide 

a first insight into the epigenetic mechanisms associated with well-being and lay the 

foundations for future work aiming to unravel the biological mechanisms underlying a 

complex trait like WB.   

 

 

 

  

 



Introduction 

Because of its strong associations, in individuals and in society, with physical and mental 

health as well as economic development, well-being (WB) has become a topic of interest 

across different scientific disciplines
1–3

. In general, WB is conceptualized to include a 

continuous spectrum of positive feelings and subjective life assessment that can be assessed 

with a series of measures, such as satisfaction with life (SAT), happiness (HAP) and quality of 

life (QoL).  

 

Twin-family studies report that in the general population, a substantial part of the variation in 

the different measures of WB is explained by genetic differences between individuals
4
. A 

large meta-analysis
5
    showed that the weighted average heritability for WB was 36% (95% 

CI: 34-38, and for SAT 32% (95% CI: 29-35). A multivariate twin-sibling study exploring the 

etiology of the covariance among multiple WB indices revealed that the genetic variance in 

the different measures was explained by one underlying set of genes
6
.  These results also 

emphasize the importance of environmental factors in the variation of WB, and a dynamic 

interplay between genes and environment is to be expected for a complex trait like WB.  

 

Epigenetic regulation of gene expression by mechanisms such as DNA methylation may 

mediate the interplay between the genetic make-up of individuals and their exposure to the 

environment
7–9

. Methylation changes can be caused by external conditions, such as long-term 

stress-exposure
10,11

, (prenatal, maternal) smoking exposure 
12,13

 and dietary modifications at 

conception
14

. There are no epigenetic studies of the association between DNA methylation 

and WB, but some epigenetic studies have been performed involving complex traits related to 

WB. From twin studies, it is known that there is a negative association between 

psychopathology and WB, with the strongest association between WB and 

anxiety/depression
15

. Epigenetic differences in candidate genes related to major depressive 

disorder (MDD) have been reported in multiple studies
16,17

. Additionally, a DNA methylation 

EWAS of monozygotic twins discordant for adolescent depression 
18

 found two reproducible 

differentially-methylated probes (DMPs) that were located within STK32C, which encodes a 

serine/threonine kinase of unknown function.  

 

Here we describe the first EWAS for well-being performed in a population-based sample from 

the Netherlands Twin Register (NTR). Our aim was to identify genomic locations where 

differences in DNA methylation in blood level are associated with differences in well-being. 



Methods 

Subjects and samples 

The subjects in this EWAS participated in longitudinal survey studies conducted by the 

Netherlands Twin Register 
19,20

 and in the NTR biobank project 
21

. Peripheral blood samples 

were drawn from the NTR participants in the morning after an overnight fast, and for 

biomarkers studies and for DNA and RNA isolation (see 
20

 ). In 3264 peripheral blood 

samples from 3221 participants genome -wide methylation probes were assessed. After 

quality control (QC) of the methylation data, 3089 samples from 3057 participants were 

retained (for a detailed description of the QC procedures, see van Dongen 2015; this issue). 

For the present study, we included participants if the following information was available: 

Satisfaction with Life score, good quality methylation data and data on white blood cell 

counts leaving 2519 samples from 2456 subjects for the final analyses. The dataset included 

606 complete MZ and 291 complete DZ pairs, 102 fathers of twins, 112 mothers of twins, 15 

siblings and 2 spouses of twins. 

 

All subjects provided written informed consent and study protocols were approved by the 

Central Ethics Committee on Research, involving Human Subjects of the VU University 

Medical Centre, Amsterdam, an Institutional Review Board certified by the US Office of 

Human research Protections (IRB-2991 under Federal wide Assurance-3703: IRB/institute 

codes, NTR 03-180). 

 

Well-being 

Well-being was assessed by a short inventory that measures satisfaction with life (SAT)
20

. 

Data on satisfaction with life were collected in multiple NTR surveys. For the current study, 

data from surveys 6 (2002), 8 (2009) and 10 (2013) were analyzed. The SAT scale consists of 

5 items which have to be answered on a 7-point scale ranging from 1 = ‘strongly disagree’ to 

7 = ‘strongly agree’. A typical question that is included in this questionnaire is “If I could live 

my life over, I would change almost nothing” (for all items see Table 1). Internal consistency 

of the scale was good with a Chronbach’s Alpha of 0.86 and test-retest scores in the range of 

0.24 (over 16 years), to 0.54 (over 4 years) to 0.84 for a period of two weeks to 1 month
22

. 

Within this NTR sample the test-retest scores are 0.53 between survey 6 and 8 (7 year 

interval), 0.48 between survey 6 and 10 (11 year interval) and 0.63 between survey 8 and 10 

(4 year interval) and the phenotypic correlation of satisfaction with life with an overall well-



being factor score is 0.97. For individuals who completed survey 6, 8 and 10, the WB score 

closest to the moment of blood draw was selected. 

 

Table 1: Satisfaction with life scale 
50

 

Item 

SAT item 1 In most ways my life is close to ideal 

SAT item 2 The conditions of my life are excellent 

SAT item 3 I am satisfied with my life 

SAT item 4 So far I have gotten the most important things I want in life 

SAT item 5 If I could live my life over , I would change almost nothing 

 

Infinium HumanMethylation450 BeadChip data  

DNA methylation was assessed with the Infinium HumanMethylation450 BeadChip Kit 

(Illumina, Inc.) 
23

. 500ng of genomic DNA from whole blood was treated by bisulfite using 

the ZymoResearch EZ DNA Methylation kit (Zymo Research Corp, Irvine, CA, USA) 

following the standard protocol for Illumina 450K micro-arrays, by the department of 

Molecular Epidemiology from the Leiden University Medical Center (LUMC), The 

Netherlands. Subsequent steps (i.e. sample hybridization, staining, scanning) were performed 

by the Erasmus Medical Center micro-array facility, Rotterdam, The Netherlands. Quality 

control and processing of the blood methylation dataset has been described in detail 

previously
24

. A number of sample-level and probe-level quality checks were performed. 

Sample-level QC was performed using MethylAid
26

. Probes were set to missing in a sample if 

they had an intensity value of exactly zero, or a detection P-value > 0.01, or a bead count < 3. 

After these steps, probes that failed based on the above criteria in > 5 % of the samples were 

excluded from all samples (only probes with a success rate >= 0.95 were retained). Probes 

were also excluded from all samples if they mapped to multiple locations in the genome
27

, or 

if they had a SNP within the CpG site (at the C or G position) irrespective of minor allele 

frequency in the Dutch population (Genome of the Netherlands Consortium 2014). Only 

autosomal methylation sites were analyzed in the EWAS. The methylation data were 

normalized with Functional Normalization
28

, and normalized intensity values were converted 

into beta (β)-values. The β-value represents the methylation level at a site, ranging from 0 to 1 

and is calculated as: 

β = 
𝑀

𝑀+𝑈+100
 



where M = Methylated signal, U=Unmethylated signal, and 100 represents a correction term 

to control the β-value of probes with very low overall signal intensity. After QC and 

normalization, Principal component analysis was conducted on genome-wide methylation 

sites. 

Covariates 

White blood cell percentages were included as covariates in the EWAS to account for 

variation in cellular composition between whole blood samples. The following subtypes of 

white blood cells were counted in blood cells: neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils
20

. Because of its strong correlation with neutrophil counts (r= -

0.93), lymphocyte counts were not included in the model, while basophil counts were not 

included because they showed little variation between subjects (many subjects having 0% of 

basophils in their blood). Inspection of the PCs that were computed on the genome-wide 

methylation data indicated that PC1 reflected, as expected, sex (r = 0.99), PC 2 showed a 

strong correlation with lymphocyte percentage (r = -0.8) and neutrophil percentage (r = 0.79). 

Additionally, PC3 showed a modest correlation with age (r = -0.41) and a weak correlation 

with white blood cell percentages (absolute r ~0.1). However, it is possible that this PC is 

reflective of unmeasured white blood cell subtypes and was therefore included in the model. 

Because of their correlation with several lab procedures, such as sample plate and order of 

processing, PC4 and PC5 were included to account for technical variability (For a graphical 

representation of the included PC’s, see Supplemental figure S1). 

Epigenome-wide Association analysis 

Using generalized estimation equation (GEE) models, we tested whether DNA methylation 

was associated with WB for each methylation site, with DNA methylation β-value as outcome 

variable and the following predictors: WB score, sex, age at blood sampling, age squared, 

monocyte percentage, eosinophil percentage, neutrophil percentage, HM450k array row, and 

Principal Components (PCs) 3, 4 and 5 from the methylation data. Age squared was included 

as a covariate as several studies suggest a U-shaped relationship between WB and age, with 

the lowest point approximately in midlife
29,30

. GEE models were fitted with the R package 

gee, with the following specifications: Gaussian link function (for continuous data), 100 

iterations, and the “exchangeable” option to account for the correlation structure within 

families and within persons.   



FDR q-value was computed with the R package q-value with default settings. The genomic 

inflation factor (λ) was calculated with the default regression method from the R package 

GenABEL. In all analyses, an FDR q-value <0.05 was considered statistically significant
31

. 

Additionally, a more stringent Bonferonni correction was applied by dividing 0.05 by the 

number of observations (N = 411169). Follow-up analyses, including a test for enrichment of 

genomic locations and gene ontologies, were performed based on the output from the EWAS.  

Genomic Annotation 

As described in detail by Slieker et al. (2013), methylation sites were mapped to genomic 

features and DNase I hypersensitive sites (DHS). These genomic features consists of five 

gene-centric regions: (1) intergenic regions (>10kb to -1.5 kb from the nearest transcription 

start site (TSS)), (2) proximal promotor (-1.5 kb to +500kb form the nearest TSS), (3) distal 

promotor (-10 kb to -1.5 kb from the nearest TSS), (4) gene body (+500bp to 3’ end of the 

gene) and (5) downstream region (3’end to +5 kb from 3’end). Additionally, CpG were 

mapped to CG island (CGIs) (CG content > 50% length > 200bp and observed/expected ratio 

of CpGs > 0.6), CGI shore (2kb region flanking CGI), CGI shelf (2kb region flanking CGI 

shore), or non-CGI regions. Locates were obtained from the UCSC genome browser
33

. DHS 

locations, mapped by the ENCODE project
34

 were also downloaded from the UCSC genome 

browser
33

. 

Enrichment of genomic locations 

To test whether specific genomic locations showed a stronger association between DNA 

methylation and WB, eight categories were tested for being enriched using the EWAS test 

statistics for all genome-wide methylation sites The locations tested are: (1) gene body, (2) 

proximal promoter, (3) distal promoter, (4) downstream region, (5) CGI, (6) CGI shore, (7) 

CGI shelf, and (8) DHS. To account for differences in variability between methylation sites 

we also included the mean and standard deviation of DNA methylation level in the model as 

covariates. For a detailed description of the method used for this analysis, see also Van 

Dongen et al. (2015), published in this same special issue of TRHG.  

  



Enrichment of the Gene Ontology terms 

Methylation sites with a stronger association with WB were tested for enrichment of Gene 

Ontology (GO) terms. To do so, all methylation sites that were tested were ranked by EWAS 

p-value and the resulting ranked gene list was supplied to the online software tool GOrilla 
36

. 

GOrilla performs GO enrichment analyses based on gene rank, and therefore no p-value cut-

off for defining the input list of genes is required. The background in this analysis consists of 

all genes for which methylation sites were analysed in the EWAS. In all analyses, we 

accounted for multiple testing by controlling the false discovery rate (FDR). An FDR q-value 

< 0.05 was considered statistically significant.  

  



Results 

Table 2: characteristics of the well-being data 

 Well-being Age at survey Age at blood sampling 

Data N Mean Median Sd Min Max Mean Median Sd Mean Median Sd  

Survey 6 10087 26.62 28 5.26 5 35 39.44 34.00 14.35    

Survey 8 19746 27.22 29 5.32 5 35 40.41 39.94 16.32    

Survey 10 11604 26.80 28 5.24 5 35 44.42 47.00 17.49    

EWAS
A
 2519 27.02 29 5.46 5 35 38.30 35.33 13.53 36.79 33.10 13.01 

A
Includes individuals with 450k methylation data and data on white blood cell counts.  

Characteristics of the study sample 

Data on well-being were available for 1747 individuals who filled out survey 6, 2056 

individuals who filled out survey 8 and 1059 individuals who filled out survey 10. The EWAS 

was performed on 2519 blood samples from 2456 subjects (mean age at blood sampling = 

36.8 years, SD = 13, % male = 31.1), for which the well-being score closest to the moment of 

blood draw was selected: For 1799 samples, WB was assessed after blood draw (mean 3.1 

years) and for 720 samples, WB was assessed before blood drawn (mean 2.5 years). Table 2 

summarizes the characteristics of the WB data and EWAS study sample. The average WB 

score of the EWAS study sample was comparable to the averages of the different survey 

waves (mean EWAS study = 27.0, mean survey 6 = 26.8, mean survey 8 = 27.5, mean survey 

10 = 27.0), and was also comparable to the mean of the overall NTR survey database 

satisfaction with life score (26.9, n= 38,740) (For a distribution of the well-being data, see 

Supplementary figure S1). 

EWAS 

After QC, we tested 411,169 autosomal sites in the genome for their association between 

DNA methylation and WB score, while correcting for white blood cells counts, age at blood 

sampling, age squared, sex, array row and 3 PCs from the methylation data. Figure 1 shows 

the Quantile-Quantile (QQ) plot. The genomic inflation factor (λ) was 1.227. 

  



Figure 1 Quantile-Quantile (QQ) plot from the EWAS of well-being. The observed p-values (y-

axis) are plotted against the p-values expected under the null hypothesis (x-axis). The straight diagonal 

line denotes the pattern that is expected under the null hypothesis, with 95% confidence intervals 

indicated by the shaded grey area. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Manhattan plot showing the P-values for the association between well-being and DNA 

methylation level at genome-wide autosomal sites. The horizontal grey line represents the 

bonferroni-adjusted p-value threshold. The blue horizontal line represents the FDR  q-value <0.05. 

  



Two of the methylation sites reached the genome wide significant threshold of p = 1.22 * 10
-7

 

when Bonferroni corrected and six of the methylation sites reached genome significance when 

using a threshold of FDR q-value < 0.05 (p = 5.23 * 10
-7

) (figure 2). The highest ranking 

methylation site was cg10845147 (p = 1.51 * 10
-8

), located on chromosome 5: 172149624, 

which was negatively associated with WB (figure 3A). The nearest gene associated with this 

site is the DKFZP761M1511 gene (synonym is NEURL1B). This gene spans 50274 base pairs 

(bps) of chromosome 5 and ranges from 172641266 to 172691540. The other site reaching 

Bonferroni genome-wide significance is cg01940273 (p = 2.34 * 10
-8

), located on 

chromosome 2:233284934, which showed a positive relationship between DNA methylation 

and WB (figure 3B). The gene closest located to this site is the ALPPL2 gene, which ranges 

from chromosome 2:232406843 to 2: 232410714 (3871 bps) (Supplementary Figure S2). The 

four additional CpG sites that were genome-wide significant using FDR q-value < 0.05 are 

cg03329539 (p = 2.76* 10
-7

, chromosome 2), cg09716613 (p = 3.23 * 10
-7

, chromosome 13), 

cg04387347 (p = 3.95 * 10
-7

, chromosome 16), and cg02290168 (p = 5.23 * 10
-7

, 

chromosome 1). The significant CpG sites located on chromosome 1 and 2 were positively 

associated with WB, whereas the CpG sites located on chromosome 13 and 16 were negative 

associated with WB. Characteristics of genome wide significant methylation sites as well as 

the location of the nearest genes are provided in table 3. 

Table 3: Top-ranking CpG sites from the EWAS of well-being 

 

CpG site 

 

Chr 

Position 

(hg19) 

(Nearest) 

Gene 

name 

Distance gene 

from each site 

(bps) 

Mean 

Methylation 

level A 

SD  

Methylation 

level A 

 

EstimateB 

Robust 

SEC 

 

p-value 

cg10845147  5 172149624  

DKFZP76

1M1511 

 

491642 0.69 0.04 -0.00072 1.27 E-04 1.51 E-08 

cg01940273  2 233284934 ALPPL2 874220 0.66 0.05  0.00101 1.80 E-04 2.33 E-08 

cg03329539  2 233283329  ALPPL2 874220 0.45 0.05  0.00065 1.27 E-04 2.76 E-07 

cg09716613  13 33000534  CG018 572356 0.27 0.04 -0.00052 1.02 E-04 3.23 E-07 

cg04387347 16 88537187  ZFPM1 171 0.22 0.05 -0.00075 1.48 E-04 3.94 E-07 

cg02290168  1 151255971  ZNF687 25647 0.12 0.02  0.00030 5.98 E-05 5.23 E-07 

Top hits from the EWAS for the association between methylation and well-being 

A 
Mean and standard deviation of the methylation proportion (β-value) in the entire 450K cohort 

B
Estimate from the regression of methylation proportion on well-being score. 

C
Robust standard error of the estimate (accounting for the clustering of observations within families) 

  



Figure 3. Scatterplots for the two top CpGs based on the entire NTR study sample. Well-being 

scores are plotted against methylation level. [A] shows the relationship between WB and methylation 

level of CpG site cg10845147. [B] shows the relationship between WB and methylation level of CpG 

site cg01940273. 

 

 

 

 

 

 

 

 

 

 

Next, we looked at the association with WB for all CpGs in relatively close proximity (within 

10,000 bp = 10kb) of each significant CpG site (for an overview of all CpG sites located 

within this window and their p-value and regression coefficient, see Supplementary table S1). 

For the highest ranked CpG site (cg10845147, chromosome 5), CpG site cg07853407 was 

located closest at 2563 bps. This side showed no association with WB (p = 8.17 * 10
-1

, ß -1.22 

* 10
-5

). The two genome-wide significant CpG site on chromosome 2 were located within 

1606 bps from each other. Within this window, five additional probes were measured. Al of 

these probes showed a change in methylation in the same direction of association with WB 

(see Supplementary table S1). On chromosome 13, CpG site (cg12054869) was located 

closest to the significant CpG site (cg09716613) at 716 bps, while for chromosome 16, the 

CpG site located most closely to the leading CpG site (cg04387347) was located 73 bps away. 

Finally, the CpG site located closest to the leading CpG site at chromosome 1 was 

cg01062937 at 668 bps.  For each of these probes, the regression coefficient for WB indicated 

a similar direction of effect as the significant probe in that specific region. 

Enrichment of genomic locations 

Table 4 shows the results of the regression of the EWAS test statistics on annotation 

categories across all genome-wide sites. Enrichment of signal was seen in the gene body (p = 

A B 



1.34 * 10
-5

), proximal promoters (p = 6.01 * 10
-18

), CGI shores ( p = 9.26 * 10
-10

) and DHS (p 

= 3.68 * 10
-14

). CpG sites with a lower mean methylation level, showed, on average, a 

stronger association with WB (p = 9.13 * 10
-15

). To account for the fact that the errors in this 

regression are not normally distributed, jackknife standard errors were computed, but this 

analysis led to the same conclusions as the normal linear regression standard errors (see 

supplementary table S2). These findings indicate that methylation sites associated with well-

being are enriched in gene bodies promoter areas and other regions of regulatory active DNA. 

Table 4: Results from the regression of EWAS test statistics on genomic annotation categories. 

 Regression parameter Estimate Std. Error t value P value 

Intercept 1.110 0.012 85.59 0 

Gene Body 0.035 0.008 4.35 1.34 * 10
-5

 

Proximal Promotor 0.077 0.009 8.63 6.01 * 10
18

 

Distal Promotor 0.009 0.014 0.60 0.54 

Downstream Region 0.022 0.021 1.05 0.29 

DNase I hypersensitive site (DHS) 0.048 0.006 7.57 3.68 * 10-
14

 

CGI Shore 0.048 0.008 6.12 9.26 * 10
-10

 

CGI Shelf 0.002 0.010 0.23 0.82 

CpG Island 0.001 0.008 0.06 0.94 

Mean methylation level
A
 -0.086 0.011 -7.75 9.13 *10

-15
 

SD methylation level
B
 3.57 0.182 19.64 6.63 * 10

-86
 

A
Mean methylation level of the site.

  

B
Standard deviation of the methylation level.  

Results based on jackknive are presented in Supplementary Table 2. 

 

Gene ontology analysis 

Gene ontology enrichment analysis based on EWAS p-value rank identified a large number of 

GO terms that were significantly enriched among higher ranked methylation sites. The 

strongest enriched GO term were positive regulation of biological processes (GO:0048518, p 

= 5.38 * 10
-21

), positive regulation of cellular processes (GO:0048522, p = 1.34 * 10
-16

) and 

developmental processes (GO:0032502, p = 2.38 * 10
-16

). Also, many brain and central 

nervous system processes, such as regulation of neurogenesis (GO:0050767, p= 3.72 * 10
-12

), 

neuron projector guidance (GO:0097485, p = 5.77 * 10
-10

), neurotrophic signaling pathway 

(GO:0038179, p = 2.53 * 10
-8

) as well as regulation of neuron differentiation (GO:0045664, p 

= 1.81 * 10
-8

) were significant enriched among higher ranking methylations sites (see 

supplementary table S3 for a complete list of significant  GO terms).  



Discussion 

By performing an epigenome-wide methylation analysis, the aim of the present study was to 

identify genomic locations at which differences in DNA methylation level are associated with 

differences in well-being in a population-based sample of adults. Six genome-wide significant 

hits were identified after correction for multiple testing (FDR q-value < 0.05), while two hits 

remained significant after applying the stricter Bonferonni correction.  Annotation analysis 

showed that enrichment of signal was seen in the gene body, proximal promoters, CpG shores 

and DNase I hypersensitive sites. Gene ontology analysis, which tests categories of genes 

instead of single methylation sites, revealed that genes involved in regulation of cellular 

processes and central nervous system processes were enriched among higher-ranking genes 

from our EWAS. Here we describe the six CpGs that were genome-wide significant using an 

FDR q-value < 0.05. The gene located closest (at ~500kb distance) to our top-ranked CpG site 

cg10845147 (genomic location: chr5:172149624) is DKFZP761M1511 (synonym is 

NEURL1B). NEURL1B (Neuralized E3 Ubiquitin Protein Ligase 1B) is a ligase that is 

involved in the regulation of the Notch pathway by influencing the stability and activity of 

several Notch ligands.  Notch pathways acts as a regulator of cell survival and cell 

proliferation
37,38

 and are suggested to play a role in human mammary development
39

. 

ENCODE data on Transcription Factor Binding site (TFBS) and DNase hypersensitivity sites 

(DHS) were accessed through the UCSC genome browser and showed that our top CpG, 

cg10845147 does not overlap with a TFBS but is located within a DHS peak in several cell 

types, suggesting that it is located within a regulatory region (ENCODE TFBS ChIP-seq data 

Mar 2012 Freeze).  

The second and third ranked CpG site (cg01940273, location: chr2:233,284,934 and 

cg03329539, location: chr:233,283,329 ) are approximately 875kb located from the nearest 

gene called alkaline phosphatase, placental-like 2 (ALLPL2). Alkaline phpsphatases (ALPs) 

are responsible for the dephosphorylation of various molecules including proteins, nucleotides 

or alkaloids. Circulating ALP concentration is associated with premature birth
40

, and low birth 

weight
41

. ALLP2 enzyme levels are increased up to 10-fold in 80% of cigarette smokers
42

 and 

elevated in patients with a number of cancers 
43

.  Both CpGs found in our study have been 

associated with smoking in several studies
44–46

. In those studies, it was shown that 

methylation at multiple CpGs, including our two CpGs was decreased among heavy smokers, 

but slowly increased among former smokers. Because of their association with smoking, we 

tested whether adding smoking as covariate would alter the significance level of the two 



CpGs.  For both sites, the p-values did not reach the genome-wide significance threshold 

when adjusting for smoking (cg01940273, p = 1.21 * 10
-5

 and  cg03329539, p = 7.89 * 10
-5

). 

Although not significant anymore, the association with WB is reduced rather than fully 

attenuated when correcting for smoking. The regression coefficient remained in the same 

direction as before, suggesting a positive relationship between WB and an increase in 

methylation. A growing field of research has been focusing on the effects of smoking 

cessation on well-being. The general findings of these studies are all pointing in the same 

direction: smoking cessation improves well-being. For instance, a study by Wilson et al. 

(1999) found that light, moderate, and heavy smokers scored significantly lower than never-

smokers as well as ex-smokers on the health-related quality-of-life scale (HR-QoL), with the 

strongest difference between heavy smokers and never-smokers. A similar finding was found 

by (Piper et al. (2012) and Shahab & West (2012), who found that successful quitters reported 

improved subjective well-being, in contrast to continuing smokers, after one to three years.  

Finally, the genes, located nearby the other significant CpG sites, were CGO18/ N4BP2L1 

(chromosome 13), ZFPM1 (chromosome 16) and ZNF687 (chromosome 1) and have not been 

previously linked to well-being or related phenotypes.  

Additionally, we looked up the top 3 probes associated with depression as reported by 

Dempster et al. (2014), and the genes located most closely to these probes  (DPYSL4, 

STK32C, KIF13B, DUSP4, PQLC3 and KCNF1)  to investigate whether these genes are also 

associated with WB. The six genes were located in close proximity to 341 probes in our 

dataset, but none of these probes reach genome wide significance with p-values ranging from 

p = 0.001 to p = 0.99.  Also, alterations in DNA methylation of the BDNF pathway have been 

associated with depression
16

. However, the 80 probes lying in close proximity in our dataset 

did not show an association with WB with p-values ranging from 0.003 to 0.99 (for a 

complete overview see Supplementary Table S4). 

A limitation of this study is that we did not have access to a validation data set. Therefore, 

future studies are warranted, especially for follow-up of the CpG sites that reached genome-

wide significance. Additionally, we limited this study to WB and did not consider other 

aspects of behaviour such as different personality traits or psychiatric symptoms. Since WB is 

strongly associated with a wide-range of mental health diseases like depression or 

neuroticism, DNA methylation levels associated with WB as measured in this study may be 

informative for associated phenotypes.  The ideal EWAS approach would therefore 

encompass WB and related phenotypes (e.g. different aspects of personality and depression). 



Such an approach would give insight into which methylation sites are common for WB and its 

related phenotypes and which sites are specific for WB.  

In conclusion, this study provides the first genome-wide methylation association study of 

well-being. We found six genome-wide significant DNA methylation sites of which two 

remained significant after the more stringent Bonferonni correction. Once genetic variants 

have been identified for well-being, future studies that integrate both genetic and – epigenetic 

information are warranted to investigate the intriguing interplay between genetic and 

environmental mechanisms in a complex trait like well-being. 
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Supplementary Figure 1:  Heatmap correlations between the PC’s and the covariates 

 

  



Supplementary Figure 2: Distribution of wellbeing scores used in this EWAS 
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Abstract 

We performed an epigenome wide association studies (EWAS) meta-analysis of well-

being, where individual differences in CpG site methylation in whole blood are 

associated with individual differences in well-being. We control for two well-known 

confounders of epigenetic associations, smoking and BMI. However, we are aware of the 

effect that potential unmeasured confounders could have on our results as well as 

uncertain of the direction of causation of the association between well-being and CpG 

methylation. To guard against unmeasured confounding and to infer a direction of effect 

we perform Mendelian Randomization, specifically we perform summary-based 

Mendelian Randomization (SMR). We perform SMR in which the (cis) QTL effect of 

SNPs on methylation (cis-mQTL), and a large GWAS of wellbeing are combined to infer 

the (causal) effect of CpG methylation on well-being. We perform SMR leveraging cis-

mQTLs discovered in both blood and brain tissues and compared results between 

tissues, and between SMR and EWAS. We found a high consistency of direction of effect 

(r > .9) between SMR results where the QTL is discovered in different whole blood 

datasets as well as high consistency between whole blood and fetal brain datasets (r = 

.72). However, when comparing the direction of effect between our EWAS and SMR 

results, no notable correlations were observed. Our results indicate that if the aim is to 

increase our understanding of the functional consequences of epigenetic changes on 

wellbeing, SMR may be preferred over EWAS in whole blood. If, however, the aim is to 

identify ways in which well-being Is itself a driver of environmental influences on 

differences in DNA methylation, possibly effecting gene-expression, a sufficient powered 

EWAS study will provide valuable information. The concurrent use of Mendelian 

Randomization and epigenome-wide association analysis proved to be a potent 

combination to further increase our understanding of the relation between well-being 

and CpG methylation.  

. 

 

 

  



 
 

Introduction 

Well-being is linked to numerous determinants and behaviors across the life course, such as 

income and employment, health, neighborhood environment (e.g. green space), air pollution, 

smoking, stress, alcohol use and several social factors such as friendship patterns (see review 

Diener and colleagues
22

). These exposures and behavioral characteristics are potential 

candidate drivers of differential epigenetic patterns between individuals having higher or 

lower levels of well-being. To our knowledge, our previous work is the only study that 

investigated the association between methylation differences and phenotypic variation in well-

being (N = 2,519), reporting two CpG sites (cg10845147, p = 1.51 ∗ 10
-8

 and cg01940273, p = 

2.34 ∗ 10
-8

) reached genome-wide significance after Bonferroni correction
23

. Gene ontology 

(GO) analysis highlighted enrichment of several central nervous system categories among 

higher-ranking methylation sites. However, replication of these results is warranted in larger 

samples. 

Despite these positive outcomes from the epigenome-wide association studies (EWAS), there 

are interpretational problems which may complicate distilling etiology and biology from 

epigenetic studies
24–29

. The foremost interpretational difficulty is the uncertainty about cause 

and effect, e.g. does methylation causally influences complex trait outcomes, is the causal 

effect reverse, or does a third trait influences both methylation levels and traits? For instance, 

a recent study found using a stepwise Mendelian Randomization analysis, that differential 

methylation is the consequence of inter-individual variation in blood lipid levels and not vice 

versa
30

. Considering the tissue-specific nature of epigenetic processes, a second important 

consideration for EWAS is the assessment of methylation of trait relevant tissue. Empirical 

results suggest that easily accessible tissues, such as whole blood, cannot be used to address 

questions about inter-individual epigenomic variation in inaccessible tissues, such as the 

brain. Hannon et al. explored covariation between tissues and found that, for the majority of 

the genome, a blood-based EWAS for traits where brain is presumed to be the primary tissue 

of interest will provide limited information relating to underlying processes
31

. This finding is 

enforced by another study, which found that only 7.9% of CpG probes, obtained in a sample 

of epilepsy patients, showed a substantial and statistically significant correlation between 

blood and brain tissue
32

.  

However, there is reason for optimism, as recent studies utilizing GTEx data showed that the 

genetic correlation of gene expression between tissues in local regions (i.e < 1MB of the 



 
 

transcription start site) is much higher than in distal regions
33,34

. This optimism is further 

supported by a recent study that found there is no evidence for tissue relevant eQTLs 

enrichment for associations with complex traits
35

. In this context, the question arises whether 

this holds for methylation QTLs (mQTLs) and to what extent the cis-genetic effects on DNA 

methylation in blood differ from those in brain. Capitalizing on this strong, cross tissue local 

genetics effects on methylation levels, Zhu et al. developed summary-based Mendelian 

Randomization (SMR), to infer the effect of eQTLS and mQTLs on complex traits
36

. 

Mendelian Randomization relies on the presence of genetic variants which confer a risk for an 

exposure of interest (CpG methylation in this case), as people do not self-select into a 

particular genotype group at birth, the genotype which indexes variation in CpG methylation 

can be considered random with respect to the outcome (well-being). Thus Mendelian 

Randomization offers a pseudo controlled experiment of the effect of variation in CpG 

methylation on well-being. SMR integrates summary-level data from GWAS together with 

data from eQTL or mQTL studies to identify genes whose expression levels, or CpG sites 

who’s methylation level, are associated with a complex trait due to pleiotropy. Pleiotropy in 

this case refers to a single causal variant underlying differences in gene expression/DNA 

methylation and phenotypic variation, which is of more biological interest than linkage, 

where, in the case of two distinct causal variants, one affects gene-expression or CpG 

methylation and the other trait variation. The observed Pleiotropy between a CpG site and a 

trait will likely be caused by an effect of CpG methylation on the outcome. A previous study
37

 

leveraged SMR to infer the relationship between CpG methylation (either in blood or brain) in 

over 40 different complex traits. Their results were highly consistent between both tissues, 

specifically, because local cis genetic regulation of methylation does not differ strongly across 

blood and brain tissues. The cross tissue stability in cis-regulation was supported by a recent 

study
38

. that reported a high cis-genetic correlation (r = .78) between CpG methylation in 

brain and blood samples. Thus, several empirical results seem to support that while the 

relation between complex trait and methylation is tissue dependent, and individual differences 

in methylation (directly measured) do not correlate strongly between blood and brain tissues, 

local genetic regulation of methylation level is correlated across tissues.  

The present study assessed methylation differences associated with differences in well-being 

using two study-designs. 

1) Epigenome-wide Association meta-Analysis 



 
 

We performed large association meta-analyses of well-being and genome-wide DNA 

methylation in whole blood (Illumina 450K array) samples of adult participants from twelve 

population-based cohorts (Supplementary Table 1-3). We performed two EWAS meta-

analyses ; (1) A basic model not corrected for smoking behavior and body mass index (BMI; 

N = 9,496) and (2) An adjusted model corrected for smoking behavior and BMI (N = 8,463).  

2) Summary-based Mendelian Randomization (SMR) with genome-wide mQTL data 

We performed a genome-wide meta-analysis (GWAMA) of well-being (Supplementary 

Table 4) and integrated the results with four publically available mQTL datasets (three whole-

blood and one fetal brain dataset) using SMR
39,40,41

. CpG sites identified using this approach 

might provide important leads to design further functional studies to understand the 

mechanisms by which DNA variation leads to complex trait variation. Besides identifying 

CpG probes associated with well-being, an important aim of the current study was to assess 

the concordance between an EWAS, where a direct association between well-being and CpG 

methylation is tested, and SMR where the local genetic effects on methylation are used to 

infer which CpG sites effect well-being. 

  



 
 

Results 

Epigenome-Wide Meta-Analyses. 

Genome-wide DNA methylation analyses were performed for our basic model (N = 9,496) 

and adjusted model (N = 8,463). Cohort specific EWAS summary statistics were combined in 

a fixed effects meta-analysis adjusted for test-statistic bias and inflation
42

 (Bayesian estimates 

of bias and inflation from all analyses are provided in Supplementary Table 3). Our basic 

model (not adjusted for smoking and BMI) identified two probes (cg19275632; P < 9.84 X 

10
-9

 and cg14535274: P < 8.73 X 10
-8

) significantly (P < 1.38 X 10
-7

) associated with well-

being (Figure 1A). However, when adjusting for smoking and BMI, no genome-wide 

significant SNPs were observed (Figure 1B). As expected, a significant correlation between 

the Z-statistics of the basic –and adjusted model was observed (r =.98, P < 2.2 X 10
-16

; 

Supplementary Fig 1). 

Fig. 1. Manhattan plots of the EWAS analyses. (a) EWAS from the basic model, and (b) EWAS 

from the adjusted model (corrected for smoking and BMI). The x-axis represents the chromosomal 

position of the CPG sites, and the y-axis represents the significance on a –log10 scale. Each 

approximately independent genome-wide significant association (“lead CPG site”) is marked by Δ. 

  



 
 

 

 

SMR analyses using methylation QTLs 

We applied the SMR approach to test the association between DNA methylation probes and 

well-being, using mQTLs identified in a dataset of methylomic variation in whole blood and 

imputed SNP genotypes from the Lothian Birth Cohort (N = 1366)
44

 in conjunction with a 

multivariate GWAMA
43

 of well-being (Nobs = 491,455; Supplementary Fig 2 and 

Supplementary Table 5). The first stage of the SMR analysis identifies the most significantly 

associated SNP for a DNA methylation site (that is also present in the GWAMA dataset) as an 

instrumental variable for testing for association with well-being. This approach yielded 3 

significant associations (P < 5.65 X 10
-07

 corrected for 88,531 tests; Supplementary Table 6 

and Fig 2A) between well-being and DNA methylation probes.  

Because the associations can be driven by highly correlated yet different causal variants for 

well-being and DNA methylation, also known as linkage, the second stage in SMR tests for 

heterogeneity in the association analysis by performing a heterogeneity in dependent 

instruments (HEIDI) test. The 3 significant associations survived the HEIDI test (P > 0.05) 

and can be described as pleiotropic. 

Replication in two independent whole-blood mQTL datasets 

We were able to test for replication of the SMR results with mQTLs generated from two 

independent datasets (Aberdeen N = 639 and University College London N = 665)
40

. Using 

the same strategy as above, we identified five associations between well-being and DNA-

methylation (Fig 2B and Supplementary Table 6) in the Abderdeen dataset (Pbonf < 1.2 X 10
-

06
 corrected for 41,803 tests). Moreover, one out of three significant associations from the 

discovery dataset were genome-wide significant in the Abderdeen dataset cg07879825), 

whereas one association at chromosome 3 lies within 10 kb (cg11645453) form the discovery 

dataset. A significant correlation of the Z-statistics (r = 0.93; P < 2.2 X 10
-16

) indicates a large 

agreement in the direction of effect between both datasets (Supplementary Fig 3A). 

Using UCL as the second replication dataset, we identified two associations between well-

being and DNA-methylation (Pbonf < 1.66 X 10
-06

 corrected for 30159 tests; Figure 2C and 

Supplementary Table 6)). None of the significant associations from the discovery datasets 

were significant in the UCL dataset, although the association at chromosome 3 lies in close 



 
 

proximity to the association found in the discovery dataset (< 10 kb). However, the high 

significant correlation (r = 0.91, P < 2.2 X 10
-16

) between the Z-statistics is indicative of a 

large concordance between the LBC and UCL summary statistics (Supplementary Fig 3B).  

 

Fig. 2. Manhattan plots of the SMR results. (a) LBC (whole blood) (b) Abderdeen (whole-blood), 

(c) University College Londen (whole blood), and (d) Human Developing Brain Resource. All plots in 

all panels are based on the same set of SNPs. The x-axis represents the chromosomal position, and the 

y-axis represents the significance on a –log10 scale. Each approximately independent genome-wide 

significant association is marked by Δ. 

 

 

 

mQTL in whole blood versus brain 

Given the tissue-specific and developmentally dynamic nature of gene regulation, we were 

interested in examining the consistency of the SMR findings in a different tissue. To this end, 

we repeated the SMR analysis on mQTLs in a dataset of human fetal brain derived from the 

Human Developing Brain Resource (HDBR; N = 166)
31

. We identified one association at 

chromosome 3 between well-being and DNA-methylation lying within 10 kb from the 

association present in our discovery dataset (Pbonf <6.58 X 10
-6

;
 
Supplementary Table 6)) 

and a large correlation between Z-statistics of HDBR and LBC (r = 0.72, P < 2.2 X 10
-16

), 

indicating consistency between both summary statistics (Supplementary Fig 3C).  



 
 

Direct epigenetic measurement versus Mendelian Randomization 

To assess the concordance between an EWAS, where well-being and CpG methylation are 

directly correlated, and SMR where the local genetic effects on methylation are used to infer 

which CpG sites effect well-being, we correlated the Z-statistics that were present in both 

datasets. When including all corresponding CpG probes (N = 70,564), the Z-scores hardly 

correlated (r = 0.02, P = 1.83 X 10
-10

), which is indicative of little correspondence in direction 

of effects (Fig 3A). Next, we included only probes that survived the SMR HEIDI test (P > 

0.05) and were present in both datasets (N = 10,072). The obtained correlation was still small 

but significant (r = 0.02, P = 0.02; Fig 3B). Finally, we tested the correlation between Z-

statistics including probes with a SMR P < 0.001, N = 57) and found a small but non-

significant correlation of .27 (P = .051; Fig 3C).  

 

Fig. 3. Correlation of the Z-statistics between LBC and EWAS. (a) correlation between Z-statistics 

LBC and EWAS (adjusted model for all corresponding CpG probed (r = 0.02, P = 1.83 X 10
-10

) (b) 

CpG probes surviving the HEIDI test (r = 0.02, P = 0.02), and (c) CpG probes surviving the Heidi test 

and PSMR < 0.001 ( r =.27, P = .051), In all plots, LBC is plotted at the x-axis. 

 

 

  



 
 

Discussion 

This study is one of the first large-scale investigations into epigenome-wide analyses of well-

being through direct epigenetic measurement (EWAS) and summary based Mendelian 

Randomization (SMR). In the EWAS meta-analysis (N = 8,463), no genome-wide significant 

methylation hits were identified after correcting for multiple testing, smoking, and BMI.  

In the Summary-based Mendelian Randomization analyses, we identified three genome-wide 

significant associations by integrating summary data from a GWAMA of well-being and the 

publically available mQTL dataset including participants from LBC (whole-blood). We were 

able to replicate one out of three associations using Abderdeen as an independent dataset, 

while another association lies in close proximity to the discovery dataset. In the third dataset 

(UCL), none of the three associations replicated although one lies in close proximity to the 

discovery dataset. Nevertheless we found high correlations of Z-statistics between the 

analyses with different datasets suggesting a large concordance in direction of effect. This 

replication confirms that the instruments used to index CpG methylation were consistent 

across multiple datasets, though we were not able to replicate the effects on well-being as a 

second sufficient powered independent GWAS of well-being is not available.  

Next, we were interested in examining the consistency of our SMR findings in different 

tissue. Therefore, we repeated the SMR analyses in a dataset of human fetal brain derived 

from the Human Developing Brain Resource. The majority of SNP-DNA methylation 

relationships identified for SMR analysis in whole blood using the LBC dataset are 

characterized by a consistent direction of effect when tested in fetal brain.  

Finally, we assessed the concordance between the EWAS, where well-being and CpG 

methylation are directly measured and SMR analyses, where the local genetic effects on 

methylation are used to infer which CpG sites effect well-being. Interestingly, no notable 

correlations were observed, even when different P-value threshold were used.  

Our SMR results are in concordance with Hannon et al.
37

 who found evidence for pleiotropic 

effects between SNPs that cause variation in CpG methylation and trait-associated genetic 

variation in over 40 complex traits with robust GWAS data. Moreover, similar to what we 

report in the present study, they found that a significant proportion of the associations (99.2%) 

with mQTLs using an independent whole-blood dataset had the same direction of association. 

The large consistency that we observe between associations with mQTL measured in whole-

blood as well as in fetal brain (r = 0.72) is in concordance with previous studies
34,37,38

 and 



 
 

suggests that the correlation between mQTLs in local regions (i.e. ~1MB of the transcription 

start site) is fairly high. In addition, the lack of correlation between direct epigenetic 

measurement and summary-based Mendelian Randomization is in agreement with two 

previous studies
31,32

 that found that most CpG probes are uncorrelated between whole-blood 

and brain tissues.  

There are several explanations to explain the lack of correlation between EWAS and SMR. 

First of all, epigenome-wide analysis of well-being through direct measurement provides the 

association of all epigenetic markers (genome-wide) with a trait of interest without providing 

information about the possible mechanisms driving the association. There are five scenarios 

that theoretically can drive the association between DNA methylation and a trait; (1) There is 

an underlying single causal genetic variant that influence both DNA-methylation and trait, 

also known as pleiotropy, (2) There are 2 genetic variants (in high LD with each other) where 

on variant has an effect on DNA-methylation and one variant has an effect on trait variation, 

also known as linkage, (3) There is a causal relation where variation in CpG methylation will 

cause variation in well-being, inducing pleiotropy between the SNPs which influence CpG 

methylation, and well-being, (4) There were unmeasured confounding factors that have an 

effect on DNA methylation and trait variation, (5) There is reverse causation, where trait 

variation has an effect on differences in DNA-methylation instead of the other way around, 

and T (see Fig. 4 for graphical representation of the five scenarios). Summary-based MR in 

combination with the HEIDI test can distinguish between pleiotropic and linkage effects of 

trait associated genetic variation on DNA-methylation. Doing so, SMR provides useful 

information on the mechanism underlying the association between DNA methylation and trait 

variation (e.g. well-being). The absence of correlation between the EWAS and SMR results 

suggests that the associations we observed in our epigenome-wide analyses through direct 

epigenetic measurement are mainly driven by processes other than pleiotropy or a direct 

causal effect of CpG methylation on well-being. This finding is consistent with the presence 

of a direct relation between CpG methylation and well-being that varies over tissues (i.e is not 

present in white blood cells, but may still be present in brain cells).  

The current EWAS of well-being, is one of the largest conducted today with a sample size of 

~8600, but was not capable to identify probes significantly associated with well-being after 

adjusting for smoking and BMI. Future EWAS with larger samples that have sufficient 

statistical power should be able to identify CpG probes associated with well-being. However, 

if a tissue of convenience (i.e whole blood, buccal) is used, it should be expected that a 



 
 

substantial portion of the findings may reflect confounding (other than those confounders 

corrected for in the model) or reverse causation where variation in well-being influences CpG 

methylation. Reverse causation in itself may be a very interesting mechanism which could 

hold clues to health outcomes which are a consequence of modified epigenetic states as a 

causal consequence of systematically lowered well-being. As biobanks increase their dense 

phenotyping, further EWAS studies may be able to interrogate multiple tissues in relation to 

well-being, and for individual loci identify the tissue of action. These studies should where 

possible leverage SMR which we have shown to be a valuable addition to EWAS in the 

context of psychological traits.  

Conclusion: 

We performed the largest EWAS of well-being to date and no genome-wide significant 

methylation hits were identified after correcting for multiple testing, smoking and BMI. Using 

summary Mendelian Randomization, we identified three associations (discovery dataset) 

where well-being and variable DNA methylation are pleiotropically associated with genetic-

variation. Moreover, a high concordance in direction of effect was observed using three 

independent mQTL dataset measured in blood (2x) and brain (1x). Our results indicate that if 

the aim is to increase our understanding of the functional consequences of genetic risk 

variants for a complex trait and to facilitate the localization of specific genes within genomic 

regions identified by GWAS, SMR seems to be a promising way to go forward. If however, 

the aim is to identify environmental influences on the epigenome, a sufficient powered EWAS 

study might provide valuable information if brain tissue is not the only predominant tissue of 

interest. Combined use of the two designs may prove a potent cocktail able to identify 

correlation between CpG methylation and well-being while testing the exact nature of the 

observed correlation.  

 

  



 
 

Fig. 4. five scenarios that can drive the association between DNA methylation and a trait; (a) 

There is an underlying single causal genetic variant that influence both DNA-methylation and trait, 

also known as pleiotropy, (b) There are 2 genetic variants (in high LD with each other) where on 

variant has an effect on DNA-methylation and one variant has an effect on trait variation, also known 

as linkage; (c) There is a causal path from a genetic variant that influence DNA-methylation level an 

through DNA-methylation, trait variation will occur, (d)Tthere were unmeasured confounding factors 

have an effect on DNA methylation and trait variation, and (e) there is reverse causation, where trait 

variation has an effect on differences in DNA-methylation instead of the other way around. 

 

 

 

 

 

  



 
 

Methods 

Epigenome-wide association study 

Data on well-being, body mass index (BMI), smoking, white blood cell counts, and 

methylation level were available for 13 cohorts: ALPSAC (N = 829), QIMR(N = 233), DTR 

(N = 1012), FTC (N = 593), GENR (N = 643), KORAF4 (N = 660), LBC1921 (N = 376), 

LBC1936 (N = 697), LLD (N = 730), NFBC1966 (N = 803), NFBC1986 (N = 593), NAS (N = 

1195), and NTR (N = 2519) (Supplementary Table 1). All participants provided written 

informed consent, and all contributing cohorts confirmed compliance with their local research 

ethics committees or institutional review boards.  

Well-being (WB) Measurements 

All questionnaires, except LifeLines Deep (LLD), were measures of happiness or satisfaction 

with life (Supplementary Table 2). LLD derived their questions from the positive-affect 

negative-affect (PANAS) questionnaire
44

 with questions focusing on ‘interested’, 

‘enthusiastic’, ‘proud’ or ‘inspired’. 

Participants inclusion criteria 

We performed two EWAS meta-analyses. (1) The basic model without correcting for smoking 

and BMI (N = 9,496), and (2) the adjusted model corrected for smoking and BMI (N = 8,463). 

To be included in the two analyses, participants had to satisfy several criteria: (1) all relevant 

covariate data were available for each participant; (2) Participants passed the cohort-level 

methylation quality control and (3) Well-being was measured with either satisfaction with life 

measurements or happiness measurements. To be included in the adjusted model, covariate 

data on smoking and BMI should be present. 

Epigenome-Wide Association study 

 

To investigate associations between well-being and individual methylation markers the 

participating cohorts first performed cohort-level EWAS with a pre-specified analysis plan. As 

is standard, the EWAS was performed as a set of linear regressions in each cohort, one 

methylation marker at a time, with the methylation beta value (0– 1) as the dependent 

variable. The key independent variable was WB. We estimated two regression models that 

differ in the set of covariates included. In the basic model, the covariates were age, sex, 



 
 

imputed or measured white blood cell counts, technical covariates from the methylation array, 

and four genetic principal components to account for population stratification. In the adjusted 

model, we additionally controlled for BMI (kg/m2), smoker status (three categories: current, 

previous or never smoker), and As BMI and smoking are correlated with WB
45,46

 and known 

to be associated with methylation
8,47

 , the basic model may identify associations with WB that 

are actually due to BMI or smoking. Although the adjusted model reduces that risk, it may 

also reduce power to identify true associations with WB (by controlling for factors that are 

correlated with WB). We present the results for both models, but focus on the adjusted, more 

conservative, model.  

 

EWAS QC and meta-analysis  

Each participating cohort uploaded EWAS summary statistics to a central secure server for 

QC and meta-analysis. We removed probes with missing P-value, standard error, or 

coefficient estimate (Beta). Quantile-quantile (Q-Q) plots were made for the two models 

(basic versus adjusted). Additionally, we asked the participating cohorts to perform an EWAS 

on smoking and provide the corresponding P-values. From these P-values, also Q-Q plots 

were made for visual inspection. To account for test statistic bias and inflation we used the 

method described by Iterson et al 
42

 as implemented in the R-package Bacon (Supplementary 

Table 3). We performed a sample-size-weighted meta-analysis of the cleaned results using 

METAL
48

. The two EWAS meta-analyses were performed on 395,764 methylation sites 

(CpG sites present in all datasets). For all samples included in the EWAS, white blood cell 

counts were measured with the standard white blood cell differential as part of the 

complete blood count (CBC). A CpG site was considered to be genome-wide significant at 

the stringent Bonferroni level (alpha = 0.05/ 395,764 = 1.26 X 10
-7

). 

 

Summary-based Mendelian Randomization 

mQTL summary statistic were from four publically available data sets. Peripheral blood from 

McRae et al.
39

 (Lothian Birth Cohort; N = 1,366), Hannon et al.
40

 ( Aberdeen; N = 639, 

University College London; N = 665). Fetal brain summary statics were available from 

Hannon et al.
31

 (Human Developmental Biology Resource; N = 166 ).  

 

We included in the SMR-analyses a multivariate GWAMA
43

 of well-being measures. In the 

multivariate analyses, datasets from Okbay et al.
49

(imputed to 1000G Phase 1 using the 

software tool DIST)
50

 and UK Biobank (UK Biobank ID 20456 and 4526) were combined to 



 
 

maximize power to identify genetic variants associated with well-being. Quality Control of 

UK Biobank data is described elsewhere 
51

. In total 491,455 observations and 7,123,275 SNPs 

(MAF > 0.01) were included in the analyses.  

 

Summary Based Mendelian Randomization Analyses 

The method behind SMR is extensively described by Zhu et al.
36

. In short, the SMR test was 

developed to test the association between an exposure (e.g. DNA methylation) with an 

outcome (e.g. Well-being) using a genetic variant as the instrumental variable to remove non-

genetic confounding. Let x be an exposure variable, y be an outcome variable, and z be an 

instrumental variable. The Mendelian Randomization (MR) estimate of the effect of exposure 

on outcome (�̂�𝑥𝑦) is the ratio of the estimated effect of instrument on exposure (�̂�𝑧𝑥) and that 

on outcome (�̂�𝑧𝑦).  

�̂�𝑥𝑦 =
�̂�𝑧𝑦

�̂�𝑧𝑥

 

 

 

where �̂�𝑧𝑥 and �̂�𝑧𝑦 are available from mQTL and GWAMA summary data. One of the core 

assumptions for MR is that the instrument should be strongly associated with exposure. 

Therefore in the SMR analyses, only top mQTLs (at least P < 1 X 10
-5

) are included as 

instrument for an SMR analysis. A significant association detected by the SMR test above can 

result from either a pleiotropic model (i.e. the exposure and the outcome are associated by a 

single shared genetic variant) or a linkage model (two or more variants in LD affecting the 

exposure and outcome independently). To distinguish pleiotropy from linkage a 

heterogeneteity in dependent instruments (HEIDI) test was developed to test against the null 

hypothesis that there is a single causal variant underlying the association (pleiotropy model). 

For the HEIDI test we used multiple SNPs (e.g. the top 20 associated mQTLSs after pruning 

SNPs for either too strong or too weak LD in a cis region) to detect whether the association 

patterns across the region are homogeneous or not (a homogeneous pattern indicates a single 

shared causal variant). Thus, we assess the difference between �̂�𝑥𝑦 estimated at the top 

significant associated instrument �̂�𝑥𝑦(𝑜)) and �̂�𝑥𝑦 estimated at a less significant instrument 

�̂�𝑥𝑦(𝑖):  



 
 

�̂�𝑖 =
�̂�𝑥𝑦(𝑖)

�̂�𝑥𝑦(𝑜)

 

 

Under the null hypothesis (pleiotropic model), d = 0. If d significantly deviates from 0, we 

reject the SMR association due to heterogeneity.  

SMR correlations between the different datasets  

 

As the number of methylation probes were different between the EWAS analyses and the 

SMR analyses, only corresponding probes were included for each analysis. SMR analyses 

output do not report Z-statistics. Therefore, we calculated for each SMR output:  

 

𝑍𝑆𝑀𝑅 =
𝛽𝑆𝑀𝑅

𝜎𝑆𝑀𝑅
 

 

The resulting ZSMR test statistics were correlated (two sided) with each other as an indication 

for consistency of direction of effects between whole-blood mQTL dataset as well as 

consistency of effect between whole-blood and fetal brain mQTL datasets.  

 

Direct epigenetic measurement versus Mendelian Randomization 

To test the consistency of effect between the EWAS analyses and whole-blood mQTL SMR 

analyses we correlated the Z statistics of the LBC whole-blood mQTL dataset and Z statistics 

of the EWAS meta-analysis corrected for smoking and BMI. Correlation analyses were 

performed in R
52

. 
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Supplementary Information 

Supplementary Fig. 1. Correlation of the Z-statistics between EWAS basic model and adjusted 

model. X-axis representing the CpG probes of the basic model (model 1) and the Y-axis representing 

the CpG probes of the adjusted model (corrected for smoking and BMI). Correlation is r =.98, P < 2.2 

X 10
-16

. 

 

  



 
 

Supplementary Fig. 2. Manhattan plots of N-weighted GWAMA of well-being. The x-axis 

represents the chromosomal position, and the y-axis represents the significance on a –log10 scale. Each 

approximately independent genome-wide significant association (“lead SNP”) is marked by Δ. 

 

 

  



 
 

Supplementary Fig. 3. Correlation of the Z-statistics between basic model and adjusted model. 

(a) correlation between Z-statistics LBC and Abderdeen (r = 0.93; P < 2.2 X 10
-16

), (b) correlation 

between LBC and UCL (r = 0.91, P < 2.2 X 10
-16

), and (c) correlation between LBC and fetal brain (r 

= 0.72, P < 2.2 X 10
-16

),  In all plots, LBC is plotted at the x-axis. 
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Abstract 

This review examines the origin and structure of the complex well-being (WB) concept 

as it is currently applied in behavioral and social sciences. Current research on WB is 

often divided into two perspectives: subjective well-being (SWB) and psychological well-

being (PWB), shaped by the philosophical concepts of hedonism and eudaimonism, 

respectively. How these different views relate to each other and to WB as a whole has 

not yet been clearly defined, leading to difficulties in interpretation. In this review, we 

aim to get more insight into the relation between SWB and PWB. We first present an 

overview of the philosophical history of SWB and PWB, followed by a systematic 

literature review. The goal of this review, based on 29 studies, was to investigate how 

much evidence there is for a conceptual overlap between SWB and PWB. A majority of 

the studies found appreciable shared variance between the constructs, suggesting that 

they might be more closely related than previously assumed. On the other hand, 

evidence from biological studies provides mixed results: a distinction between SWB and 

PWB based on unique biomarkers is reported, while recent molecular genetic studies 

show strong genomic overlap between SWB and PWB, but different gene-expression 

regulation. We end with a discussion on how these findings fit into a well-being 

framework, and describe some of the issues in the well-being field as we encountered 

them in our review followed by potential solutions to these problems.  

 

 

 

 



Introduction 

Over the past 20 years, the positive psychology movement has gained a lot of attention and 

popularity. This line of research examines the underpinnings of happiness and well-being
1
. 

From a theoretical perspective, two types of well-being can predominantly be distinguished 

in the field of positive psychology: subjective well-being (SWB) and psychological well-

being (PWB). This distinction, though, has been discussed and criticized based on findings 

that indicate a substantial conceptual and, in some cases, biological overlap
2,3

. Moreover, 

with increasing numbers of concepts, constructs, and measurement instruments available
4
, it 

has become ambiguous what we mean exactly when we claim to be measuring well-being. 

Furthermore, one of the largest complications in present-day well-being research is 

conceptual uncertainty: the validity of well-being constructs depends on which theory on the 

nature of well-being is correct
5
. Many theories have been proposed on the nature of well-

being, yet, there is no unifying system that brings the different theories together
6,7

. To 

continue development in the area of well-being research, we must solve these issues. In this 

review, we aim to examine the complex framework well-being in three steps. First, we 

provide a brief overview of the philosophical roots of well-being and how this has shaped the 

modern SWB and PWB dimensions. Secondly, we perform a systematic literature review 

aimed at analyzing the current view on the relation between SWB and PWB. Lastly, we 

discuss the implications of the results from part 2 and offer suggestions for future well-being 

research.  

PART 1 - THE PHILOSOPHICAL HISTORY OF WELL-BEING 

For centuries, people have asked themselves questions about the nature well-being. This can 

be traced back to ancient Greek philosophers, such as Aristotle and Socrates, who already 

wondered about the prerequisites for living a good life
8
. In this part, we examine the ancient 

history of hedonic and eudaimonic well-being, followed by a discussion on how this history 

shaped present-day well-being theories. 

Hedonia  

“Pleasure is our first and kindred good. It is the starting-point of every choice and of every 

aversion, and to it we come back, inasmuch as we make feeling the rule by which to judge of 

every good thing”(Letter to Menoeceus, Epicurus). 



Ancient hedonism is centered around pleasure, or how good a person feels about his or her 

life
9
. From this perspective, well-being consists in the balance of pleasure over pain, that is: 

how to maximize pleasure and minimize pain. Aristippus (c. 435 – c. 356 BCE), one of 

Socrates’ students, was the founder of the Cyrenaic school of Philosophy, a school that taught 

that pleasure was the ultimate goal of human life and that the pursuit of pleasure was the 

purpose of human existence and is therefore considered one of the first that taught the 

hedonistic line of thought
10

. Epicurus popularized the same view on the good life but, 

different from the Cyrenaics, believed that pleasure was to be found in the absence of desire, 

and limiting what one wants, rather than striving to satisfy all one’s desires as they are. 

More recent examples of hedonists are Jeremy Bentham (1748-1832) and John Stuart Mill 

(1806-1873). Their emphasis on well-being as pleasure resulted from their utilitarian view on 

ethics, according to which one should maximize total well-being, rather than as a means to 

make one’s own life good
11

. According to Bentham’s narrow hedonism, different pains and 

pleasures possess different values, and their sum determines a person’s hedonic level, his or 

her level of well-being. The two most fundamental aspects in this theory are duration and 

intensity: these factors determine the value of an individuals’ pleasures and pains
12

. That is to 

say, the higher the intensity, and the longer the duration, the higher the value of a pain or 

pleasure. However, according to Mill, this form of hedonism lacks a dimension: quality. His 

objection to Bentham is that “It is better to be a human being dissatisfied than a pig satisfied; 

better to be Socrates dissatisfied than a fool satisfied”
13

. This implies that well-being is not a 

mere summation of quantities of pleasure, but that qualitatively better pleasures contribute 

more to well-being.  

From hedonism to subjective well-being 

Comparing these 19th century philosophers with their ancient counterparts, we see a more 

careful and detailed analysis of the concept of hedonic happiness. In modern-day behavioral 

and social sciences, the term hedonic well-being is becoming less and less frequent. 

However, this does not mean that the hedonistic line of thought is unpopular among 

contemporary social scientists. Rather, we observe a shift in terminology: contemporary 

social scientists prefer to use the terms subjective well-being (SWB) or happiness rather than 

pleasure and hedonism. A likely reason for this shift is that hedonism is a philosophical 

concept that has no clear method of measurement. Therefore, researchers have tried to 

redefine hedonism into an operational definition. While many methods have been proposed 



for measuring and conceptualizing SWB
14

, a widely adopted definition is that of Diener 

(1984). According to this conceptualization, SWB consists of three hallmarks: 1) it is 

subjective (objective influences are not necessarily part of the construct); 2) it includes 

positive measures (it is not just the absence of negative factors), and; 3) it includes a global 

assessment of all aspects of a person’s life, not just of one or a few domains. Three separate 

components are used to measure this construct: positive affect, negative affect, and life 

satisfaction 
16

. While the ancient concept of happiness is not exactly the same as modern 

SWB, evidence is pointing towards SWB existing as a result of the hedonic concept of well-

being. Conceptually, positive and negative affect, collectively referred to as the 

affective/emotional aspect of SWB, are similar to the ancient ideas of pains and pleasures 

contributing to hedonic levels. Life satisfaction (also referred to as the cognitive component 

of SWB), defined as a global judgment of one’s life, could intuitively be comparable to the 

overall hedonic level of an individual over his/her life as a whole, but life satisfaction could 

also be considered a newer addition to this type of well-being and not strictly a hedonic 

concept. A person’s hedonic state is the overall balance of pleasure and pain experienced at a 

particular point in time. In contrast, life satisfaction is an evaluation a person makes about his 

or her life by his or her own standards. These two concepts do not necessarily coincide, as a 

person may be satisfied with states that might not feel good, like in the context of childbirth
17

. 

Moreover, in his Conditions of Happiness, Veenhoven (1984) mentions that ancient hedonists 

equate the evaluation of happiness with a focus on sensory pleasures, while the modern-day 

conception of happiness more strongly focuses on affective and cognitive pleasures. Taken 

together, while hedonic levels of well-being are an important aspect of SWB, it does not 

capture the complete SWB construct. 

 

Eudaimonia  

 “Again, our definition accords with the description of the happy man as one who ‘lives well’ 

or ‘does well’; for it has virtually identified happiness with a form of good life or doing 

well”(Aristotle, Nicomachean Ethics, trans. H. Rackham (Harvard University Press: London, 

1943), 1098b). 

 

Eudaimonia is a Greek word commonly translated as well-being or flourishing. Synonyms for 

eudaimonia are living well or doing well. Ancient eudaimonic philosophers based their 

ethical theories on the concept of eudaimonia
19

, and ancient eudaimonism takes well-being to 



be constituted by virtue and the fulfillment of human capacities. Whereas the hedonic 

tradition limited the concept of well-being to the balance of pleasure and pain, the 

eudaimonic tradition takes virtuous activity to be necessary for well-being as well. While 

hedonistic philosophers, such as Epicurus and Mill, may make space for virtue as a 

prerequisite or contributor to well-being, they do not take it to be necessary or essential for 

well-being
19

. Perhaps a more characterizing feature of the eudaimonic tradition of well-being 

is the principle of self-fulfillment. The most important contributor to, as well as founder of, 

the eudaimonic line of thought as discussed in this paper, is Aristotle (c. 384 – c. 322 BCE). 

Aristotle rejected the hedonistic definition of well-being, describing it as “vulgar”
20

. 

According to Aristotle, well-being can be interpreted as well-living: it is about the 

actualization of human potential. Virtue, defined as knowledge (practiced over time) about 

how to live well, is an important aspect of this theory
21

. Therefore, the Aristotelian 

conception of well-being has more to do with the fulfillment of a person’s nature: it aims at 

reaching one’s fullest potential in line with one’s deeper principles
22

. Whereas hedonists have 

a purely individualistic notion of well-being, eudaimonia requires living well in one’s social 

environment. A more modern, famous account that is strongly inspired by this conception is 

Maslow’s hierarchy of needs, as proposed by Abraham Maslow (1943). This theory describes 

five different stages of human growth, starting at the most basic level of physiological needs. 

Every time the need belonging to a particular level is fulfilled, one moves up a stage in the 

hierarchy. The highest level a person can reach is self-actualization, which is (according to 

Maslow) only reached by one in a hundred people. In his theory of human motivation 

Maslow refers to self-actualization in the sense of the Aristotelian tradition: “It refers to the 

desire for self-fulfillment, namely, to the tendency for him to become actualized in what he is 

potentially. This tendency might be phrased as the desire to become more and more what one 

is, to become everything that one is capable of becoming.” 

From eudaimonia to psychological well-being 

Where the hedonic line of thought has largely been replaced by SWB in the empirical 

literature, the eudaimonic tradition has gradually shifted towards psychological well-being 

(PWB). Whilst creating valid measurement methods for SWB was starting to gain popularity 

amongst the social sciences around the 1970/1980s, valid measurements for PWB seemed to 

be lacking at that time. Especially the absence of self-actualization within PWB 

conceptualization was troubling and gave rise to a new formulation for capturing this 

construct
24

. This new formulation for PWB consists of six core dimensions: Self-Acceptance, 



Positive Relations with Others, Autonomy, Environmental Mastery, Purpose in Life, and 

Personal Growth. While many other measurement instruments for PWB are available 

nowadays, these six core dimensions are still widely used to assess PWB. Notably, there are 

other modern perspectives on eudaimonia, such as Self-Determination theory
25

. However, 

here, we only present the PWB formulation as proposed by Ryff due to its frequent 

application in behavioral and social sciences. PWB, as proposed by Ryff, is without doubt a 

result of eudaimonic thinking: it was in her intention to create a measure that captures the 

eudaimonic line of thought: “Indeed, the deeper philosophical roots of the new model of well-

being resided in Aristotle’s formulation of the highest human good, which in his 

Nichomachean Ethics he termed eudaimonia”
26

. Therefore both PWB and eudaimonia are 

predominantly concerned with the development and self-realization of an individual
24

. 

However, a difference that can be pointed out between ancient eudaimonism and PWB is that 

in the Aristotelian tradition, eudaimonia did not just concern subjective experience but 

intersubjective experience: a way of being in the world
27

. Ryff’s PWB scales, though, still 

have more focus on the subjective, individualistic values. This is not surprising since Western 

countries (in which Ryff’s scales are often applied) mostly have individualistic values instead 

of collectivistic ones. The most intersubjective scale is the positive relations with others 

scale. While this scale does measure the concern someone has for others, it does not place as 

large emphasis on intersubjective values as the ancient eudaimonic tradition.  

 

PART 2 – SYSTEMATIC LITERATURE REVIEW 

In this review, we chose to adopt the following definitions (see Figure 1): 

Subjective Well-Being. The term “subjective well-being” is used to refer to the domain of 

well-being inspired by the hedonistic line of thought. Unfortunately, the literature on well-

being does not often distinguish between two notions of subjective: 1) subjectivity as 

pertaining to things internal to the individual, and 2) subjective as dependence on a person’s 

attitudes
28

. We adopt the definition as proposed by Diener (1994), that splits subjective well-

being into two domains: a cognitive domain and an affective domain. The cognitive domain 

is comprised of a person’s general evaluation of his or her life. This domain can also be 

referred to as an individual’s satisfaction with life. The affective domain refers to a person’s 

long-term levels of negative and positive affect, in line with option (1) pertaining to 

subjectivity mentioned above. 



Psychological Well-Being. The term “psychological well-being” is used to refer to the 

domain of well-being inspired by the eudaimonic line of thought. For the purpose of this 

paper, we refer to the formulation as proposed by Ryff (1995) where psychological well-

being consists of the six core elements: 1) self-acceptance; knowing and accepting oneself, 2) 

positive relations with others, reflecting one’s ability to empathize and to show affection, 3) 

autonomy; a sense of independence, 4) environmental mastery; the capacity to manage one's 

life and the surrounding world, 5) purpose in life, the belief that someone’s life is purposeful, 

and 6) personal growth; the development of personal potential. Moreover, we consider “self-

actualization”, referring to the realization/fulfillment of one’s potential, as a term employed 

to refer to psychological well-being (even though in a more restricted sense than Ryff’s 

definition). 

 

GOALS OF THE REVIEW 

We conducted a systematic literature review with the goal of analyzing how the structure of 

well-being is currently viewed and measured. The goal of the review was to answer the 

following question: “How much evidence is there for a conceptual overlap between SWB and 

PWB?” For this purpose, we reviewed studies examining the relationship between SWB and 

PWB or the general structure of well-being. 



Figure 1. A roadmap of the different well-being constructs employed in this review. 

 

 



 

Method  

Search Strategy  

The search terms were entered into the electronic databases Web of Science and PubMed at 

08-01-2018. Since many terms are used interchangeably in the well-being field, we selected 

different search terms for PWB and SWB in order to include as many relevant studies as 

possible. Table 1 shows the search terms used for the search. Every search included an entry 

of two search terms simultaneously. The terms in column 1 were entered in combination with 

the terms in column 2. Moreover, the terms in column 1 were entered in combination with 

each other, as well as the terms in column 2, which were also entered together using different 

combinations. The first author performed the literature search. A second assessor double-

checked a random sample of 200 articles. Cohen’s K was calculated to formally assess the 

degree of agree of inter-rater agreement.  

 

Table 1 

Search Terms for Literature search 1 

Term 1 Term 2  

Psychological Well-Being Happiness 

Subjective Well-Being Flourishing 

 

hedon*  

  eudaimon* 

 

 

Inclusion Criteria 

Studies were included if they made some type of empirical comparison between 

psychological and subjective well-being. Meta-analyses, literature surveys, and theoretical 

papers were excluded from the review. Since well-being is under relatively different 

influences and genetically less stable in childhood and adolescence compared to adulthood
31

, 

we only included studies in which the mean age of the participants was 18 or higher. 

Furthermore, since individualistic, Western countries value different things with respect to 

well-being and apply different standards than countries with a collectivistic/eastern culture, 



we decided to only include countries that can be categorized as Western
32

. This included: 

Europe, the USA, Canada, and Australia. The paper has to be written in English and, in order 

to ensure the quality of the paper, be published in a peer-reviewed journal. In order to get the 

broadest scope of information, we did not apply any constraints regarding the time frame in 

which the studies were published. When age or origin of the participants could not be derived 

from a paper, it was excluded to prevent bias from unknown factors. 

 

Figure 2. Flowchart for literature search. 

 

  



Results 

Figure 2 displays a flowchart depicting the search process. The inter-rater agreement was 

91%. There was moderate agreement between the two assessors (κ= .452, 95% C.I., 0.210 to 

0.694, p=.002). The initial electronic database search resulted in 774 hits in PubMed and 

2528 hits in Web of Science. After removing the duplicates from the two searches together, 

we ended with a list of 2644 articles. After scanning the abstracts and titles of these 2644 

articles based on the selection criteria mentioned above, we were left with 178 articles. These 

articles were examined in greater detail by reading them fully. Eventually, 29 articles met our 

selection criteria and were thus included in the study. Broadly, the resulting articles could be 

split up in three domains: 1) correlational studies, 2) studies looking at the factor structure of 

well-being, and 3) studies looking at biological/genetic factors influencing well-being. 

Therefore, we present our results for these domains separately. Importantly, we focused on 

the measurement instruments used in a study and the descriptions of the constructs as 

provided by the authors rather than the names used for the constructs. The reason for this 

approach is that there seems to be an inconsistent use of terminology in the field of well-

being. For example, sometimes, hedonic measures are referred to as psychological well-

being. Categorizing the constructs under the names provided by different authors in this 

review would therefore lead to false comparisons. An overview of all the different 

measurement instruments used to measure well-being in these studies can be found in Table 

2. 

1. Correlational Studies 

Table 3 shows the three studies that fell under the category “correlational studies”. Important 

in this table (and the following tables) is that the column named “research question” denotes 

the (sub)question in this study relevant for the purpose of this literature review. This means 

that the questions in this column do not necessarily reflect the main question in a study. From 

the studies in Table 3, one (nr 1) study suggests that the two constructs share considerable 

overlap, but are also distinguishable. In this study, personal expressiveness (their measure of 

eudaimonia) was a sufficient, but not a necessary condition for hedonic happiness. 

Furthermore, one (nr 2) study found that the relationship between life satisfaction and 4 of the 

6 PWB scales was mediated by affect balance. The remaining two PWB scales were 

nevertheless also associated with life satisfaction. Lastly, one (nr 3) study suggests that PWB 

and SWB might not be as separated as previously claimed. In this study, this was suggested 



because of the highly similar patterns of social reputations, clinician judgments, and 

behaviors associated with self-reports of subjective happiness and psychological well-being. 

These mixed results show that correlational analyses do not provide us with enough 

information to draw conclusions about the relationship between eudaimonic and hedonic 

well-being. 

2. Studies examining the factor structure of well-being 

Table 4 shows the 17 studies that fell under the category “studies examining the factor 

structure of well-being”. These studies made use of several analyses, including: exploratory 

and confirmatory factor analysis (EFA and CFA), structural equation modeling, and Bayesian 

structural equation models. In this domain, a variety of models was tested. Five studies (nr 5, 

13, 17, 18, and 19) approached well-being from Keyes’ perspective, in which a three-factor 

model was tested with emotional, social, and psychological well-being as sub-domains of 

well-being
33

. Since the emotional domain in Keyes’ model is an indicator of hedonic well-

being, we decided these studies were relevant for the purpose of this study as well. One of 

these studies (nr 19) even labels the three-factor model as such, with the sub-domains 

subjective, psychological, and social well-being. These studies all conclude that the three-

factor model is an appropriate fit to their data. According to these studies, well-being can 

most accurately be measured by considering these three dimensions simultaneously. An 

interesting finding was that in study 5 and 19, exploratory structural equation modeling was 

used and compared to CFA. The authors of this study conclude that CFA results in inflated 

inter-factor correlations, thereby overestimating the correlations between SWB and PWB 

domains, suggesting potential inflation in the inter-factor correlations for the studies in this 

review that made use of CFA. Eleven (nr 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, and 19) studies 

approached well-being from a two-domain perspective, with SWB/ hedonic well-being as one 

domain, and PWB/eudaimonic well-being as the other. The conclusions from these studies 

were in agreement: PWB and SWB are overlapping, yet distinguishable constructs. 

Interestingly, one of these studies (nr 4) found that the cognitive aspect of SWB was more 

closely related to eudaimonic well-being than to the affective aspect of SWB. This further 

demonstrates the interrelatedness of the constructs. The remaining study (nr 9) examined 

well-being as consisting of the domains: SWB, personal growth, religiosity. In this study, 

evidence was found for this tripartite structure.  

  



3. Studies examining biological/genetic factors of well-being 

Table 5 shows the 10 studies that fell under the category “studies examining 

biological/genetic factors of well-being”. Note that the two studies by Fredrickson et al. 

(2013 and 2015) have been the subject of discussion and that two critiques on this paper are 

also included in the review. Again, we observe differences between the conclusions from 

these studies. From the seven biological studies (the two critiques not included), six (nr 20, 

22, 24, 26, 28 and 29) found evidence for distinct biological factors influencing SWB and 

PWB and one (nr 25) found evidence for a shared biological factor. These studies included a 

wide range of biological factors, such as CTRA gene expression profile (nr 20, 22, 29), 

neural activation patterns (nr 25) and inflammatory factors (nr 24, 26). The only twin-family 

design included (nr 27) found evidence for a single genetic factor and some trait-specific 

genetic factors. Together, these studies suggest overlap as well as distinctiveness between the 

SWB and PWB. 

How much evidence is there for a conceptual overlap between SWB and PWB? 

 This literature review consisted of 29 studies investigating the conceptual overlap between 

SWB and PWB that could be split up into the following domains: correlational studies, 

studies examining the factor structure of well-being, and studies examining biological/genetic 

factors of well-being. The results from this review show that: 

- Studies employing correlational analyses provide us with mixed results and cannot be 

used to infer clear conclusions about the relationship between SWB and PWB. 

- Studies examining the factor structure of well-being find that there is a large overlap 

between PWB and SWB, but that the constructs can also be distinguished based on 

considerable unshared variances. 

- Studies examining biological/genetic factors of well-being found evidence for distinct 

biological factors associated with the traits. However, there was also evidence for a 

single genetic factor influencing PWB and SWB. 

 

PART 3 – DISCUSSION, ISSUES AND RECOMMENDATIONS 

In this review, we examined the complex framework of well-being. The first part of the 

review provides a brief review of the philosophical history of hedonism and eudaimonism, 

the two philosophical disciplines that inspired researchers to start operationalizing and 



measuring SWB and PWB. In the second part of the review, we sought to investigate what 

empirical research can tell us about the distinction between the two constructs by conducting 

a systematic literature review. The review consisted only of studies directly examining the 

relationship between the two constructs. These studies employed correlational, factor 

analytical, and biological methods to assess to what extent the two constructs can be 

separated or united. The high correlations between the constructs showed that there is indeed 

overlap between them. However, considering the distinct biological correlates and the fact 

that the two constructs both explain unique as well as overlapping parts of the variance in 

“general” well-being, these studies also showed that PWB and SWB can be distinguished. In 

this part of the review, we will discuss the implications of the review and formulate some 

recommendations based on these implications. Lastly, we provide some general 

recommendations for follow-up research that could extend the findings from the current 

search. 

Issue 1: The relationship between philosophical constructs and psychological measures 

When ancient philosophers started defining hedonism and eudaimonism, their definitions and 

ideas were not designed to ensure they could be translated into measurable constructs. It is 

therefore not surprising that measuring well-being (subjective or psychological) has turned 

out to be a complex task. This is evident when looking at Table 2. Especially for SWB, the 

amount of measurement instruments applied is extensive. It is clear that there is a lack of 

consensus amongst researchers concerning the measurement of well-being. A question one 

could raise is whether the current distinction between SWB and PWB might be a result of the 

ancient distinction between hedonism and eudaimonism. Since measurement instruments are 

only as reliable as the theories underlying them, this would mean that most of these 

instruments might not be measuring the constructs they ought to measure. 

Recommendation 1: Re-define the framework 

The literature searches in this review revealed that SWB and PWB are largely overlapping, 

but also partly distinct. This suggests that the distinction between SWB and PWB is not as 

large as proposed by the theories underlying them. The ancient separation between hedonism 

and eudaimonism can be explained from the (data-free) theoretical philosophical perspective, 

but cannot accurately be captured by questionnaires employed in modern-day 

social/behavioral research. While the traditional view of hedonism and eudaimonism has 

been very important in terms of its contribution to the theoretical framework, it fails to 



provide sufficient guidance for the formulation of empirical constructs. We propose that an 

empirical well-being framework should be developed considering the actual empirical data 

rather than the ideas that inspired the research
6
. In the context of the social and behavioral 

sciences, the well-being framework can best be described as one hierarchical construct 

including both SWB and PWB constructs. This means that hedonism and eudaimonism are 

not to be defined as two clearly separated streams, but as related underlying domains of the 

same construct.  

Issue 2: Semantic Ambiguity and Inconsistency – do we mean the same things? 

It is often taken for granted that when we are using the same words, we mean the same 

things. As it turns out, at least in the field of well-being, we should be more cautious about 

this assumption. An obvious issue we encountered in our search was the inconsistent use of 

terminology. The problem as we encountered it was twofold; First, there was a diverse range 

of terms used to denote similar concepts. Second, the terms were used in an inconsistent 

manner. The first problem, that of diversity, is the least problematic. We dealt with this 

problem in the early stages of the review, where we used a variety of terms to expand our 

search. For example, SWB can be referred to as “happiness”, “hedonism”, “subjective 

happiness”, “emotional well-being” and “affective well-being”. The largest consequence of 

this lack of a common language is that it potentially blocks advancement in science since it 

makes it more difficult for researchers to learn from each other’s work. The second issue, that 

of inconsistency, has more severe consequences. With inconsistency, we refer to the 

inappropriate application of terminology within and beyond the field as a whole, and 

sometimes within one study. Often, “subjective well-being” is used to refer to both the 

psychological as well as the subjective domain of well-being. Presumably, this issue arises 

due to the fact that both SWB and PWB are measured using questionnaires, meaning that 

participants will give a subjective evaluation in both cases. The same holds for the term 

“psychological well-being”. General well-being was often referred to as psychological well-

being, which was thereafter split up in multiple domains that could be identified as the PWB 

and SWB domain. Terms that are used most inconsistently were those that are used less 

frequent. An example is the term “flourishing”, which was sometimes used to denote SWB, 

sometimes to denote PWB, and sometimes to describe a combination of both. This issue 

causes confusion in a more severe sense: when not described properly, it could cause readers 

to draw the wrong conclusions.  



Recommendation 2: Be detailed 

Both problems, though one more severe than the other, have the same consequence: 

confusion. While preventing this inconsistency would be the most effective solution, this is 

not easily manageable since it would require a consensus concerning the use of terminology 

in this field. Therefore, the most feasible solution would be for researchers to be detailed 

about the constructs they aim to be measuring and about the scope of their study. This means 

that researchers should: 1) be consistent in their use of terminology; 2) give detailed 

descriptions of their most basic terms and constructs, and; 3) keep in mind that the results of 

their study might not cover well-being in its entirety. Especially (2) is important, since it can 

help prevent confusion for the careful reader even if (1) and (3) are not fulfilled. In this way, 

even if there is no consensus concerning terminology, different studies can more easily be 

compared and interpreted. 

 

Follow-up research 

A last issue that has not yet been discussed is that if one were to draw conclusions about 

“well-being” in general, but only uses measurement instruments related to one domain of 

well-being, the conclusion would depend on which domain is included (given the partial 

distinction between the constructs). To evaluate to what extent this might influence research 

outcomes, it is important for future studies to examine whether SWB and PWB relate to 

external correlates in the same way and to a similar degree. For example, in a study by 

Aghababaei & Arji (2014), the personality domain honesty-humility (H-H) was unrelated to 

SWB, but related to PWB. This means that if one were to draw conclusions about H-H and 

“well-being” in general, but only used measurement instruments related to one domain of 

well-being, the conclusion would depend on which domain is included. At the moment, it is 

not clear whether these types of discrepancies often occur in the literature. Without this 

knowledge, the safest approach is to take a multifaceted approach and use multiple 

measurement instruments aimed at SWB and PWB. In this way, researchers can overcome 

the risk of drawing firm conclusions based on incomplete assessment of well-being. In case 

such an approach is too time- or money-consuming, another solution is to make explicit 

which domain of well-being the results of a study refer to. 

  



Conclusion 

In this review, we examined the origin and structure of the complex framework well-being as 

applied in behavioral and social sciences. A systematic literature review was performed that 

examined how much evidence there is for a conceptual overlap between SWB and PWB. We 

find that SWB and PWB are related constructs that are likely domains of a general factor 

well-being. However, while the constructs are related, they are not interchangeable and can 

be distinguished both conceptually and biologically. In order to continue development in this 

field of research, we advise to view SWB and PWB as related domains of the same 

overarching well-being construct. Moreover, to avoid inconsistency and confusion, it is 

important for researchers to be very detailed about the constructs they aim to be measuring 

and to keep in mind that to measure well-being most accurately, both SWB and PWB should 

be included.  
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Table 2 

Measurement Instruments used in studies from the Literature Search 

Subjective Well-Being Measures Psychological Well-Being 

Instrument Studies 

Tota

l Instrument Studies 

Tota

l 

The Satisfaction 

with Life Scale 

Sanjuan, 2011; 

Vanhoutte & Nazroo, 

2014; McMahan & 

Estes, 2011; Compton, 

2001; Chen, Jing, Hayes, 

& Lee, 2013; Huta & 

Ryan, 2010; Kafka & 

Kozma, 2002; Urry et 

al., 2004; Compton, 

Smith, Cornish, & 

Qualls, 1996. 18 

Ryff's Scales of 

Psychological 

Well-being 

(several versions 

with varying 

amount of items) 

Ryff, Singer, & Love, 2004; 

Sanjuan, 2011; Nave, 

Sherman, & Funder, 2008; 

Joshanloo, 2016; Compton, 

2001; Keyes, Shmotkin, & 

Ryff, 2002; Chen, Jing, 

Hayes, & Lee, 2013; 

Gallagher, Lopez, & 

Preacher, 2009; Kafka & 

Kozma, 2002; Kokko, 

Korkalainen, Lyyra, & 

Feldt, 2013; Robitschek & 

Keyes, 2009; Fredrickson et 

al., 2015; Friedman, 

Hayney, Love, Singer, & 

Ryff, 2007; Urry et al., 

2004; Keyes, Myers, & 

Kendler, 2010; Walker, 

2016, Compton, Smith, 

Cornish, & Qualls, 1996; 

Joshanloo, 2017. 28 

The Positive and 

Negative Affect 

Scale 

Ryff, Singer, & Love, 

2004; Sanjuan, 2011; 

Burns, Anstey, & 

Windsor, 2011; Chen, 

Jing, Hayes, & Lee, 

2013; Gallagher, Lopez, 

& Preacher, 2009; Urry 

et al., 2004. 12 

The Personally 

Expressive 

Activities 

Questionnaire Waterman, 1993. 1 

The short-form 

MASQ 

Ryff, Singer, & Love, 

2004. 1 The CASP scale Vanhoutte & Nazroo, 2014. 1 

The Personally 

Expressive 

Activities 

Questionnaire Waterman, 1993. 1 

Beliefs about 

Well-Being Scale  McMahan & Estes, 2011. 1 

The Subjective 

Happiness Scale 

Nave, Sherman, & 

Funder, 2008; Gallagher, 

Lopez, & Preacher, 

2009. 3 

The Meaning in 

Life 

Questionnaire-

Presence 

Subscale McMahan & Estes, 2011. 1 

the General 

Health 

Questionnaire 

Vanhoutte & Nazroo, 

2014. 1 

The Subjective 

Vitality Scale 

McMahan & Estes, 2011; 

Huta & Ryan, 2010. 2 

the CES-D 

Vanhoutte & Nazroo, 

2014. 1 

The hedonic and 

eudaimonic 

motives for 

activities scale 

Bujacz, Vitterso, Huta, & 

Kaczmarek, 2014. 1 



Mroczek and 

Kolarz’s positive 

and negative 

affect scales 

Joshanloo, 2016; 

Joshanloo, 2017. 1 

Connor-Davidson 

Resilience Scale 

& Personal 

Mastery Scale  

Burns, Anstey, & Windsor, 

2011. 1 

Satisfaction with 

Life: unspecified 

Instrument 

Joshanloo, 2016; 

Joshanloo, 2017. 2 

Meaning & 

elevating 

experience as 

assessed with a 

self-created scale. Huta & Ryan, 2010. 1 

Beliefs about 

Well-Being Scale  

McMahan & Estes, 

2011. 1 

"11 Well-Being 

items measuring 

the frequency of 

negative and 

postive affect & 

evaluation of 

people's lifes" 

Kim, Lehning, & Sacco, 

2016. 1 

the Intensity and 

Time Affect 

Scale 

McMahan & Estes, 

2011. 1 

The Short 

Flourishing Scale 

Fredrickson et al., 2013; 

Walker, 2016. 2 

The hedonic and 

eudaimonic 

motives for 

activities scale 

Bujacz, Vitterso, Huta, 

& Kaczmarek, 2014. 1 

Mental Health 

Continuum—

Short Form 

Fredrickson et al., 2015; 

Walker, 2016. 2 

The Happiness 

Measure 

Compton, 2001; 

Compton, Smith, 

Cornish, & Qualls, 1996. 3 the CASP-19 

Steptoe, Demakakos, de 

Oliveira, & Wardle, 2012. 1 

The Affect 

Balance Scale Compton, 2001. 1 

The Short Index 

of Self-

Actualization 

Compton, Smith, Cornish, 

& Qualls, 1996. 2 

Cantril's Self-

Anchoring Scale 

Keyes, Shmotkin, & 

Ryff, 2002. 1 

the Perceived 

Self 

Questionnaire 

Compton, Smith, Cornish, 

& Qualls, 1996. 2 

The Midlife 

Development 

Inventory affect 

scales 

Keyes, Shmotkin, & 

Ryff, 2002; Gallagher, 

Lopez, & Preacher, 

2009. 2 

   The HEMA Huta & Ryan, 2010. 1 

   the brief NA and 

PA scales 

developed by 

Diener and 

Emmons Huta & Ryan, 2010. 1 

   The Memorial 

University of 

Newfoundland 

Scale of 

Happiness Kafka & Kozma, 2002. 1 

   "11 Well-Being 

items measuring 

the frequency of 

negative and 

postive affect & 

evaluation of 

people's lifes" 

Kim, Lehning, & Sacco, 

2016. 1 

   the Brief Mood 

Introspection 

Scale  

Kokko, Korkalainen, 

Lyyra, & Feldt, 2013. 1 

   the Life Situation 

Questionnaire 

Kokko, Korkalainen, 

Lyyra, & Feldt, 2013. 1 

   



A Personal 

Interview 

Kokko, Korkalainen, 

Lyyra, & Feldt, 2013. 1 

   An adaption of 

Cantril's Self-

Anchoring Scale 

& Bradburn's 

affect balance 

Scale 

Robitschek & Keyes, 

2009. 1 

   The Short 

Flourishing Scale 

Fredrickson et al., 2013; 

Walker, 2016. 2 

   Mental Health 

Continuum—

Short Form 

Fredrickson et al., 2015; 

Walker, 2016. 2 

   The short-form 

Mood and 

Anxiety 

Symptom 

Questionnaire 

Friedman, Hayney, 

Love, Singer, & Ryff, 

2007; Ryff, Singer, & 

Love, 2004. 2 

   Unspecified:  

positive affect & 

Life Satisfaction  

Keyes, Myers, & 

Kendler, 2010. 1 

   

the CASP-19 

Steptoe, Demakakos, de 

Oliveira, & Wardle, 

2012. 1 

   The quality  of 

life scale 

Compton, Smith, 

Cornish, & Qualls, 1996. 1 

    



 Table 3 

Correlational Studies 
        

Nr Article Research Question Participants Analysis  Outcome The structure of Well-Being 

1 

 

Waterman, 1993 

Is it possible to distinguish 

between personal 

expressiveness (eudaimonia) 

and hedonic enjoyment?  

Study 1: N=140 

undergraduates (18-23 

years) & 69 graduates 

(22-65 years). Study 2: 

N=193 undergraduates 

(18-46 years) & 56 

graduates (22-52 years) 

(Trenton State College) 

Correlational 

analysis 

"Eudaimonia is a sufficient, but not 

a necessary condition for hedonic 

happiness." 

Empirically, hedonic and 

eudaimonic enjoyment are 

related but can also be 

distinguished 

2 

Sanjuan, 2011 

How are psychological and 

subjective well-being related? 

N =250 Spanish 

participants, age(M= 

36.46, SD= 10.83) 

Regression 

analyses 

"The results obtained here show 

that experiencing positive relations 

with others, autonomy, purpose in 

life, and personal growth is 

associated with positive feelings, 

which, in turn, leads to judgments 

of satisfaction with life." 

Psychological and subjective 

well-being are independent, 

but there is a strong 

relationship which is (for 

some scales) mediated by 

affect balance. 

3 

Nave, Sherman, 

& Funder, 2008 

What are the patterns of social 

reputations, clinician 

judgments and behaviors 

associated with self-reports of 

subjective happiness (SH)  and 

psychological well-being? 

N= 196 undergraduate 

students from the 

university of California-

Riverside (age not 

reported, mean age 

assumed above 18 due to 

college sample). 

Correlational 

analyses 

"The results of this study suggest 

that the pattern of social 

reputations, clinician judgments, 

and behaviors associated with self-

reports of SH and PWB are 

remarkably similar." 

“One might question 

whether SH and PWB are 

truly distinct psychological 

constructs" 



Table 4 

Studies examining the factor structure of well-being 

Nr 

Artikel Research Question Participants Analysis  Outcome 

The structure of Well-

Being 

4 

Vanhoutte & Nazroo, 2014 

To what extent do 

empirical measures 

confirm to the theoretical 

divide between hedonic 

and eudaimonic aspects 

of subjective well-being? 

N =3703 participants of 

the English population, 

age > 50 

Confirmatory 

Factor 

Analysis 

(CFA)  

"The difference between 

hedonic and eudaimonic 

well-being has been 

exaggerated in the 

literature" 

A three-fold structure, 

distinguishing affective, 

emotional & eudaimonic 

well-being. 

5 

Joshanloo, 2016 

What is the relationship 

between hedonic and 

eudaimonic aspects of 

well-being when 

investigated with ESEM 

(as compared to CFA)? 

N =3986 adults from the 

United States, 

age(M=56.12, SD= 12.33) 

CFA & 

Exploratory 

Structural 

Equation 

Modeling 

(ESEM) 

“The inter-correlations 

between well-being factors 

may have been 

overestimated in the 

previous research due to the 

inherent limitations of 

traditional CFA.” 

“The hedonic and 

eudaimonic factors are 

correlated yet distinct 

factors, with considerable 

unshared variance.” 

6 

McMahan & Estes, 2011 

To what degree do 

eudaimonic and hedonic 

dimensions of individual 

conceptions of well-being 

differentially associate 

with self-reported well-

being? 

Study 1: N =115 

American undergraduate 

students, age(M=21, 

SD=3.71). Study 2: N = 

240 non-student 

American participants, 

age(M=31.9, SD=14.19) 

Regression & 

CFA 

"Eudaimonic dimensions of 

conceptions of well-being 

are more robustly 

associated with 

experienced well-being 

than hedonic dimensions." 

“Conceptualizing well-

being in eudaimonic terms 

may be relatively more 

important for positive 

psychological 

functioning.” 



7 

Bujacz, Vitterso, Huta, & 

Kaczmarek, 2014 

What is the relationship 

between factors of stable 

hedonic and eudaimonic 

orientations to well-being 

across 2 different nations? 

N =386 Polish adults, 

age(M=21.26, SD= 1.75), 

429 North American 

Anglophone participants, 

age(M=19.19, SD=1.92) 

CFA, 

Maximum 

Likelihood 

estimation & 

Bayesian 

Structural 

Equation 

Models 

"Stepwise analyses were 

conducted to establish a 

factor structure of the scale, 

revealing three correlated 

factors: two hedonic and 

one eudaimonic." 

A three factor model with 

hedonic pleasure, hedonic 

comfort and eudaimonic 

factors was confirmed for 

motives for activities. 

8 

Burns, Anstey, & Windsor, 

2011 

Are the related PWB and 

SWB constructs 

independent? 

N =3989 randomly 

selected individuals from 

the electoral rolls of 

Canberra/ Queanbeyan, 

Australia. Age= 20-24 & 

40-44 at baseline 

Exploratory 

Factor 

Analysis with 

principal axis 

factoring with 

direct oblimin 

oblique 

rotation 

"Principal axis factoring of 

the resilience, mastery, and 

PANAS items revealed a 

four-factor structure 

whereby items loaded onto 

factors that corresponded 

with the original measures." 

The measures reflect 

different cognitive and 

affective components of 

well-being, whilst 

moderate correlations 

between these constructs at 

a first-order factor level, 

indicate PWB and SWB as 

related. 

9 

Compton, 2001 

What is the factor 

structure of well-being?  

N =242 participants from 

the USA, age(M=25.9, 

SD=7.5) 

Principal 

Components 

Analyses 

"A large first factor that 

appeared to be a subjective 

well-being factor, a second 

factor that seemed to be a 

religiosity factor, and two 

other factors that were 

related to measures of 

personal growth, autonomy, 

and positive relationships.” 

A tripartite structure with 

SWB, personal growth & 

religiosity that is 

characterized by other-

centeredness. 

10 

Keyes, Shmotkin, & Ryff, 2002 

Do indicators of PWB 

and SWB constitute 

taxonomically distinct 

reflections of well-being? 

N =3032 participants from 

the USA. 

Age(weighted)(M=45.3, 

SD=13.5) 

Exploratory & 

Confirmatory 

Factor 

Analyses 

"The best fitting model is 

one that posits two 

correlated latent constructs, 

namely SWB and PWB, 

rather than two orthogonal 

factors (or one general 

factor)." 

SWB and PWB represent 

related but distinct 

conceptions of well-being. 



11 

Chen, Jing, Hayes, & Lee, 2013 

Is there a meaningful 

differentiation between 

psychological well-being 

and subjective well-

being? 

Study 1: N =795 

undergraduate psychology 

students from the 

university of Delaware, 

age(M=19.27,  

SD=1.78). Study 2: N= 

4032 Americans, 

age(M=56.25, SD=12.39) 

A bifactor 

model 

"PWB and SWB form a 

general factor of global 

well-being, which captures 

the common ground shared 

by the two types of well-

being.[..] the components of 

PWB and of SWB form 

specific factors, which 

capture their unique 

variances." 

“Both perspectives on 

well-being have merit, 

depending on the level of 

analysis (i.e., general or 

specific).” 

12 

Gallagher, Lopez, & Preacher, 

2009 

What is the latent 

structure of well-being? 

N =591 undergraduates of 

a Mid-western university, 

age(M=18.94, SD=1.65) 

& 4032 American Adults, 

age(M=56.25, SD=12.39). 

CFA 

techniques 

"The model containing 

three second-order factors 

of hedonic, eudaimonic, 

and social well-being 

provided the best 

representation of the 

hierarchical structure of 

well-being." 

A tripartite model with 

hedonic, eudaimonic & 

social domains. 

13 

Huta & Ryan, 2010 

How do hedonia and 

eudaimonia (as motives 

for activities)& their 

combination relate to 

well-being? (only study 1 

included) 

N =300 undergraduates at 

a private northeastern US 

university, age(M=19.7, 

SD=1.3).  

Principal 

Components 

Analysis, 

MANOVA 

"The HEMA scales not 

only confirmed the 

distinction between 

eudaimonia and hedonia, 

but also had good 

reliabilities for our 

research." 

Hedonia and eudaimonia 

occupy overlapping and 

distinct niches. 

14 

Kafka & Kozma, 2002 

What is the relationship 

between Ryff's scale of 

PWB and measures of 

SWB? 

N =277 university 

students at the Memorial 

University of 

Newfoundland and the 

University of Winnipeg, 

age(M=21.31, SD= 3.76) 

PCA with 

varimax 

rotation 

"While the MUNSH and 

the SWLS loaded on the 

same factor identifiable as a 

higher order SWB factor, 

subscales of the SPWB 

produced two additional 

factors." 

If the SPWB reflects 

psychological functioning, 

then it is clear that such 

functioning is not the same 

as such SWB constructs as 

“happiness” or “life 

satisfaction. 



15 

Kim, Lehning, & Sacco, 2016 

Should hedonic and 

eudaimonic components 

of the NHATS be 

measured separately or on 

a single scale? 

N =6602 older adults 

(USA), ages 65 and over CFA 

"The single factor structure 

indicates that among 

community-dwelling older 

adults in the NHATS 

sample, the hedonic and 

eudaimonic aspects of well-

being may be intertwined." 

It appears that while there 

is a conceptual distinction 

between these two views 

of well-being, the hedonic 

and the eudaimonic 

perspectives can be 

measured as a single scale. 

16 

Compton, Smith, Cornish, & 

Qualls, 1996 

What is the factor 

structure of well-being?  

N= 338 US students, age 

(M=25.8, SD=10.6) 

Principal 

Components 

Analysis with 

Oblique 

rotation 

"Mental Health appears to 

be defined by two factors: 

SWB and Personal Growth, 

with SWB accounting for 

the larger portion of 

variance in the measures 

used for this study" 

"Theories of personal 

growth and subjective 

well-being describe 

related, but not identical, 

constructs" 

17 

Kokko, Korkalainen, Lyyra, & 

Feldt, 2013 

What is the structure of 

well-being? 

N = 219 Finnish adults at 

age 36 & 42 

Structural 

Equation 

Modeling 

"Our findings showed that 

well-being in mid-

adulthood can be described 

in terms of a higher-order 

core factor comprising the 

three dimensions from 

Keyes’ tripartite model of 

well-being, that is, 

emotional, psychological 

and social well-being, as 

well as by low depression." 

These results imply that 

instead of following 

separate lines of theory and 

research, it is more 

relevant to consider the 

different dimensions of 

well-being simultaneously. 

18 

Robitschek & Keyes, 2009 

Is there support for the 

three-factor model of 

mental health (as 

proposed by Keyes) in a 

sample of college 

students? 

N=467 students from a 

large Southwestern 

university, age(M=19.67, 

SD=1.71) CFA 

"Results of confirmatory 

factor analyses supported 

this 3-factor model of 

psychological, social, and 

emotional well-being, 

consisting of 14 

subdimensions." 

A three-factor model is 

supported. 



19 

Joshanloo, 2017* 

What is the structural and 

discriminant validity of 

the tripartite model of 

mental well-being? 

N=2732 US participants, 

age (M= 63.64, 

SD = 11.35) CFA & ESEM 

"Both in CFA and ESEM, a 

three-dimensional model of 

mental well-being was 

supported over the one- and 

two-factor models." 

"Subjective, psychological 

and social dimensions of 

mental well-being 

constitute distinct factors, 

with a substantial amount 

of unshared variance." 

*This author published three studies concerning the same research question in 2017 (with different populations), only one was included due to similar conclusions 

 

  



 Table 5 

Studies Focusing on Biological Measures/Genetics and SWB & PWB 

   Nr  

Artikel Research Question Participants Analysis  Outcome 

The structure of Well-

Being 

20 

 

Fredrickson et al., 

2013 

What are the biological 

implications of hedonic & 

eudaimonic well-being? 

N =80 healthy adults from 

Chapel Hill, NC, ages 35-64. 

Generalized 

Linear Model 

Analyses 

"Hedonic and eudaimonic 

well-being, although 

correlated, have markedly 

divergent gene transcriptional 

correlates in human immune 

cells." 

The different streams of 

well-being have a 

different molecular 

physiology. 

21  

 

under debate! 
 

see Brown, MacDonald, 

Samanta, Friedman, & 

Coyne, 2014 

    22 

Fredrickson et al., 

2015 

Is CTRA gene expression 

associated with eudaimonic 

(and hedonic) well-being? 

Confirmation study (CS): N 

=122 adults from the Durham 

and Orange County regions of 

NC, age(M=48.4, SD= 8.8). 

Generalization study(GS): N = 

107 participants from the 

Vancouver BC metropolitan 

area, age(M= 45.3, SD=5.6) 

Mixed effect 

linear model 

analyses to 

predict reduced 

CRTA gene 

expression 

"Sub-dimensions of 

eudaimonic well-being as 

promising targets for CTRA 

gene expression, and provide 

no support for any independent 

favorable contribution from 

hedonic well-being." 

Distinct molecular basis 

for hedonic and 

eudaimonic well-being. 

23  

 

 under debate! 
 

see Brown, MacDonald, 

Samanta, Friedman, & 

Coyne, 2016 

    24 

Friedman, Hayney, 

Love, Singer, & 

Ryff, 2007 

Can different measures of 

well-being predict plasma 

levels of inflammatory 

factors in aging women? 

N =135 aging women (USA), 

age(M=74.02, SD=7.08) 

Regression 

analyses 

between plasma 

IL-6 & sIL-6R 

levels and well-

being  

"The only measures that were 

significantly related to IL-6 

and sIL-6R were measures of 

eudaimonic well-being." 

Distinct biomarkers for 

hedonic and eudaimonic 

well-being. 

25 

Urry et al., 2004 

What are the frontal neural 

activation patterns of 

eudaimonic and hedonic 

well-being? 

N =84 adults who were 

Wisconsin high school seniors 

in 1957, age(M=58.49, 

SD=0.81) 

Simultaneous 

and 

Hierarchical 

Regression 

Analysis  

Greater left than right superior 

frontal activation was 

positively associated with both 

forms of well-being, but only 

with PWB when controlling 

for dispositional positive 

Both PWB and SWB are 

associated with greater 

left frontal activation. 



affect. 

26 

Ryff, Singer, & 

Love, 2004 

What are the biological 

correlates of eudaimonic- 

and hedonic well-being? 

N =135 aging women (USA), 

age=61-91 

Correlational 

analysis 

"Eudaimonic and hedonic 

well-being may not have 

equivalent neurobiological 

correlates" 

“There is a pressing need 

to have measures of both 

eudaimonic and hedonic 

well-being incorporated 

in 

national-level health 

statistics across multiple 

countries.” 

27 

Keyes, Myers, & 

Kendler, 2010 

What is the structure of the 

genetic and environmental 

influences on mental well-

being? 

N = 670 same-sex twins pairs 

(USA) + 46 individual twins, 

age(M=44.6 years) Twin Analyses 

"A common pathway model 

fit our data best, suggesting the 

existence of a latent propensity 

to mental well-being." 

"The tripartite structure of 

well-being observed at 

the phenotypic level is 

caused by the latent, 

higher-order variable of 

mental well-being that 

has its own genetic and 

environmental 

influences." 

28 

Steptoe, 

Demakakos, de 

Oliveira, & Wardle, 

2012 

What is the relationship 

between a range of 

biological measures and 

eudaimonic & hedonic 

well-being? 

N= 3540 English men (age: 

M=65.6, SD=9.3) & 4255 

women (age: M=65.6, 

SD=9.7). 

Multivariate 

linear 

regression 

There were few differences in 

the associations between 

biological function and 

affective and eudaimonic well-

being. 

This study suggests that 

both types of well-being 

are similarly related to a 

range of biological 

measures. 

29 

Walker, 2016 

Can the results from 

Fredrickson (2013 & 2015) 

regarding CTRA 

expression levels and well-

being measures be 

replicated using OLS & 

GEE (with Monte Carlo 

simulation as a check for 

performance)? 

N=108 participants from 

Fredrickson, 2013 & 2015 (see 

above) 

Multivariate 

(OLS) 

linear models 

and generalized 

estimating 

equation (GEE) 

models 

"The OLS estimates combined 

with the permutation F-tests 

provide some evidence of a 

very small negative association 

between Eudaimonia and mean 

CTRA expression, although 

the Monte Carlo results of 

these F tests raise some 

concern about the sign of this 

effect." 

CTRA gene expression 

might only be related to 

eudaimonia, but the effect 

is very minor. 
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Abstract 

Whether hedonism or eudaimonia are two distinguishable forms of well-being is a topic of 

ongoing debate. To shed light on the relation between the two, large-scale available 

molecular genetic data were leveraged to gain more insight into the genetic architecture of 

the overlap between hedonic and eudaimonic well-being. Hence, we conducted the first 

genome-wide association studies (GWAS) of eudaimonic well-being (N = ~108K) and 

linked it to a GWAS of hedonic well-being (N = ~ 222K). We identified the first two 

genome-wide significant independent loci for eudaimonic well-being and six independent 

loci for hedonic well-being. Joint analyses revealed a moderate phenotypic correlation (r = 

0.53) and a high genetic correlation (rg = 0.78) between eudaimonic and hedonic well-

being. This indicates a substantial shared genetic etiology with genetic factors having 

effects on both phenotypes while there are also divergent (environmental) factors having 

an effect on hedonic and eudaimonic well-being. Loci regulating expression showed 

significant enrichment in the brain cortex, brain cerebellum, frontal cortex, as well as the 

cerebellar hemisphere for eudaimonic well-being. No significant enrichment for hedonic 

well-being is observed, although brain tissues were top ranked. Genetic correlations 

patterns with a range of positive and negative related phenotypes were largely similar for 

hedonic –and eudaimonic well-being. Our results reveal a large genetic overlap between 

hedonism and eudaimonia.  

 

 

  



 
 

Introduction 

For centuries, people have asked themselves questions about well-being with hedonic well-

being and eudaimonic well-being as its major philosophical schools of thoughts. Hedonic well-

being concerns the balance of pleasure over pain, with Aristippus (c. 435 –c. 356 BCE), as one 

of its founders
1
. Whereas the hedonic tradition focused on what is good for a person, the 

eudaimonic tradition took well-being to centre around virtuous activity, defined as knowledge 

(practiced over time) and the fulfilment of human capacities
2
. One of the important founders of 

eudaimonic well-being is Aristoteles (c. 384 – c. 322 BCE), who was a true opponent of the 

hedonistic school of thought describing it as “vulgar”
3
. According to Aristotle, eudaimonic 

well-being is more than being happy and is it about the actualization of the human potential 
4
.  

In contemporary behavioural and social sciences, the term hedonic well-being is used less 

frequently. A reason for this is that hedonism as a theoretical (data-free) concept is difficult to 

quantify. To redefine the hedonic line of thought in an operational construct, the subjective 

well-being (SWB) definition, as proposed by Diener
5
, is widely adopted. Herein, SWB consists 

of three hallmarks: 1) it is subjective; 2) it includes positive measures (not just the absence of 

negative measures), and 3) it includes a global assessment of all aspects of a person’s life. SWB 

has been repeatedly found to be associated with health and mortality e.g.
6–9

. Analogous to 

hedonism, the term eudaimonic well-being has gradually shifted towards psychological well-

being (PWB) in contemporary science. To assess PWB, six core dimensions are widely used: 

self-acceptance, positive relations with others, autonomy, environmental mastery, purpose in 

life, and personal growth
10

. Several studies have found that people who believe their lives have 

meaning or purpose appear better off, with better mental and physical health and engagement in 

healthier life styles
11–16

.  

Although, it is recognized that modern-day hedonism and eudaimonia are central concepts of 

well-being, the overlap and distinction between these two forms of well-being is a topic of an 

ongoing debate
1,17–23

. Factor analytic studies show that hedonic and eudaimonic aspects of 

well-being load on separate yet highly correlated factors, with correlations in the range of 0.81 

to 0.92
24–26

. Application of less restrictive exploratory structural equation modelling, results in 

a correlation of 0.60 between hedonic and eudaimonic well-being
22

. A more in-depth overview 

of the reported correlation between hedonic and eudaimonic uncovers a wide spread in 

correlations resulting from differences in degree of centrality (if the hedonic measures are the 

core aspect of the analyses or if the correlation is based on correlates of the concepts), 



 
 

application of different categories of analyses (if hedonia and eudaimonia is considered an 

orientation, behavior, experience, or function) and level of measurement (state versus trait)
20

.  

A way to provide more clarity on the overlap and distinction of hedonic and eudaimonic well-

being is by exploring the underlying sources of overlap. Differences in both hedonic and 

eudaimonic well-being have been found to be partly genetic. Twin-family studies, which 

contrast the resemblance of monozygotic (MZ), dizygotic (DZ) twins and their non-twin 

siblings or other family members, report heritability estimates in the range of 30 – 64% for both 

hedonic and eudaimonic well-being
27,28

. Most molecular genetic work, so far, focused on 

hedonic measures of well-being. Initially a handful of studies attempted to associate specific 

candidate genes (e.g. 5-HTTLPR, MAOA, FAAH) to hedonic well-being
29–32

. However, these 

studies were most likely underpowered and results have not been replicated. More recent 

molecular genetic approaches revealed that 5-10% of the variation in responses to single-item 

survey hedonic measures (happiness) is accounted for by genetic variants measured on 

presently used genotyping platforms
33

. Additionally, a recent large genome-wide association 

study (GWAS; N = 298,420) identified the first three genetic variants (two at chromosome 5 

(rs3756290 and rs4958581) and one at chromosome 20 (rs2075677)) associated with SWB, 

defined as a combination of hedonic measurements like happiness and satisfaction with life
34

.  

There have only been two attempts to use molecular genetic data to reveal the overlap and 

distinction between hedonic and eudaimonic well-being
35,36

. The first study showed divergent 

transcriptome profiles between both measurements
35

. Hedonic well-being was associated with 

up-regulated gene expression of a conserved transcriptional response to adversity (CTRA), 

while eudaimonic well-being was associated with CTRA down-regulation. After substantial 

critiques and replies
37–40

, the authors of the initial finding replicated part of the results by 

showing a significant inverse relation between down-regulated CTRA expression and 

eudaimonic well-being
36

. Based on these results, the authors conclude that eudaimonic well-

being might play a more significant role in the link between well-being and health, than 

hedonic well-being. 

The availability of large-scale molecular data make it possible to gain more insight into the 

genetic factors underpinning overlap and distinction between hedonic and eudaimonic well-

being. In the current paper, we therefore leverage data from the UK Biobank and estimate the 

molecular genetic based heritability and bivariate genetic correlation. To this end, we conduct 

the first genome-wide association study (GWAS) to identify genetic variants associated with 



 
 

eudaimonic well-being as well as a GWAS for hedonic well-being. For eudaimonic well-being 

we used the question: “To what extent do you feel your life to be meaningful” as a proxy 

phenotype. For hedonic well-being, we used ”In general how happy are you” as a proxy 

phenotype. As the genetic architecture can be a reflection of common biology, we annotate the 

genome-wide association results using gene-mapping and tissue specific enrichment analyses. 

Finally, we estimate whether hedonic and eudaimonic well-being show different genetic 

correlations patterns with positively and negatively related traits. 

  



 
 

Results 

Descriptive statistics and phenotypic correlation 

For eudaimonic well-being, females and males mean scores were similar (mean =3.69, sd = 

0.82 and 0.83, t = -0.79, P = 0.43). For hedonic well-being, males were significantly, but only 

slightly, happier (mean 4.52, sd = 0.74) than females (mean 4.51, sd =0.72) (t = 4.00, P < 

0.001). Eudaimonic and hedonic well-being were moderately correlated (r = 0.53, P < 0.001).  

Genome-wide association analyses 

For eudaimonic well-being, 2 genetic variants reached genome-wide significance (Table 1 and 

Figure 1A). The two univariate GWAS for hedonic well-being (UKB ID 4526 and UKB ID 

20458) identified, respectively 1 and 2 genome-wide significant hits (Supplementary Table 2 

and Supplementary Figure 1-2). The genomic inflation factor (lamda Genomic Control) of 

eudaimonic well-being (λGC = 1.14) and hedonic well-being (λGC_UKB ID 4526 = 1.13 and 

λGC_UKB ID 20458 = 1.13) were inflated. The estimated intercept from LD Score regression, 

though, did not exceed 1.02, indicating that nearly all the inflation is the GWAS analyses is due 

to polygenic signal rather than bias
41

 (Supplementary Table 3). Based on the high genetic 

correlation between the two hedonic well-being measures (rg = 0.99, P < 0.001), we performed 

a multivariate N-weighted GWAMA to increase the effective sample size. The multivariate N-

weighted GWAMA for the two hedonic GWAS analyses yielded 6 genetic variants for hedonic 

well-being that reached genome-wide significance (λGC = 1.21, LD intercept = 1.00; Figure 1B, 

Table 1, and Supplementary Table 3). The significant SNPs associated with eudaimonic 

well-being had low P-values (7.6x10
-4 

for rs79520962 and 3.4x10
-5

 for rs7618327) in the 

hedonic analyses. Three out of 6 significant SNPs associated with hedonic well-being had low 

P-values (P < 3.6 x 10
-5

) in the eudaimonic GWAS. 

Validation genome-wide significant results 

To validate our analyses, we cross-checked our GWAS results against a published GWAS of 

multiple positive affect measurements (N ~ 133K)
42

 omitting UK Biobank samples. For 

hedonic well-being we identified 5 genome-wide significant SNPs present in both our current 

results and the previous published GWAS. All betas showed a similar direction of effect in both 

studies (Supplementary Table 4). For eudaimonic well-being, the genome wide significant 

SNP (rs7618327) is also present in the previous published GWAs with similar direction of 

effect in both studies. From the 20 SNPs with a P-value < 1 X 10
-5

, eighty-five percent had 



 
 

similar direction of effects showing a significant relation (χ
2
(1) = 7.54, P = 0.006; 

Supplementary Table 5).  

Figure 1: Manhattan Plot for GWAS results. Result is shown for (a) Univariate GWAS of eudaimonic 

well-being and, (b) N-weighed GWAMA of hedonic well-being. The x axis shows chromosomal 

position, and the y axis shows association significance on a −log10 scale. The upper dashed line marks 

the threshold for genome-wide significance (P = 5×10
−8

), and the lower dashed line marks the threshold 

for nominal significance (P = 1×10
−5

). Each approximately independent genome-wide significant 

association (lead SNP) is marked by an orange Δ. Each lead SNP is the SNP with the lowest P value 

within the locus, as defined by our clumping algorithm 

 



 
 

 

 

Table 1: Genome-wide significant hits for eudaimonic and hedonic well-being.  

Eudaimonic well-being                     

SNP RS CHR BP A1 A2 Z P N EAF BETA SE 

7:127671511 rs79520962 7 127671511 A G -6.015 1.80E-09 108154 0.05 -0.051 0.009 

3:54376990 rs7618327 3 54376990 G A -5.961 2.52E-09 108154 0.12 -0.033 0.006 

Hedonic well-being 

Multivariate 
                    

20:47746974 rs34841991 20 47746974 C T 6.367 1.92E-10 221575 0.24 0.022 0.004 

12:22874365 rs261909 12 22874365 C G 5.925 3.12E-09 221575 0.44 0.018 0.003 

8:142617261 rs746839 8 142617261 G C -5.739 9.53E-09 221575 0.38 -0.018 0.003 

20:17445078 rs4239724 20 17445078 G A -5.689 1.28E-08 221575 0.22 -0.021 0.004 

2:49222872 rs6732220 2 49222872 C G 5.506 3.68E-08 221575 0.77 0.020 0.004 

11:51477511 rs146213057 11 51477511 A G 5.476 4.36E-08 221575 0.01 0.084 0.015 

CHR = chromosome, BP= Base Pair, A1 = Effect allele, A2 = Other allele, Z = Zscore, P = P-value, N = sample size, EAF = Estimated 

Allele Frequency, SE = Standard Error  



 

SNP heritability and Genetic Correlation 

For eudaimonic well-being, SNP h
2
 was 6.2% (se = 0.005), while for hedonic well-being the 

SNP h
2 

was 6.2% (se = 0.005) (UKB ID 4526) and 6.4% (se =0.005) (UKB ID 20458; 

Supplementary Table 3). The genetic correlation between the two measurements of hedonic 

wellbeing was –as expected- extremely high (0.99, P < 0.001). Additionally, the genetic 

correlation between eudaimonic and hedonic well-being was rg = 0.79, (P < 0.001, Figure 2 

and Supplementary Table 6).  

 

Figure 2: Phenotypic and genetic correlations between eudaimonic and hedonic well-being with their 

corresponding 95% confidence intervals. 

 

 

 

 

 

Polygenic prediction 

Polygenic scores were calculated for 10 P-value thresholds, using Caucasian UK Biobank 

participants with non-British ancestry as an independent sample. PRS based on the hedonic 

well-being GWAMA explained 0.83% (P = 2.81x10
-18

) of the variance in eudaimonic well-

being whereas PRS based on the eudaimonic well-being GWAS explained 0.43% (P = 2.60x10
-

10
) of the variance in hedonic well-being. A complete overview of the polygenic scores 

including all thresholds can be found in Supplementary Table 7 and Supplementary Figure 

3. 

Functional annotation 

Eudaimonic well-being 

We searched the NHGI GWAS catalog to determine which of the lead SNPs (P < 5x10
-8

, 

independent from each other at r
2
< 0.1) associated with eudaimonic well-being have been 

previously reported. This search initially revealed that none of the variants are previously 

reported. However, if we look at the results of the gene-based test as computed by MAGMA 



 

including all SNPs with a P value below 0.05, genes associated with Educational attainment
43

 

(ARFGEF2), Subjective Well-being
34

 (ARFGEF2, CSE1L) and height
44

 (STAU1, ZFAS1) were 

found.  

Based on the eudaimonic well-being GWAS, 3 genes were found through positional mapping, 1 

through eQTL mapping, and 13 through chromatine interaction-mapping (Supplementary 

Tables 8-10). Looking at the results of the gene-based test as computed by MAGMA including 

all SNPs with a P value below 0.05, 10 genes were associated with eudaimonic well-being 

(Supplementary Table 11). Of these 27 genes in total, one gene (SND1) was implicated in all 

four methods. The SND1 gene encodes a transcriptional co-activator that interacts with the 

acidic domain Epstein-Barr virus nuclear antigen (EBNA 2), a transcriptional activator that is 

required for B-lymphocyte transformation. Proteins encode by this gene are thought to be 

essential for normal cell growth (https://www.ncbi.nlm.nih.gov/gene/27044).  

Hedonic well-being 

We first searched the NHGI GWAS catalog to determine which of the lead SNP associated 

with hedonic well-being have been previously reported. Here we found that the variants have 

been reported in Educational attainment
43

 (ARFGEF2), Obesity-related traits
45

 (PCSK2, 

ARFGEF2), Subjective Well-being 
34

 (ARFGEF2, CSE1L) and height
44

 (STAU1, ZFAS1) 

(Supplementary Table 12).  

Based on the multivariate N-weighted GWAMA, 7 genes were implicated through positional 

mapping, 9 through eQTL mapping, and 50 through chromatine interaction-mapping 

(Supplementary Tables 13-15). Using the results of the gene-based test as computed by 

MAGMA including all SNPs with a P value below 0.05, 35 genes were associated with hedonic 

well-being (Supplementary Table 16). Of these 101 genes in total, 16 were found in more 

than one strategy. Of these, two genes (CSE1L, STAU1) were implicated by all four methods. 

Proteins encode by CSE1L, may play a role in apoptosis and in cell proliferation 

(https://www.ncbi.nlm.nih.gov/gene/1434?otool=inlvulib). The STAU1 gene is a member of the 

family of double stranded RNA (dsRNA)-binding proteins involved in the transport and/or 

localization of mRNAs to different subcellular compartments. STAU1 contains a microtubule-

binding domain similar to that of microtubule-associated protein 1B (MAP1B) and bind tubulin 

(https://www.ncbi.nlm.nih.gov/gene/6780).  

Tissue Specific expression 

https://www.ncbi.nlm.nih.gov/gene/27044
https://www.ncbi.nlm.nih.gov/gene/1434?otool=inlvulib
https://www.ncbi.nlm.nih.gov/gene/6780


 

Tissue expression analysis, performed on GTEx RNA-sq data, showed significant enrichment 

in the brain cortex, brain cerebellum, frontal cortex, as well as the cerebellar hemisphere for 

eudaimonic well-being. In contrast, no significant results were found for hedonic well-being, 

although brain tissues were top ranked in their enrichment (Supplementary Table 17, 18, 

Supplementary Figure 4). 

Genetic Correlations 

Another way to study the relationship between eudaimonic and hedonic well-being is by 

comparing their genetic correlation patterns with positive and negative related traits. Overall, 

we found a similar pattern for both eudaimoninc and hedonic well-being. Both were positively 

correlated with satisfaction with health (rgEUD = 0.53, rgHED = 0.61), financial satisfaction 

(rgEUD = 0.39, rgHED = 0.49), friendship satisfaction (rgEUD = 0.68, rgHED = 0.81), family 

Satisfaction (rgEUD = 0.65, rgHED = 0.76) and job satisfaction (rgEUD = 0.73, rgHED = 

0.84). Negative correlations were found for irritable (rgEUD = -0.25 , rgHED = -0.36), 

loneliness (rgEUD = -0.45 , rgHED = -0.56), depressive symptoms (rgEUD = -0.32 , rgHED = 

-0.53), depression diagnosed by doctor (rgEUD = -0.37 , rgHED = -0.51), and neuroticism 

(rgEUD = -0.45 , rgHED = -0.58; Figure 3 and Supplementary Table 19). These similar 

patterns support the finding of a large genetic overlap between eudaimonic and hedonic well-

being.  

 

  



 

Figure 3: Genetic correlations between eudaimonic (blue) –and hedonic well-being (red) with (from top 

to bottom): satisfaction with health, financial satisfaction, friendship satisfaction, familial satisfaction, 

job satisfaction, irritable, loneliness, depression, depression diagnosed by a doctor, neuroticism, alcohol 

use, coffee use, tea use, salt intake, meat preference, fish preference, fruit preference and sleep duration. 

95% confidence intervals are provided. 

 



 

Discussions 

In this article, we provide evidence for a strong genetic overlap between hedonic and 

eudaimonic well-being. Our analyses revealed a moderate phenotypic correlation (r = 0.53), but 

a high genetic correlation (rg = 0.78), suggesting a large shared genetic etiology. Our results 

include the first two genome-wide significant independent loci for eudaimonic well-being and 

six independent loci for hedonic well-being. Biological annotation points to a central role for 

the central nervous system in both forms of well-being. Loci regulating expression showed 

significant enrichment in the brain cortex, brain cerebellum, frontal cortex, as well as the 

cerebellar hemisphere for eudaimonic well-being. No significant enrichment for hedonic well-

being is observed, although brain tissues were top ranked.  

To validate our genome-wide analyses, we performed a direction of effect test with a previous 

GWAS study including multiple positive affect measurements (N = ~ 133K). Significant SNPs 

for both hedonic -and eudaimonic well-being have similar directions in the previous published 

GWAS of positive affect, whereas 17 out of 20 SNPs (eighty-five percent) of the suggestive 

eudaimonic SNPs had similar direction of effects. Moreover, we obtained significant polygenic 

score predictions for both eudaimonic and eudaimonic well-being. Although the explained 

variance is small (< 1 %), due to the small effect sizes of the genetic variants, our results are in 

line with previous studies
46,47

. Given these results, together with the multiple robustness checks 

(e.g. LD Score intercept of one, large genetic correlation with each other and similar patterns of 

genetic correlation with related traits), we are, beyond reasonable doubt, convinced that our 

genome-wide associations findings are credible findings.  

The high genetic correlation between the two forms of well-being can be a product of a causal 

relationship between the two traits. The direction of effect between hedonic –and eudaimonic 

well-being can be assessed using a two-sample Mendelian Randomization (MR) design. 

However, given the relatively small sample size and limited genetic variants reaching genome-

wide significance, we are not able to construct strong instrumental variables that are needed for 

trustworthy interpretations of the direction of effect between hedonic –and eudaimonic well-

being. However, recent-non-genetic studies investigating the relationship between subjective 

well-being (SWB) and psychological well-being (PWB) found stronger evidence for a causal 

relation from PWB to SWB than vice versa
48–50

. It would be very interesting for future studies 

to investigate the causal relationship between hedonic-and eudaimonic well-being in a 

genetically informed dataset to be able to investigate causality and (genetic) pleiotropy. 



 

Further evidence for a shared genetic architecture between hedonic and eudamonic well-being 

is provided by the similar patterns of genetic correlations with other traits. Largest correlations 

were found for job satisfaction followed by friendship –and family satisfaction and general 

health satisfaction. Remarkably, in contrast to job satisfaction, financial satisfaction showed the 

lowest correlation with both eudaimonic –and hedonic well-being. Genetic correlations with 

negative related phenotypes were for both measures largest for neuroticism followed by 

loneliness, depression (2X) and irritable. Thus, genetic correlations showed similar patterns for 

both measures of well-being,  with largely overlapping confident intervals (CIs). However, 

point estimates for hedonic well-being were systematically larger compared to eudaimonic 

well-being, which is unlikely due to chance. Therefore, it would be interesting for future studies 

with larger samples to test whether hedonic well-being indeed a shows stronger associations 

with related phenotypes. Moreover, the lower phenotypic correlation suggests that there are 

divergent (environmental) factors having an effect on hedonic –and eudaimonic well-being. It 

would be very interesting to identify these factors in future studies. In this light our results are 

supportive of a two-factor model with highly correlated constructs. 

Besides adding to the ongoing debate on the overlap and distinction between hedonic and 

eudaimonic well-being the current study provides novel insight into the genetics of well-being 

by identifying genome-wide significant genetic variants that explain differences in eudaimonic 

well-being. These variants have not been associated with a complex trait before, and thus 

warrant replication. Robustness of the current findings, though, is reflected by our validation 

analyses. Moreover, the genome-wide significant genetic variant at chromosome 20 identified 

in the hedonic well-being GWAMA lies in close proximity (< 50 kb) to a genetic variants 

previously associated with subjective well-being
34

. 

The findings of this study should be interpreted in light of the following limitations. One is that 

eudaimonic and hedonic well-being are based on single item measurements. Ideally, 

measurements with multi-item measurements would be included. For eudaimonic well-being, 

principal factor analysis of the 8-item Flourishing scale 
51

  showed that all items of this scale, 

which included our included question: “To what extent do you feel your life to be meaningful”, 

load all on one single factor. Moreover, our question showed the highest correlation with all 

other items as well as with the total score. For Hedonic well-being, Bartels and Boomsma
27

 

have shown that both multi-item and single-item questionnaires load on a single well-being 

factor.  We, however, have explicitly chosen not to include all other available hedonic results of 

our previous work
34,52

, to leverage the power of homogeneity of the UK Biobank dataset and to 



 

ease the interpretation of our findings. Research studying higher-quality measures of the 

various facets of well-being is a critical next step. Our results can help facilitate such work 

because, if the variants we identify are used as candidates, studies conducted in the smaller 

samples in which more fine-grained phenotype measures are available can be well powered. 

Additionally, it is known that participants of the UK Biobank have a specific age range (40-70 

years). In previous work we, however, showed that the variance explained by genetic factors for 

well-being over time is stable
53

 and that genetic innovation is not likely to take place in 

adulthood 
54

. Therefore, we are confident that this characteristic of the UKbiobank sample will 

not have a large effect on the results.   

In conclusion, we found a moderate phenotypic correlation between eudaimonic and hedonic 

well-being and report a strong genetic correlation, indicating that from a genetic perspective 

there is a large shared etiology. Future studies should acknowledge the strong genetic 

correlation between eudaimonic and hedonic well-being and include both to increase our 

understanding of the (genetic) etiology of well-being. 

 

  



 

Methods 

Participants 

We analyzed data from the UK Biobank project
58

. The UK Biobank is a prospective study 

designed to be a resource for research into the causes of disease in middle and old age. The 

study protocol and information about data access are available online 

(http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf) and 

more details on the recruitment and study design have been published elsewhere
58

. The UK 

Biobank study was approved by the North West Multi-Centre Research Ethics Committee 

(reference number 06/ MRE08/65), and at recruitment all participants gave informed consent to 

participate in UK Biobank and be followed-up, using a signature capture device. All 

experiments were performed in accordance with guidelines and regulations from these 

committees. In brief, all participants were registered with the UK National Health Service 

(NHS) and lived within 25 miles (40 km) of one of the assessment centres. The UK Biobank 

invited 9.2 million people to participate through postal invitation with a telephone follow-up, 

with a response rate of 5.7%. A total of 503,317 men and women aged 40–70 years were 

recruited in assessment centres across England, Wales and Scotland, between 2006 and 2010. 

In total, 608 participants have subsequently withdrawn from the study and their data were not 

available for analysis. Participants attended 1 of 22 assessment centers across the UK, at which 

they completed a touch-key questionnaire, had a face-to-face interview with a trained nurse, 

and underwent physical assessments. Participants completed sociodemographic questionnaires, 

which included questions on financial satisfaction and income as well as questionnaires about 

their physical and mental health.  

Data access permission was granted under UKB application 25472 (PI Bartels). For the 

discovery genome-wide association analyses we used data of  110K UK-habitant Caucasian 

individuals only. A full overview of the included participants with valid phenotypic 

measurements as well as genetic data is presented in Supplemental Table 1. 
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Phenotypic data 

Eudaimonic well-being was assessed in the online follow-up with its core element meaning in 

life (“To what extent do you feel your life to be meaningful?”; UKB Data-Field 20460). 

Answers were provided on a 5-item likert scale that ranged from “Not at all” (score 1) to “An 

extreme amount” (score 6). Information on eudaimonic well-being and genotypic data were 

available for 108,154 UK Biobank participants (56% female). 

Hedonic Well-being was assessed with its core element general happiness (“In general how 

happy are you?”; UKB Data-Field 4526 & UKB Data-Field 20458). Answers were provided on 

a 6-item likert scale that ranged from “Extremely happy” (score 1) to “Extremely unhappy” 

(score 6). Scores were reversed so that a higher score was associated with higher levels of 

happiness. Hedonic well-being, as part of the touchscreen questionnaire on psychological 

factors and mental health (data-field 4526), was available for 111,470 individuals. Hedonic 

well-being was also assessed in the online follow-up (data-field 20458) and this measure is 

available for 110,105 individuals. Almost forty thousand individuals (n=39,999) participated in 

both assessments. In total, information on hedonic well-being and genotypic data were was 

available for 181,578 unique UK Biobank participants (49% female; Supplementary Table 1). 

Because the online follow-up questionnaire (ID 20458) of hedonic well-being took place at a 

later stage (~4 years later), there is a possible discrepancy between the genetic and 

psychological assessment. To study whether this has an effect on the genetic analyses we will 

calculate the genetic correlation between both measurements of hedonic well-being. Doing so 

allows us to investigate whether the same genes have an effect on both measurements.  

Genotypic data 

Participants were genotyped using one of two platforms: The affymetrix UK BiLEVE Axiom 

array or the Affymetrix UK Biobank Axiom array. The genetic data underwent rigorous quality 

control and was phased and imputed against a reference panel of Haplotype Reference 

Consortium (HRC), UK10K and 1000 Genomes Phase 3 haplotypes
59

. Due to an issue with the 

imputation of UK10K and 1000 Genomes variants, analyses were restricted to HRC variants 

only. Samples were excluded based on the following genotype-based criteria; non-European 

ancestry, relatedness, mismatch between genetic sex and self-reported gender, outlying 

heterozygosity, and excessive missingness
59

. For more details on the UK Biobank genotyping, 

imputation, and quality control procedures see
60

.  



 

Descriptive statistics and phenotypic correlation 

Descriptive statistics and spearman’s rank correlation between eudaimonic and hedonic well-

being were calculated in R. We, furthermore, tested for sex and age effects on mean levels.  

Univariate Genome-wide association analyses 

Univariate genome-wide association analyses for eudaimonic well-being and for hedonic well-

being (touchscreen measure and online follow-up separately) were performed in PLINK
61,62

 

using a linear regression model of additive allelic effects. Standard pre-GWAS- quality control 

filters were applied, which included removing SNPs with minor allele frequency < 0.005 and/or 

with an INFO-score < 0.8 for imputed SNPs, and removing individuals with ambiguous sex 

and/or non-British ancestry. We, furthermore, randomly selected 1 individual from each closely 

related pair (i.e. parent offspring pairs, sibling pairs). The GWAS included 40 principal 

components, age, sex, and a chip dummy as covariates. Additionally, following a pre-specified 

analysis plan, we conducted a stringent post-GWA quality control (QC) protocol based on the 

paper of Winkler and colleagues
63

.  

Multivariate Genome-wide association analyses 

To increase the effective sample size, we conducted multivariate N-Weighted genome-wide 

association meta-analyses (GWAMA) by leveraging the association between the two hedonic 

well-being univariate GWAS analyses (UKB Data-field 4526 and 20458, nobs total = 221,575). 

The dependence between effect sizes (error correlation) induced by sample overlap in both 

these GWAMAs was estimated from the genome-wide summary statistics of the univariate 

GWAS analyses using LD score regression
64

. Knowledge of the error correlation between the 

univariate GWAS analyses allowed us to meta-analyze them together, providing a gain in 

power while guarding against inflated type I error rates. For a detailed description on 

performing N-weighted GWAMA, please see Baselmans and colleagues
52

. 

  



 

Validation genome-wide significant results 

To validate our analyses, we cross-checked our GWAS results against a published GWAS of 

multiple positive affect measurements (N ~ 133K)
42

 omitting UK Biobank samples. The 

positive affect GWAS used the HapMap2 CEU as reference sample (~2.2 million SNPs), which 

contains considerable less SNPs compared to the roughly 8.6 million SNPs (1000G, phase 3) 

present in the UK Biobank analyses. We used the following strategy to identify proxy genome-

wide significant SNPs present in both datasets. First, we extracted the genome-wide significant 

(P < 5 X 10
-8

 from the GWAS of hedonic well-being ) and suggestive SNPs (P < 1 X 10
-5

, 

GWAS of eudaimonic well-being ) and matched these to the corresponding positive affect 

SNPs of the published GWAs. Next, using a clumping procedure (250kb window and R2 < 

0.1), we identified the independent SNPs present in both datasets, which will be used for testing 

the direction of effect. When there is a discrepancy in direction of effect between the two 

datasets, a Chi-square test of independence was calculated to test the significance of the 

relation. 

SNP heritability and Genetic Correlation 

SNP heritability for eudaimonic and hedonic well-being separately was estimated using 

bivariate LD Score Regression
64,65

. The same methodology was used to estimate the genetic 

correlation between the two measures of hedonic well-being and between eudaimonic and 

hedonic well-being. LD scores regression produces unbiased estimates even in the presence of 

sample overlap and only requires summary statistics and a reference panel from which to 

estimate each SNP’s “LD score” (the amount of genetic variation tagged by a SNP). We used 

the file of LD scores computed by Finucane et al.
66

 using genotypic data from a European-

ancestry population (see https://github.com/bulik/ldsc/wiki/Genetic-Correlation, accessed 

September 8, 2017).  

Polygenic prediction 

We performed polygenic risk score prediction (PRS) using Caucasian UK Biobank participants 

with non-British ancestry as independent prediction sample (nobs = 28,582). For eudaimonic 

well-being, polygenic prediction was performed in 9,088 individuals. For hedonic well-being, 

we used phenotypic measurements closest to genotype-collection (UKB Data-Field 20458) for 

polygenic scores and scores were available for 9,276 individuals. The weights used for the 

polygenic scores are based on the univariate GWAS (eudaimonic) and multivariate GWAMA 

https://github.com/bulik/ldsc/wiki/Genetic-Correlation


 

(hedonic well-being). Polygenic scores were based on the genotyped SNPs (nobs = 619,049). To 

calculate the incremental R
2
, the phenotypes (eudaimonic and hedonic well-being) were 

standardized and regressed on sex and age as well as principal components, which were 

included to correct for ancestry. Next, the same analysis was repeated with inclusion of the 

polygenic scores. The differences in R
2
 between both regression is referred to as incremental 

R
2
. To obtain 95% confidence intervals (CI) around the incremental R

2
 ’s, bootstrapping was 

performed with 2000 repetitions. 

Functional annotation 

Functional annotation was performed in FUMA
67

 (http://fumactglab.nl) for the eudaimonic 

well-being GWAS and the hedonic well-being GWAMAs. Lead SNPs were defined as having a 

genome-wide significant P values (5x10
-8

) and being independent from each other (r
2
< 0.1). 

Functional annotation was performed on these lead SNPs and SNPs with P < 0.05, MAF < 

0.01, and in high LD (r
2
 > 0.6) with those lead SNPs. 

Gene-mapping 

This set of SNPs was mapped to genes in FUMA using three strategies. The SNPs were 

mapped to genes based on 1) their physical distance (i.e. within 10kb window), 2) significant 

eQTL association (i.e. the expression of that gene is associated with allelic variation at the 

SNP). eQTL mapping in FUMA uses information from the GTEx, Blood eQTL browser, and 

BIOS QTL browser, and is based on cis-eQTLs that can map SNPs to genes up to 1MB apart. 

A false discovery rate (FDR) of 0.05 was applied to define significant eQTL associations. 3) a 

significant chromatin interaction between a genomic region and promoter regions of genes 

(250bp up and 500bp downstream of transcription start site (TSS)). Chromatine interaction 

mapping can involve long-range interaction as it does not have a distance boundary as in eQTL 

mapping. We used a FDR p-value of 1x10
-5

 to define significant interactions. 

Finally, given our modest sample size and expected polygenicity of our phenotypes, we added 

an extra strategy in which all SNPs (P < 0.05) were included and mapped to genes based on 

physical distance (i.e. within 10kb window) from known protein coding genes (GRCh37/hg19). 

Genome-wide significance for this test was defined at P = 0.05/ 18187 = 2.74x10
-6

. 
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Tissue Expression Analysis (MAGMA) 

To test the relationship between highly expressed genes in a specific tissue and genetic 

associations, gene-property analysis is performed using average expression of genes per tissue 

type as a gene covariate. Gene expression values are log
2
 transformed average RPKM (Reads 

Per Kilobase Million) per tissue type after winsorized at 50 based on GTEx RNA-seq data. 

Tissue expression analysis is performed for 53 specific tissue types separately. The result of the 

gene analysis (gene-based P value) were used in MAGMA to test for one-side increased 

expression conditioned on average expression across all tissue types. 

Genetic Correlation 

To test whether hedonic or eudaimonic well-being are genetically differently correlated with a 

set of related phenotypes, bivariate LD Score regression was applied with both measures of 

well-being and the following UK Biobank summary statistics: satisfaction with health (UKB ID 

20459), financial satisfaction (UKB ID 4581), friendship satisfaction (UKB ID 4570), family 

satisfaction (UKB ID 4559), job satisfaction (UKB ID 4537), irritable (UKB ID 4653), 

loneliness (UKB ID 2020), depressive symptoms (UKB ID 2100), depression diagnosed by 

doctor (UKB ID 2090), neuroticism (UKB ID 20127). To test the relationship between 

hedonic/eudaimonic well-being with less established phenotypes we included the following 

phenotypes: alcohol (UKB ID 1558), coffee (UKB ID 1498), tea (UKB ID 1488), salt (UKB ID 

1478), food preference meat (UKB ID 1349), food preference fish (UKB ID 1329), food 

preference fruit/vegetarian (UKB ID 1289), sleep duration (UKB ID 1160). For every genetic 

correlation 95% confident intervals were calculated. 
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Supplementary Information 

 

 

Supplementary Figure 1: Manhattan Plot for GWAS results. Result is shown for Hedonic well-being 

(UKB ID 4526). The x axis shows chromosomal position, and the y axis shows association significance 

on a −log10 scale. The upper dashed line marks the threshold for genome-wide significance (P = 5 × 

10−8), and the lower dashed line marks the threshold for nominal significance (P = 1 × 10−5). Each 

approximately independent genome-wide significant association (lead SNP) is marked by an orange Δ. 

Each lead SNP is the SNP with the lowest P value within the locus, as defined by our clumping 

algorithm. 

 

  



 

Supplementary Figure 2: Manhattan Plot for GWAS results. Result is shown for Hedonic well-being 

(UKB ID 20458). The x axis shows chromosomal position, and the y axis shows association significance 

on a −log10 scale. The upper dashed line marks the threshold for genome-wide significance (P = 5 × 

10−8), and the lower dashed line marks the threshold for nominal significance (P = 1 × 10−5). Each 

approximately independent genome-wide significant association (lead SNP) is marked by an orange Δ. 

Each lead SNP is the SNP with the lowest P value within the locus, as defined by our clumping 

algorithm. 

 

 

 

 

  

  



 

Figure 3: Polygenic scores thresholds for (a) Eudaimonic well-being, and (b) Hedonic well-being. The 

y axis shows the explained variance in percentage.  

 

 

 

  



 

Figure 4: Tissue specific enrichment using 53 specific tissue types for (a) Eudaimonic, (b) Hedonic. 

Bar-graphs above the dashed line are significantly enriched. The x axis shows the 53 different categories 

whereas the y axis shows the –log
10

 P value. Bars in blue are significant enriched. 
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Abstract 

The interrelations among well-being, neuroticism and depression can be captured in a 

so-called well-being spectrum (3-phenotype well-being spectrum, 3-WBS). Several other 

human traits are likely linked to the 3-WBS. In the present study, we investigate how the 

3-WBS can be expanded. First, we constructed polygenic risk scores for the 3-WBS and 

used this score to predict a series of traits that have been associated with well-being in 

the literature. We included information on loneliness, big five personality traits, self-

rated health, and flourishing. The 3-WBS polygenic score predicted all the original 3-

WBS traits and additionally loneliness, self-rated health, and extraversion (R
2  

between 

1.52-0.69%). Next, using LD score regression, we calculated genetic correlations between 

the 3-WBS and the traits of interest. From all candidate traits, loneliness and self-rated 

health were found to have the strongest genetic correlations (rg= .78, and rg= .65, 

respectively) with the 3-WBS. We propose to include these traits in the well-being 

spectrum and use a 5-phenotype well-being spectrum in future studies to gain more 

insight into the determinants of human well-being. 

 

 

 

 

  



 

 

Introduction 

Many mental disorders share a common genetic liability
1–3

. This common genetic liability 

offers an explanation as to why many disorders are comorbid or represent highly similar 

behaviours. While there have been detailed investigations of the genetic similarity and 

comorbidity of mental disorders, there is much less information about the genetic similarity of 

mental health traits such as happiness, satisfaction with life, personality, loneliness, self-rated 

health, and flourishing. Studies on traits that could be considered to be part of a well-being 

spectrum are important given the large collection of studies pointing to the emotional, 

cognitive, and interpersonal benefits of high levels of well-being above and beyond the 

absence of mental disorders
4–6

. Therefore, the aim of this study was to investigate the genetic 

similarity between several traits associated with well-being, collectively referred to as the 

“well-being spectrum”. 

 

Well-being is a broad and complex construct used to describe optimal psychological 

functioning
7
 and it has been recently proposed to use a spectrum approach

8
. This well-being 

spectrum (the 3-phenotype well-being spectrum; 3-WBS) captures the phenotypic and genetic 

overlap between subjective well-being, neuroticism, and depressive symptoms, as has been 

found in a large genome-wide association study
9
. There are nonetheless other traits that could 

be considered candidates for inclusion in a broader well-being spectrum. From a phenotypic 

perspective, it is important to identify such traits in order to get more insight into the aspects 

influencing human well-being. From a genetic perspective, it is important to identify these 

traits since their inclusion into the spectrum will help identify more genetic variants that 

influence human well-being. 

 

One of the associations that has been studied thoroughly is the relationship between well-

being and personality. Especially extraversion and conscientiousness have been established as 

strong positive phenotypic correlates of well-being
10

, while neuroticism has been identified as 

an important negative correlate of well-being
11

. Furhermore, existing literature has established 

that loneliness, characterized by a sense of emptiness, worthlessness, and a lack of control
12

, 

is negatively associated with well-being
13

. Moreover, self-rated health, a subjective evaluation 

of one’s current health status, has also been pointed out as an important predictor of well-

being, due to its high proportion of shared variance with well-being
14,15

. Lastly, while the 3-

WBS has included subjective/ hedonic well-being measures (such as satisfaction with life and 

subjective happiness), it did not yet include psychological or eudaimonic well-being 



 

 

measures, a well-being domain that involves the fulfilment of human potential 
7
. An example 

of such a measure is flourishing: a person’s self-perceived success in several life areas. 

Previous research on the relationship between psychological/ eudaimonic- and 

subjective/hedonic well-being have revealed that these two lines of research reflect highly 

correlated, yet distinguishable constructs
16,17

. Therefore, including both types of well-being 

could theoretically yield a more integrated conception of the well-being spectrum. 

Contrary to the phenotypic associations, few studies have investigated the genetic associations 

for well-being and associated traits. A genetic investigation of loneliness
18

 revealed a strong 

negative association between a polygenic score for loneliness and subjective well-being, and a 

positive association with neuroticism and depression, indicating genetic links between the 3-

WBS and loneliness. With regard to self-rated health, twin studies have demonstrated that 

both genes and the environment contribute to the association with well-being
19

, but to our 

knowledge no molecular genetic study is conducted yet.  A twin study on the relationship 

between subjective/hedonic- and psychological/eudaimonic well-being (PWB) indicates a 

single, genetic factor that accounts for the high heritability in both these constructs
20

. 

Likewise, a genome-wide association study on hedonic and eudaimonic well-being showed 

that there is a large overlap in the sets of genes influencing these two traits
17

 Lastly, 

extraversion, and conscientiousness show not only strong phenotypic, but also genetic 

associations with well-being
21,22

. 

 

In this study, we aim to further investigate the well-being spectrum from a genetic 

perspective. We perform two different types of analyses to compute the genetic associations 

between the 3-WBS and the likely candidates. We use summary statistics from a large 

multivariate GWAMA of the 3-WBS
8
 to calculate polygenic risk scores to predict satisfaction 

with life, happiness, neuroticism, depressive symptoms, loneliness, openness to experience, 

conscientiousness, extraversion, agreeableness, self-rated health, and flourishing.Since the 

amount of variance explained by polygenic scores can be small even though two traits are 

highly genetically correlated, we also calculate the standardized proportion of the variance 

shared by the traits that can be attributed to genetic factors, known as the genetic correlation, 

using LD score regression.  

  

  



 

 

Materials and Methods 

Participants 

Participants are voluntary participants in the studies of the Adults Netherlands Twin 

Register
23,24

. Participants were included if they had filled out questionnaires on one or more of 

the relevant traits and provided a blood or buccal cell sample for DNA isolation and 

genotyping. Based on the availability of the data, sample size per analyses varied. An 

overview of the sample characteristics can be found in Table I and details are provided below. 

 

Subjective Well-Being - Satisfaction with Life  

Satisfaction with life was assessed using the satisfaction with life scale
25

. The satisfaction 

with life scale contains 5 items measuring global cognitive judgments of satisfaction with 

one’s life on a scale from 1 (strongly disagree) to 7 (strongly agree). Items were summed to 

calculate an individual’s final score ranging from 0 to 35. A mean was calculated when 

satisfaction with life was assessed on more than one occasion. In total, data on satisfaction 

with life were available for 5344 individuals. 

 

Subjective Well-Being - Happiness 

Happiness was assessed using an adaptation of the subjective happiness scale
26

. The adapted 

subjective happiness scale contains 4 items measuring global subjective happiness on a scale 

from 1 (strongly disagree) to 7 (strongly agree). Items were summed to calculate an 

individual’s final score, ranging from 0 to 28. A mean was calculated when subjective 

happiness was assessed on more than one occasion. In total, data on subjective happiness were 

available for 5350 individuals. 

 

Depressive Symptoms 

Depressive symptoms were assessed using the DSM-oriented depressive problem scale of the 

Adult Self Report
27

. This scale contains 14 items measuring depression symptoms on a scale 

from 0 to 2 (0= not true, 1= somewhat true, 2= very true or often true). The items were 

summed to create a sum score ranging from 0 to 28, a higher score representing higher levels 

of depressive symptoms. A mean was calculated when the depression problems were assessed 

on more than one occasion. In total, data on depressive symptoms were available for 8667 

participants.  

 

  



 

 

Loneliness 

Loneliness was assessed using the short scale for assessing loneliness in large epidemiological 

studies
28,29

. This scale contains 3 items from the R-UCLA loneliness scale and asks 

participants to score how often they identify with the items on a scale from 1 to 3 (1= hardly 

ever, 2= some of the time, 3=often). The items were summed to obtain a sumscore with 

possible scores between 3 and 9, a higher score representing higher levels of loneliness. In 

total, data on loneliness were available for 8817 participants. A mean was calculated when 

loneliness was assessed on more than one occasion. We log-transformed the loneliness scores 

since they were highly positively skewed. 

 

Personality  

The Big Five personality traits were measured using the NEO-FFI
30,31

. This scale measures 

the Big Five personality traits (openness to experience, conscientiousness, extraversion, 

agreeableness,  and neuroticism) with 60 items in total. Participants were asked to respond on 

a 5-point scale, ranging from 1 (strongly disagree) to 5 (strongly agree). The 12 items per trait 

were summed to obtain one sumscore for each personality trait with possible scores between 

12 and 60, a higher score representing higher levels of that particular personality trait. When 

personality data were available for more than one occasion, we calculated an individual’s 

mean personality score per scale. In total, data on each personality scale were available for 

8622 individuals. 

 

Self-Rated Health 

Self-rated health was assessed using a single item: “How, in general, is your health?”
32

. The 

item was rated on a 5-point scale, on which participants could respond with: “Bad”, “Poor”, 

“Fair”, “Good” or “Excellent”. A mean was calculated when Self-rated health was assessed 

on more than one occasion. In total, 8667 participants had data available for self-rated health.  

 

Flourishing  

Flourishing was assessed using the Flourishing Scale
33

. This scale contains 8 items measuring 

a person’s self-perceived success in multiple life domains on a scale from 1 to 7, ranging from 

strong disagreement to strong agreement. The items were summed to create a sumscore 

ranging from 8 to 56, a higher score representing higher levels of positive flourishing. In total, 

data on flourishing were available for 2200 participants.  

 



 

 

Genotyping, Quality Control, Imputation, and PCA 

Genotyping was done on several genome-wide SNP micro-arrays
24

. Genotyped data were 

cross-platform imputed using the Genome of the Netherlands (GoNL)
34,35

 as a reference set to 

infer the SNPs missing per platform in the combined data
36

. Alleles with reference set allele 

frequency differences of >10%, SNPs with MAF <.005, deviation from Hardy-Weinberg 

Equilibrium with p<10
-12

, and a genotyping call rate <.95 were excluded for pre-imputation 

quality control. Samples that had a genotyping call rate <.90, inbreeding coefficient from 

PLINK (F) < -.075 or >.075
37

, Affymetrix Contrast Quality Control metric <.40, Mendelian 

error rate >5 standard deviations from the mean, or gender or Identity-by-State status that did 

not agree with known relationship status and genotypic assessment were excluded. MaCH-

Admix software
38

 was used for phasing and imputation. SNPs that were significantly 

associated with genotyping platform (p<10
-5

), that had an allele frequency difference of >10% 

with GoNL reference set, HWE p<10
-5

, Mendelian error rate >5 SD from the mean over all 

markers, or an imputation quality R
2
<.90 after imputation were excluded. In order to exclude 

individuals with a non-Dutch ancestry and to control for Dutch population stratification, we 

performed Principal Components Analysis (PCA) following procedures described by 

Abdellaoui et al. (2013). The remaining SNPs (N=1,224,793) were used to construct 

polygenic scores. 

 

Phenotypic Correlations 

Phenotypic correlations were calculated between all the traits using the gee package to correct 

for familial relatedness using in R statistical software
40. The results were visualized using the 

corrplot package. The significance threshold for the phenotypic correlations was set at a 

Bonferonni corrected value of α =.005/55 = 0.00009, where 55 represents the number of 

correlations that were calculated in total.  

 

 

  



 

 

Table I : Sample characteristics  

 

 

 

 

Power Analysis 

We used an online power-calculator based on code provided by Dudbridge (2013) to 

investigate whether the 3-WBS summary statistics
8
 had sufficient power to predict the 

phenotypes that are considered to become part of the well-being spectrum. The power was 

computed as a function of the following discovery trait parameters: 1) the discovery sample 

size set based on the maximum sample size from the multivariate analyses (2,370,390) and 2) 

the discovery trait SNP heritability (hsnp) set at 0.02. Concerning the target trait parameters, 

we adjusted the parameters according to the different phenotypes mentioned above and set the 

significance threshold at a Bonferroni corrected value of α =.005/11 = 0.0005, where 11 

represents the number of phenotypes to be predicted with the polygenic scores. Table II shows 

an overview of the different input parameters and the results of the power analyses. The 

estimated SNP heritability for personality, self-rated health, loneliness, and depressive 

symptoms was based on results from previous studies
9,42–44

. The SNP heritability for the 3-

WBS was estimated using LD score regression
45

. Since there has been no genome-wide 

association study for flourishing, we estimated the SNP heritability to be approximately as 

high as the SNP heritability for subjective well-being and meaning in life, which are estimated 

at ~.04
9 and ~.06

17
, respectively. The power for all traits was very high, assuming a medium 

Trait Age M(SD) N participants (% males) Score M(SD) 

Satisfaction with Life 40.94(15.83) 5344 (37.18%) 26.96(4.70) 

Happiness 39.36(15.59) 5350 (37.14%) 22.48(4.17) 

Neuroticism 42.09(15.94) 8622 (36.29%) 22.21(8.10) 

Depressive Symptoms 38.68 (16.00) 8667 (36.45%) 3.58(3.19) 

Loneliness 43.38(16.37) 8817 (36.43%) 3.82(1.03) 

Openness to Experience 42.09(15.94) 8622 (36.29%) 29.65(6.58) 

Conscientiousness 42.09(15.94) 8622 (36.29%) 37.96(6.28) 

Extraversion 42.09(15.94) 8622 (36.29%) 34.27(6.73) 

Agreeableness 42.09(15.94) 8622 (36.29%) 37.42(5.98) 

Self-Rated Health 38.44(15.68) 8667 (39.26%) 4.07(.59) 

Flourishing 40.16(14.96) 2200 (35.95%) 46.84(6.47) 



 

 

to high genetic correlation, with the exception of flourishing, where (due to smaller sample 

and low SNP heritability) the power to detect effects was somewhat lower, around .60 

(assuming a genetic correlation of ~.8).  

 

Table II.  Power Calculation Parameters for the Polygenic Prediction 

 

 

Polygenic Prediction 

The polygenic scores were created using LDpred
46

. LDpred takes into account linkage 

disequilibrium (LD) among SNPs in creating the polygenic risk scores. We calculated the 

mean causal effect size of each marker using the SNP effect sizes from the recent multivariate 

3-WBS GWAMA, where SNP effects were reversed for depressive symptoms and 

neuroticism, ensuring that a higher score reflects higher levels of well-being
8
. The LD 

structure from the European populations in the 1000 Genomes reference set
47

  was used to 

calculate polygenic scores in the target sample. In order to avoid an over-estimation of the 

association between the polygenic scores and phenotypes, summary statistics in the discovery 

set were re-computed, excluding NTR subjects. The polygenic scores were calculated with the 

expected fraction of causal genetic variants (the fraction of markers with non-zero effects) set 

at .10. Generalized Estimating Equation (GEE) modelling was used to test whether the 3-

WBS polygenic scores significantly predict satisfaction with life, happiness, neuroticism, 

depressive symptoms, loneliness, openness to experience, conscientiousness, extraversion, 

agreeableness, self-rated health, and flourishing. An exchangeable conditional covariance 

Discovery Trait Parameters           

 

Nobs  SNP heritability  

   Well-Being Spectrum 2370390 0.021         

Target Trait Parameters     

    

  

Input Sample 

Size  

SNP  Power if 

rg=.2 

Power if 

rg=.4 

Power if 

rg=.6 

Power if 

rg=.8 heritability  

Subjective Well-Being 5300 0.04 .07 .46 .90 .99 

Neuroticism  8600 0.12 .56 .99 1 1 

Depressive Symptoms  8600 0.05 .18 .70 .99 1 

Loneliness 8800 0.16 .74 1 1 1 

Openness to Experience 8600 0.11 .51 .99 1 1 

Conscientiousness 8600 0.10 .45 .99 1 1 

Extraversion 8600 0.18 .79 1 1 1 

Agreeableness 8600 0.09 .4 .99 1 1 

Self-Rated Health 8600 0.13 .61 .99 1 1 

Flourishing  2200 0.04 .02 .15 .44 .77 



 

 

matrix was used to account for family relatedness and tests were based on robust (sandwich-

corrected) standard errors
48

. Age, age
2
, sex, and the first ten genomic principal components 

(PCs) (three ancestry-informative PCs and seven PCs accounting for genotyping batch 

effects) were included as covariates. To obtain 95% confidence intervals (CI) around the R
2
’s, 

we performed bootstrapping with 2000 repetitions. All analyses were performed in R
40

.  

 

Genetic Correlations 

We used LD score regression
45

 to compute the genetic correlations between the 3-WBS and 

the candidate traits for which GWAS summary statistics were available. This method 

distinguishes bias and inflation from a true polygenic signal by quantifying the contribution of 

each through examining the relationship between linkage disequilibrium and test statistics. 

For neuroticism, depressive symptoms, positive affect, and life satisfaction, we used the 

univariate summary statistics from the multivariate 3-WBS GWAMA
8
. For all personality 

measures except neuroticism, we used summary statistics from a subset of 23andme 

participants
42

.  

 

We obtained summary statistics for self-rated health and loneliness by running GWASs on 

data from UK Biobank (UK Biobank ID 20459 and 2020, respectively). Genome-wide 

association analyses were performed in PLINK
37

 in a linear regression model of additive 

allelic effects. Standard pre-GWAS- quality control filters were applied, which included 

removing SNPs with minor allele frequency < 0.005 and/or with an INFO-score < 0.8 for 

imputed SNPs, and removing individuals with ambiguous sex and/or non-British ancestry. 

Furthermore,  we randomly selected 1 individual from each closely related pair of relatives 

(i.e. parent offspring pairs, sibling pairs). The GWAS included 40 principal components, age, 

sex, and a chip dummy as covariates. The summary statistics from these GWASs were used as 

input for LD score regression analyses. The significance threshold for the genetic correlations 

was set at a Bonferonni corrected value of α =.005/55 = 0.00009). 

 

  



 

 

Results 

Figure 1 (and Online Resource 1) shows the phenotypic correlation structure between the 

traits as measured in the NTR. The well-being phenotypes satisfaction with life and happiness 

were significantly associated with all traits except openness to experience. Neuroticism was 

associated with all traits except conscientiousness. All traits were significantly correlated with 

depressive symptoms. The 3-WBS traits were most significantly associated with each other, 

followed by the correlations between the 3-WBS phenotypes and loneliness (weakest r=-.38 

and strongest r=.54), self-rated health (weakest r=-.24 and strongest r= .34), and flourishing 

(weakest r=-.29 and  strongest r=.40).  

 

Figure. 1 Phenotypic Correlations Between the Different Traits. SWL= Satisfaction with Life, HAP = 

Happiness,  NEU= Neuroticism, DEP= Depressive Symptoms, LON= Loneliness, OPEN= Openness 

to Experience, CON= Conscientiousness, EXTR = Extraversion, AGREE= Agreeableness, SRH= 

Self-Rated Health, FLOUR= Flourishing. Upper triangle, phenotypic correlation displayed in 

numbers, where red coloured numbers are negative phenotypic correlations and blue coloured numbers 

are positive phenotypic correlations. Lower triangle is a visualisation of the strength of the phenotypic 

correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (and Online Resource 2) show the results from the GEE analyses where the 

polygenic scores for the 3-WBS were used to predict the eleven outcome variables. As a proof 

of principle, we found that the traits used to create the polygenic scores (satisfaction with life, 

happiness, neuroticism, and depressive symptoms) were significantly associated (standardized 

b= between -.123 and .084) with the polygenic score. From the candidate traits to be added to 



 

 

a well-being spectrum, four were significantly associated with the 3-WBS polygenic score. 

The strongest association was found for loneliness (standardized b=-.091, p=3.14 x 10
-16

, R
2
= 

0.84%), followed by self-rated health (standardized b=.083, p=3.71 x 10
-14

, R
2
= 0.69%) and 

extraversion (standardized b=.069, p=6.63 x 10
-9

, R
2
= 0.47%). Conscientiousness, 

agreeableness and flourishing were not significantly associated with the 3-WBS polygenic 

score.  

 

Fig. 2 The amount of variance explained by the polygenic risk score for each of the traits. SWL= 

Satisfaction with Life, HAP = Happiness,  NEU= Neuroticism, DEP= Depressive Symptoms, LON= 

Loneliness, OPEN= Openness to Experience, CON= Conscientiousness, EXTR = Extraversion, 

AGREE= Agreeableness, SRH= Self-Rated Health, FLOUR= Flourishing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (and Online Resource 3) depict the genetic correlations obtained using LD score 

regression. As expected, the genetic correlations were strongest between the 3-WBS and the 

traits originally included in the spectrum, life satisfaction (rg = .89), positive affect (rg = .80), 

neuroticism (rg = -.90), and depressive symptoms (rg = -.94). Next, loneliness had the 

strongest genetic correlation with 3-WBS (rg = .78), followed by self-rated health (rg = .65), 

agreeableness (rg = .30), conscientiousness (rg = .22), and extraversion (rg = .16). The only 



 

 

trait that did not have a significant genetic association with 3-WBS was openness to 

experience (rg = .06).  

 

Fig. 3 Genetic Correlations Between the Different Traits. WB= Well-Being Spectrum, SWL= 

Satisfaction with Life, PA = Positive Affect,  NEU= Neuroticism, DEP= Depressive Symptoms, 

LON= Loneliness, OPEN= Openness to Experience, CON= Conscientiousness, EXTR = Extraversion, 

AGREE= Agreeableness, SRH= Self-Rated Health. Upper triangle, genetic correlation displayed in 

numbers, where red coloured numbers are negative genetic correlations and blue coloured numbers are 

positive genetic correlations. Lower triangle is a visualisation of the strength of the genetic 

correlations. 

 

 

  



 

 

Discussion  

Well-being is a broad construct, with many traits contributing to its variation. In this study, 

we applied two types of genetic analyses to examine the genetic boundaries of a well-being 

spectrum. The traits we examined included the 3-WBS, as well as loneliness, openness to 

experience, conscientiousness, extraversion, agreeableness, self-rated health, and flourishing, 

conscientiousness, agreeableness, and openness to experience. First, we used publicly 

available GWAMA summary statistics to construct polygenic scores that reflect a genetic 

propensity for higher levels of well-being to predict several traits that have previously been 

associated with well-being. Second, we calculated genetic correlations between the 3-WBS 

and these traits.  

 

The strongest associations with the polygenic score for the 3-WBS were found for the traits 

originally included in this spectrum. This shows that the scores are a good reflection of the 

proposed well-being spectrum when it is split up into its subdomains and supports the earlier 

findings of shared risk genes for these domains
9
. Moreover, these traits show high genetic 

correlations with the 3-WBS, as well as with each other, confirming previous findings that 

indicated high genetic correlations between life satisfaction, positive affect, neuroticism, and 

depressive symptoms
9
.  

 

Out of all candidate traits, loneliness showed the strongest phenotypic and genetic correlation 

with the well-being spectrum. As expected, lower well-being was found in people reporting 

higher levels of loneliness. The 3-WBS polygenic score predicted loneliness to a similar 

extent as it predicted subjective well-being measures. Even though the polygenic score 

predicted only a small amount of the variation in loneliness (0.84%), the genetic correlation 

between loneliness and well-being was in the same range as the that of the traits in the 3-WBS 

amongst themselves. Given these high phenotypic and genetic correlations, loneliness is a first 

good candidate to be added to the well-being spectrum.  

Self-rated health constitutes a second good candidate. Self-rated health is a subjective 

measure of how individuals rate their current health status and has been established a good 

predictor of important objective health measures, such as mortality and the use of health 

services
49

. The 3-WBS polygenic score was found to predict self-rated health to a similar 

extent as subjective well-being. The genetic correlation between self-rated health and the 3-

WBS was also relatively high (rg= .65) confirming that people with a genetic predisposition 

for higher levels of well-being are more likely to rate themselves positively concerning their 



 

 

health. For personality, we report a genetic association between the 3-WBS and extraversion 

and conscientiousness, but not for openness to experience or agreeableness. These results 

suggest that individuals with a genetic predisposition for higher levels of extraversion and 

conscientiousness also have a genetic predisposition to experience higher levels of well-being. 

These findings are in line with previous studies identifying extraversion and 

conscientiousness (in addition to neuroticism) as the strongest personality correlates of well-

being
50,51

. Moreover, these results further support the findings by Weiss, Bates & Luciano 

(2008), where the genetic variance underlying subjective well-being was also responsible for 

individual differences in neuroticism, extraversion, and conscientiousness. The finding that 

openness to experience was not associated with well-being at a phenotypic and genetic level 

was not surprising and also found in previous research.  

 

The genetic correlations revealed that only a small part of the genes that are important for 

extraversion and conscientiousness are also associated with well-being. Whereas the genetic 

correlation between agreeableness and well-being suggested they also share genetic factors, 

the polygenic score did not predict agreeableness. As shown in our power analyses, the power 

to predict agreeableness, given a genetic correlation of ~.30, is between .4 and .99. Therefore, 

it is likely that this seemingly contradictory finding is a result of the polygenic prediction for 

agreeableness having too little power to detect a polygenic association. Taken together, the 

evidence for a genetic correlation between well-being and multiple personality domains do 

not strongly support the inclusion of personality traits other than neuroticism in the well-being 

spectrum. A surprising finding was that the polygenic score did not significantly predict 

flourishing. Since the flourishing scale is a measure of PWB, and PWB is phenotypically 

highly associated with subjective well-being
52,53

, we expected that, in line with the recent 

work of Baselmans and Bartels
17

, part of this association could be explained by genetic 

factors. Two explanations are possible for our observations. The first explanation is that the 

relationship between 3-WBS and PWB as defined in this study is mainly a result of 

environmental factors. The second explanation is that, since our study had relatively low 

power to detect associations for flourishing, there is genetic overlap, but that these genetic 

effects remained unnoticed in this study. Unfortunately, we could not calculate the genetic 

correlation between the 3-WBS and flourishing due the constraint of the absence of a genome-

wide association summary statistics for flourishing. However, future studies with larger 

sample sizes for PWB measures could elucidate which of these explanations is correct.  

 



 

 

We note that the genetic correlations suggest large genetic overlap between the several traits, 

whereas the polygenic risk scores only explain a small part of the variance in each trait even 

with our large discovery sample. This discrepancy can be expected since the genotyped SNPs 

do not necessarily tag all causal variants, and not all SNPs were genotyped. Moreover, since 

measurement error accumulates across all the markers, sampling variation has a large 

influence on the predictive accuracy of the polygenic score
41

. We are therefore optimistic that, 

with increasing sample sizes and increased accuracy in the estimation of SNP effects, well-

being polygenic scores will turn into clinically relevant tools for the prediction of outcomes 

such as loneliness or depression. 

 

While these results provide us with important information on the genetic architecture of the 

well-being spectrum, the results should be interpreted with caution. As shown in Table II, the 

power of the polygenic prediction is dependent on sample size, especially when the genetic 

correlation between traits is low. Thus, better predictive accuracy and power could be 

achieved with larger sample sizes. Moreover, while including more traits in the well-being 

spectrum can lead to greater power for detecting genetic variants, the number of genetic 

variants influencing all traits will decline.  

 

The results from the present study provide us with useful information on the determinants of 

individual differences in human well-being. Even though not all traits examined here can be 

included in the well-being spectrum from a genetic point of view, most of them are 

phenotypically and genetically related to well-being. It is important to know these 

determinants, since it could help us improve policy making and clinical interventions aimed at 

improving human well-being. 

 

To conclude, in this study we found evidence for a shared genetic aetiology between several 

traits associated with well-being. The strongest relationships were found for loneliness and 

self-rated health. Our findings suggest that these two traits should be further investigated for 

potential inclusion in the well-being spectrum to increase our understanding of the causes and 

links between well-being and several mental/behavioural traits. 
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Supplementary Information 

 

Supplementary Table 1 

Phenotypic Correlations Between the Traits (NTR Data). 

Note. NEU= Neuroticism, DEP= Depressive Symptoms, SWL= Satisfaction with Life, HAP = 

Happiness, LON= Loneliness, SRH= Self-Rated Health, EXTR = Extraversion, FLOUR= Flourishing, 

CON= Conscientiousness, AGREE= Agreeableness, OPEN= Openness to Experience. 

*p-value significant at α=.00009 (0.005/55). 

 

 

 

 

 

 

 

 

 

   SWL HAP NEU DEP LON OPEN CON EXTR AGREE SRH FLOUR 

SWL 1 - - - - - - - - - - 

HAP .65* 1 - - - - - - - - - 

NEU -.48* -.47* 1 - - - - - - - - 

DEP -.48* -.45* .61* 1 - - - - - - - 

LON  -.45* -.38* .54* .53* 1 - - - - - - 

OPEN -.01 <.01 .32* .08* .12* 1 - - - - - 

CON .23* .20* .01 -.29* -.15* .34* 1 - - - - 

EXTR .28* .33* -.05* -.33* -.21* .38* .58* 1 - - - 

AGREE .11* .11* .20* -.09* -.06* .44* .54* .49* 1 - - 

SRH .34* .24* -.31* -.34* -.21* .02 .12* .20* .04 1 - 

FLOUR .40* .32* -.29* -.30* -.26* .06 .26* .30* .17* .23* 1 



 

 

Supplementary Table 2 

 Outcomes GEE analyses 

Outcome Variable Standardized b(se) P-value R
2
 

Satisfaction with Life .084(.015) 2.15 x 10
-8

* 0.71 

Happiness .087(.015) 7.81 x 10
-9

* 0.75 

Neuroticism -.119(.012) 5.3x 10
-23

* 1.42 

Depressive Symptoms -.123(.012) 7.57x 10
-25

* 1.52 

Loneliness -.091(.011) 3.14 x 10
-16

* 0.84 

Openness to Experience -.039(.012) 0.002 0.15 

Conscientiousness .020(.012) 0.092 0.04 

Extraversion .069(.012) 6.63 x 10
-9

* 0.47 

Agreeableness .026(.012) 0.027 0.07 

Self-Rated Health .083(.011) 3.71 x 10
-14

* 0.69 

Flourishing .047(.047) 0.027 0.22 

*p-value significant at α=.0005. 

 



 

 

Supplementary Table  3 

Genetic Correlations (SE) Between the Different Traits (Data From Several GWAS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. WB=Well-Being Spectrum, NEU= Neuroticism, DEP= Depressive Symptoms, SWL= Satisfaction with Life, PA= Positive Affect, LON= Loneliness, 

SRH= Self-Rated Health, EXTR= Extraversion, CON= Conscientiousness, AGREE= Agreeableness, OPEN= Openness to Experience. 

*p-value significant at α= .00009 (0.005/55)   

 
 
 
 

  MULTI SWL PA NEU DEP LON OPEN CON EXTR AGREE SRH 

MULTI 1 - - - - - - - - - - 

SWL .889(.084)* 1 - - - - - - - - - 

PA .798(.014)* .777(.051)* 1 - - - - - - - - 

NEU -.902(.006)* -.645(.057)* -.660(.018)* 1 - - - - - - - 

DEP -.937(.004)* -.759(.085)* -.631(.023)* .738(.015)* 1 - - - - - - 

LON -.781(.019)* -.735(.068)* -.658(.026)* .740(.017)* .678(.022)* 1 - - - - - 

OPEN -.056(.046) -.029(.065) .046(.043) -.062(.048) .162(.042) .069(.051) 1 - - - - 

CON .218(.042)* .164(.068) .258(.045) -.194(.038)* -.183(.043)* -.117(.048) -.187(.064) 1 - - - 

EXTR .155(.037)* .137(.055) .296(.034)* -.204(.037)* -.018(.036) -.074(.038) .341(.045)* .145(.053) 1 - - 

AGREE .299(.045)* .284(.072)* .375(.046)* -.322(.047)* -.192(.042)* -.320(.055)* .095(.073) .252(.065) .221(.052) 1 - 

SRH .652(.037)* .663(.076)* .629(.034)* -.492(.046)* -.617(.038)* -.616(.044)* -.098(.056) .305(.054)* .039(.047) .036(.063) 1 
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Introduction 

Considering the beginning of my PhD trajectory in 2014, and as described in chapter 1, there 

has been major progress in the field of (molecular) genetics and complex traits like well-

being. Up until 2014, most studies investigating the molecular genetics of well-being used 

either linkage or candidate gene analyses. As pointed out in chapter 1, linkage analysis is a 

powerful approach to detect genetic variants with large effect but has more difficulties 

detecting genetic variants with small effects. The candidate gene approach, on the other hand, 

theoretically has enough power to detect genetic variants with small effect. It requires, 

however, a sound theoretical mechanism with functional candidate genes a priori, knowledge 

that is still limited despite our increasing understanding of biological processes of complex 

traits. For these reasons, results based on these methods have shown to be extremely difficult 

to replicate
1
 and the valid question arose whether it would be possible at all to identify genetic 

variants explaining phenotypic variance in well-being. 

 

Since then, though, game-changing progress in the field of molecular/statistical genetics and 

bioinformatics has been made, resulting in the GWAS Era. One of the first promising signs 

indicating that it might become possible to detect genetic variants associated with well-being 

arose from results of a Genome-wide Complex Trait Analysis (GCTA)
2
. Rather than testing 

the association of a particular SNP with well-being, GCTA estimates how much of the 

variance in a trait can be accounted for by the genetic variance based on common SNPs, 

resulting in a heritability estimate based on molecular genetic data. Using GCTA in a sample 

of ~11,500 unrelated individuals, it was estimated that about 5-10% the variance in well-being 

could be explained by common SNPs
3
. Therefore, in chapter 1, we hypothesized that future 

genome-wide large-scale efforts to search for SNPs associated with well-being might have the 

potential to become successful.  

 

However, in order to make it an success, it became obvious that sample size was the key 

issue. For instance, the first genetic variant robustly associated with schizophrenia was 

identified in 2009 using a sample of ~3,300 cases and ~3,500 controls
4
. In 2014, using a 

sample of ~35,000 cases and 110,000 controls, 108 genetic variants were associated with 

schizophrenia
5
. Like Schizophrenia, well-being is a polygenic trait, i.e. each individual will 

carry multiple alleles that increase his or her level of well-being, and multiple alleles that will 

decrease his or her level of well-being. Therefore, each individual variant will typically 

explain only a very small proportion of the variance in well-being. In addition, because of 



many potentially different combinations of these risk alleles, it is likely that each individual 

carries a unique set of alleles. To detect these genetic variants with small effects, large sample 

sizes are required. Furthermore, it has been shown that the distribution of a phenotype in the 

population has an effect on the power to identify SNPs associated with it
6
. Higher levels of 

well-being are more prevalent in the population than psychiatric disorders. As a consequence, 

the sample size to detect SNPs robustly associated with well-being should be even larger than 

the sample size to detect genetic variants for psychiatric disorders.  

 

Genome-Wide Association Studies 

Using this information as a priori knowledge, we, together with the Social Science Genetic 

Association consortium (SSGAC; https://www.thessgac.org/) collected genetic and 

phenotypic data from 59 cohorts with a combined sample size of 298,420 individuals. 

Chapter 3 describes this large-scale GWAS meta-analysis of well-being that led to the 

identification of the first three independent genetic variants associated with trait variation in 

well-being. Supplementing this analysis, we performed a GWAS meta-analysis of depressive 

symptoms (N = 180,866) and neuroticism (N = 170,910) and identified the first two genome-

wide significant variants for depressive symptoms and eleven genome-wide significant 

variants for neuroticism. Additionally, the concordance of the allelic effect between the three 

traits was assessed, using a recently developed software tool called Linkage Disequilibrium 

Score Regression (LDSC)
7,8

. Within this approach, an “LD score” is computed for each SNP, 

taking the sum of correlation between that SNP and all neighboring SNPs. Under a polygenic 

model, these LD scores are expected to show a linear relationship with the GWAS test 

statistics of the corresponding SNPs, where the slope is proportional to the SNP heritability. 

Using LDSC, in chapter 3, we report a high genetic correlation between well-being, 

depressive symptoms, and neuroticism (| rg | > .75), which corresponded to the genetic 

correlations derived in chapter 2 using a large twin design. These high genetic correlations 

indicate common underlying biology between the three traits. 

Multivariate Genome-wide association meta-analysis 

Recognizing this large overlap, together with the knowledge that increasing samples sizes are 

required to detect genetic variants with small effects, we introduced two multivariate genome-

wide association meta-analysis methods in chapter 4. Both methods enable analyzing clusters 

of correlated traits while handling bias resulting from inevitable sample overlap. Method 1, N-



weighted multivariate genome-wide association meta-analysis (N-GWAMA), assumes a 

single underlying construct with a unitary effect of the SNP on all included traits. Method 2, 

model averaging GWAMA (MA-GWAMA), relaxes this assumption and allows different 

effects on the various traits. We applied both methods on measures of life satisfaction, 

positive affect, neuroticism, and depressive symptoms, which we referred to as the well-being 

spectrum (Nobs = 2,370,390). Collectively, we found 319 genome-wide significant genetic 

variants associated with this spectrum.  

Thus, in just over 2 years, the field of genetics and well-being progressed from the first three 

genetic associated with well-being to 319 genome-wide significant genetic variants. This 

spectacular increase in significant associations is representative of the enormous progress in 

the field of complex traits genetics in the last couple of years, reflected in findings for 

phenotypes such as educational attainment
9,10

 and neuroticsm
11,12

. A significant player in the 

field of this progress is the UK Biobank (http://www.ukbiobank.ac.uk/), with the release of 

genome-wide genetic data on ~500,000 individuals in the summer of 2017
13

. The UK Biobank 

is a prospective study designed to be a resource for research into the causes of disease in 

middle and old age. Participants were recruited between 2006 and 2010 and completed a 

broad range of questionnaires. By meta-analyzing (smaller) cohort-data together with data 

derived from the UK Biobank, many studies, including ours described in chapter 3, 4, 6, 8, 

and 9, were able to increase the statistical power to find genetic variants associated with a 

specific trait of interest.  

Phenotypic Heterogeneity 

Although combining smaller cohort-data together with UK biobank has been proven 

successful, there is a downside to combining multiple measures of a trait (e.g. well-being). 

When combining multiple measures, there is always a dilemma; on the one hand including a 

cohort in the meta-analysis will increase the sample-size and consequently the power to find 

genetic variants of interest; on the other hand, including that specific cohort may bias the 

GWAS results, since combining different measures introduces phenotypic heterogeneity. In 

the studies described in chapter 3 and 4, we included multiple measures of positive affect as 

well as life satisfaction, neuroticism, and depressive symptoms leading to more noise in the 

GWAs analysis. To quantify the effects of this kind of phenotypic heterogeneity, chapter 3 

describes a “quantity-quality tradeoff” analysis that shows that in a realistic GWAS meta-

analysis scenario with high genetic correlations (rg > 0.6) between two measures of well-

http://www.ukbiobank.ac.uk/


being, the inclusion of a second cohort will reduce the measurement error in most cases. 

Therefore, based on the analysis of the costs and benefits of pooling heterogeneous measures, 

it can be concluded that pooling genetically associated traits increases the statistical power to 

detect genetic variants.  

Mixing different measures, though, will result in a drop of the SNP heritability (h
2

SNP), as the 

included measures are partly influenced by different genetic factors. This is indeed what we 

observed in chapter 3, 4, and 8. In chapter 8, we performed a GWAS of a homogenous 

measure of hedonic well-being resulting in a h
2

SNP of ~6.2%. This percentage dropped to four 

percent in the GWAS comprised of multiple well-being measures as described in chapter 3. 

Moreover, in chapter 4, where we performed a multivariate GWAMA including measures of 

well-being, neuroticism, and depressive symptoms, SNP heritability dropped to 2.1%. On the 

other hand, if we consider the GCTA h
2

SNP estimates of 5-10% for single-item well-being 

measures as an upper bound
3
, then we approached it pretty closely with our GWAS using a 

homogenous measure of well-being (h
2

SNP of ~6.2%). Additionally, Rietveld et al.
3
 state that 

12-18% of the h
2

SNP could be captured after correcting for measurement error. Therefore, a 

promising but challenging way to go forward is to re-measure well-being using similar 

questionnaires and perform a GWAS on the unified measures.  

Biological Analyses 

To shed some light on the possible biological mechanisms underlying our findings we 

performed several bioinformatics analyses. Previous work has demonstrated that some 

functional categories of the genome contribute disproportionally to the heritability of complex 

behavior
2,14,15

. Build on this observation Finucane et al.
16

 developed stratified LD Score 

Regression (SLDSC), which requires only GWAS summary data together with LD 

information from an external reference panel matching the population structure of the GWAS. 

Doing so, SLDSC can distinguish between h
2

SNP explained by different functional categories 

of the genome, for instance in the central nervous system (CNS), while accounting for 

influence of the remaining functional categories (e.g. blood, bone, and muscle tissues). Using 

SLDSC, in chapter 3 we report significant enrichment in the CNS for well-being, depression, 

and neuroticism, which we confirm in chapter 4 for the well-being spectrum. In chapter 4, 

we expanded these analyses by leveraging the genome-wide results, LDSC, and an atlas of 

brain gene expression. Doing so, we were able to pinpoint brain regions where genes that are 

significantly associated with well-being are significantly enriched in their effects. We report 



evidence for enrichment of genes differentially expressed in the Ventral Tegmental Area 

(VTA), as well as in the subiculum (part of the hippocampal formation). Furthermore, we 

report significant enrichment of glutamatergic neurons in the CA1 and CA3 of the 

hippocampus and in the prefrontal cortex as well as enrichment of GABAergic interneurons. 

However, as we only had specific cell types for specific regions (hippocampus and prefrontal 

cortex), there are some interpretational limitations. Gene expression is known to vary 

systematically between cell-types within the brain
17

 (e.g neurons, microglia, astrocytes) and 

developmental phases
18

 (prenatally, childhood, adulthood and old age). Although we find 

specific cell type enrichment for well-being, it stands to reason that the same cell type specific 

enrichment in other regions might exist, which we now missed. This limitation needs to be 

addressed in future well-being research. However, capitalizing on ongoing efforts to 

categorize gene expression across the human brain at increased (single cell) resolution, this 

will be a promising future approach to understand biological processes underlying phenotypic 

variation of well-being. 

Epigenome-Wide Association Studies 

Besides genetic influences, environmental factors play an important role in explaining 

variance in well-being, as evidenced by multiple twin-family studies and described in chapter 

2. Additionally, epigenetic regulation of gene expression by mechanisms such as DNA 

methylation may mediate the interplay between the genetic make-up of individuals and their 

exposure to the environment
19,20

. In humans and animals, various early life exposures can 

induce stable long-term changes in DNA methylation
21–23

. Examples include early postnatal 

maternal behavior
23

, childhood abuse 
22

, and prenatal maternal nutrition
21

. Later life exposures 

also induce changes to the methylome, for example exposure to cigarette smoke
24,25

.  

Recently, using epigenome-wide association studies (EWAS), changes in DNA methylation 

have been implicated in various complex traits such as obesity
26

, type 2 diabetes
27,28,29

, and 

educational attainment
30,31

. In chapter 5, we performed the first EWAS on well-being in a 

population-based sample (N = 2519) of adults from the Netherlands Twin Register (NTR)
32

. 

We identified two genome-wide significant methylation probes after correction for multiple 

testing (Bonferroni correction). Moreover, gene ontology (GO) analyses highlighted 

enrichment of several CNS categories among higher-ranking methylation probes. However, 

replication of these results is warranted in larger samples as (1) we are aware that potential 



unmeasured confounders could have an effect on our results, and (2) we are uncertain of the 

direction of causation of the association between well-being and CpG methylation.  

The foremost interpretational difficulty in EWAS is the uncertainty about cause and effect, 

e.g. does methylation causally influence complex trait outcomes, is the causal effect reverse, 

or does a third trait influence both methylation levels and traits? For instance, a recent study 

found that differential methylation is the consequence of inter-individual variation in blood 

lipid levels and not vice versa
33

. A second important consideration for EWAS is the 

assessment of methylation in trait relevant tissue. Empirical results suggest that easily 

accessible tissues, such as whole blood, cannot be used to address questions about inter-

individual epigenomic variation in inaccessible tissues, such as the brain
34,35

. 

To examine these interpretational issues, we performed an EWAS meta-analysis of well-being 

controlled for two well-known confounders of epigenetic associations, smoking and BMI, in 

chapter 6 (N = ~8,600). To guard against unmeasured confounding and to infer a direction of 

effect we performed summary-based Mendelian Randomization (SMR). In SMR, SNP effects 

on cis-methylation (cis-mQTLs), and a large GWAS of well-being were combined to infer the 

(causal) effect of CpG methylation on well-being. To assess concordance between blood and 

brain tissue, we performed SMR leveraging cis-mQTLs present in both blood and brain 

tissues and compared results between tissues, and between SMR and EWAS. Doing so, we 

found a high consistency of direction of effect (r > .9) between SMR results, where the mQTL 

was discovered in two whole blood datasets, as well as high consistency between whole blood 

and fetal brain datasets (r = .72). However, when comparing the direction of effect between 

our EWAS and SMR results, no notable correlations were observed. These results indicate 

that, if the aim is to increase our understanding of the functional consequences of epigenetic 

changes on wellbeing, SMR may be preferred over EWAS in whole blood. If, however, the 

aim is to identify ways in which well-being is itself a driver of environmental influences on 

differences in DNA methylation, possibly effecting gene-expression, a sufficiently powered 

EWAS study will provide valuable information. The concurrent use of Mendelian 

Randomization and epigenome-wide association analysis proved to be a potent combination to 

further our understanding of the relation between well-being and CpG methylation.  

Well-being framework 

It is well known that several mental health issues, such as anxiety, depression, neuroticism, 

and loneliness share a common genetic liability
36–38

. This common genetic liability offers an 



explanation as to why many disorders are comorbid or present highly similar behaviors. While 

there have been detailed investigations of the genetic similarity and comorbidity of mental 

disorders, there is much less information about the genetic similarity of mental health traits 

such as happiness, satisfaction with life, personality, self-rated health, and flourishing. The 

multivariate approach in chapter 4, focused on the overlap within a mental health spectrum, 

and leveraged the genetic overlap between well-being, neuroticism, and depressive symptoms 

to identify genetic variant for this 3-phenotype well-being spectrum (3-WBS). Studies on 

traits that could additionally be considered as part of a well-being spectrum are important 

given the large collection of studies pointing towards the emotional, cognitive, and 

interpretational benefits of high levels of well-being beyond the absence of mental 

disorders
39–41

. In the literature, several other traits, such as loneliness, self-rated health, and 

personality have been found to be strongly associated with well-being. Therefore, the aim of 

chapter 9 was to investigate the genetic overlap between well-being and these proposed traits. 

Using polygenic scoring and genetic correlations, we report that the 3-WBS is strongly 

genetically associated with loneliness and self-rated health. These findings suggest that these 

traits are interesting candidates to be included in the well-being spectrum and may increase 

our understanding of the causes and links between well-being and several mental and 

behavioral traits.  

Conceptualization the well-being framework  

So far, we have identified multiple genetic variants associated with well-being (chapter 3 and 

4) and showed that well-being is related to a broad range of mental –and behavioral traits 

(chapter 2, 3, 4, and 9). These studies have in common that they all use measures of life 

satisfaction and positive affect, which are often referred to as subjective well-being (SWB) 

measures. However, from a theoretical perspective, two types of well-being can 

predominantly be distinguished: subjective well-being (SWB) and psychological well-being 

(PWB), shaped by the philosophical constructs hedonism and eudaimonism, respectively. 

Ancient hedonism is centered around pleasure, or how good a person feels about his or her 

life
42

. From this perspective, well-being consists in the balance of pleasure over pain, that is: 

how to maximize pleasure and minimize pain (Aristippus (c. 435 – c. 356 BCE)). In contrast, 

eudaimonism, is more about virtue (defined as knowledge about how to live well) and human 

capacities. Although in contemporary sciences the terms hedonism and eudaimonism have 

gradually shifted to SWB and PWB, there is still an ongoing debate how these concepts relate 

to each other
42,44–48

. Therefore, to examine the complex framework of well-being, we 



performed a literature study aiming at analyzing the current view on the relation between 

SWB and PWB (chapter 7). We found that the main consensus is that SWB and PWB are 

related constructs that are likely domains of a general factor well-being. However, while the 

constructs are related, they are not interchangeable and can be distinguished both conceptually 

and biologically. Based on these findings we provide some general recommendations for 

follow-up research.  

(1) Re-define the well-being framework. We propose that an empirical well-being framework 

should be developed considering the actual empirical data rather than the ideas that inspired 

the research
50

. In the context of the social and behavioral sciences, the well-being framework 

might be best described as one hierarchical construct including both SWB and PWB 

constructs. This means that hedonism and eudaimonism are not to be defined as two clearly 

separated streams, but as related underlying domains of the same construct 

(2) Be detailed. It is often taken for granted that when we are using the same words, we mean 

the same things. As it turns out, at least in the field of well-being, we should be more cautious 

about this assumption. For example, SWB can be referred to as “happiness”, “hedonism”, 

“subjective happiness”, “emotional well-being” and “affective well-being”. This 

inconsistency might lead to interpretational issues of study results. To overcome this, the most 

feasible solution would be for researchers to be detailed about the constructs they aim to be 

measuring and about the scope of their study. This means that researchers should: 1) be 

consistent in their use of terminology; 2) give detailed descriptions of their most basic terms 

and constructs, and; 3) keep in mind that the results of their study might not cover well-being 

in its entirety. 

To add weight into the discussion to what extent hedonic –and eudaimonic well-being relate 

to each other, we had to wait for the availability of a sufficient powered molecular-genetic 

dataset with measures of eudaimonic well-being (Chapter 8). With the release of the UK 

Biobank data, we were able to conduct a GWAS, where the question: “To what extent do you 

feel your life to be meaningful” served a proxy-phenotype for eudaimonic well-being in 

~110,000 participants. Paired to this analysis, we conducted a GWAS where the question: “In 

general how happy are you” served as a proxy phenotype for hedonic well-being. We 

identified the first two genetic variants associated with eudaimonic well-being as well as six 

genetic variants for hedonic well-being. Moreover, the genetic correlation between both 

measures was, as expected, large (rg = 0.78), suggesting a large shared genetic etiology. 



Further evidence for a shared genetic architecture between both measures is provided by the 

similar patterns of genetic correlations with other traits (e.g. depressive symptoms, 

personality, and loneliness). These results complement our results found in the literature 

review (chapter 7) and indicate that both constructs can be seen as two related underlying 

domains of the same construct.  

Future perspectives 

Enormous progress has been made in the field of human genetics the last four years, with a 

tsunami of genetic associations with numerous traits identified as a consequence. In line with 

this progress, we reported the first 3 genetic variants associated with well-being in 2016, 

while two years later, this number increased to 319 genetic variants (chapter 3 and 4). Similar 

progress has been made for other phenotypes, like depression
51

, education attainment
10

, 

neuroticism
12

 and human intelligence
52

. These studies are staggering proof that the field of 

complex traits genetics has become increasingly successful in the last couple of years. With 

this progress, new questions arise. Valid questions, like how we should interpret these results 

and what the next steps are to take. Of course, there are no conclusive answers to these 

questions yet, but for (genetic)-research involving well-being, the following opportunities are 

worth exploring. 

From association to causation 

The high genetic correlation between different measures of well-being, as well as between 

well-being and other complex traits, such as neuroticism, depressive symptoms, and self-rated 

health, can be a product of a causal relationship between the traits, a third factor that 

influences the traits or a combination of both mechanisms. Although progress is being made 

in detecting causal relationships between correlated traits using Mendelian Randomization 

(MR), presence of horizontal pleiotropy can bias results. Horizontal pleiotropy occurs when 

the variant has an effect on the outcome outside of its effect on the exposure in MR. The 

presence of horizontal pleiotropy has been demonstrated by a recent study that developed a 

software tool called MR-PRESSO, showing that horizontal pleiotropy was detectable in over 

48% of significant causal relationships reported in MR-analyses
53

. A solution to overcome 

biased results in MR analyses is to include very strong instrumental variables. Given that the 

genome-wide significant SNPs associated with well-being explain typically little of the 

phenotypic variance (~ 0.01%), it will be difficult, to construct strong instrumental variables 

for well-being. There is, however, reason for optimism. Many methods that are better able to 



cope with pleiotropy have been proposed recently, such as the genetic instrumental variable 

(GIV) regression
54

 and two-sample MR (2S-MR)
55–57

. In addition to these MR methods for 

inferring causal relationships between two traits, one could ask how much of the relationship 

is mediated by a third factor. Given the high correlations between well-being and numerous 

traits (see chapter 8 and 9), this would be a reasonable scenario. To test this, the recently 

developed Genomic structural equation modelling SEM approach
58

 might be an informative 

way to go forward and lay the groundwork for a novel multi-faceted approach in investigating 

the well-being spectrum, and progress from showing association, to understanding direction of 

causation.  

From genetic variants to biological functioning 

The number of identified genetic loci for well-being has increased spectacularly in recent 

years as described in multiple chapters in this thesis. These findings are largely driven by the 

release of large-scale genetic-data sets such as the UK biobank. The next challenge is to 

improve our understanding of the biological effects of these genetic risk loci, especially since 

the actual genes mediating phenotypic variation are not necessary proximal to the lead SNPs 

identified in genome-wide association studies (GWASs). Supported by the observation that 

GWAS variants are preferentially located in enhancers and open chromatin regions
59,60

, the 

majority of common genetic risk factors are predicted to influence gene regulation, either 

directly or through modifiable epi-genetic processes, rather than directly affect the coding 

sequence of transcribed proteins
61

. Therefore, a promising way to go forward is to first 

identify the causal variants (eQTL) influencing gene-expression, using for instance SMR. 

Next, software tools like FUMA (Functional Mapping and Annotation of Genome-Wide 

Association Studies
62

), which utilize information from different databases and methods can be 

used. Using FUMA, functional consequences on gene functions, deleteriousness, regulatory 

functions, and biological pathways can be revealed from the causal SNPs identified in the first 

step. In chapter 4 and 5 we made a first step in identifying causal variants influencing gene-

expression or methylation –expression, and it is expected that this strategy will result in new 

insights in the biological underpinnings of the well-being spectrum. 

The effect of parental genotypes 

Another promising way to go forward is to include, the often ignored, genetic variants in the 

parental genomes that are not transmitted to a child in the studies of well-being. A recent 

paper Kong et al.
63

 showed that non-transmitted alleles canstill  affect a child through the 



impact  of the alless on the parents themselves or on other relatives (such as siblings), a 

phenomenon they called “genetic nurturing”. Kong et al. showed, using education attainment 

as an example, that polygenic scores computed from the non-transmitted alleles have an 

estimated effect on the educational attainment of that child that is roughly 30% of the 

magnitude of the polygenic scores based on the transmitted alleles. It would add a novel layer 

to “the genetics of well-being” if it could be demonstrated that genetic nurturing exists and 

has an impact on the variance of well-being in the off-spring.  

Phenotypic innovations 

Beside the progress in the field of human genetics, there have been major methodological 

advances in measuring complex behaviors .  

Social Media 

For example, recent work in language use has shown its innovative power to assess complex 

behavior. Self-report surveys provide a snapshot in time. Online social media data, on the 

other hand, may ‘fill in the gaps’ with ongoing ‘in the moment measures’ of a broad range of 

people’s thoughts and feelings and provide real-time assessment of well-being. For instance, it 

has been shown that patterns in a community’s Twitter language predict several health 

outcomes, including community-level disease mortality
64

, depression and mental illness
65

, and 

ADHD
66

. Moreover, it has been shown that social media language derived personality 

assessments match the psychometric quality of observer-report through surveys
67

. It would be 

very interesting to examine whether language use expressed through social media predict 

levels of well-being and to assess the genetic component of it. As pointed out in in chapter 3, 

4, 8, and 9, well-being is related to a broad range of positive and negative traits. The 

widespread use of social media may therefore provide additional opportunities to the detection 

of otherwise undiagnosed cases. 

 

Sensor data 

Besides social media use, sensors in everyday devices, such as our phones, wearables, and 

computers, leave a stream of digital traces. These traces can be captured, analyzed ,and related 

to human behavior (for review see Mohr et al. )
68

. For example, by leveraging built-in sensors, 

a number of smartphone-based sensing systems have been developed to passively monitor 

sleep periods. Several groups have shown that sleep duration can be estimated with 

approximately 90% accuracy, without asking the user to do anything special with the 



phone
69,70

. In turn, these sleep period markers have been correlated to the severity of 

depressive symptoms
71

 and a strong genetic correlation has been onserved between well-being 

and insomnia (Hammerslag et al., 2017). Although numerous challenges must be overcome 

before these types of measures become viable for large scale epidemiological deployment, 

recent technological progresses in machine learning methods give rise to a certain level of 

optimism. It would be very interesting for future studies to focus on sensor dating in relation 

to well-being and related traits.  

 

Societal Impact  

 

Well-being and the prevention of Mental Illness 

Happy people are healthy people: they live longer, function better, and are less susceptible to 

mental illness
41

. Given the power and potential of happiness, the previous lack of insight into 

the causes of individual differences in happiness and the persistence of isolated approaches 

from different disciplines was surprising. With the work in my thesis I have added some 

pieces to the complex puzzle of well-being. As a future perspective, I anticipate that a focus 

on well-being could be very beneficial for the society at large. In the field of epidemiology, 

for example, it has been proposed that larger benefits to overall public health are to be 

expected when the bell curve of mental health in the human population is shifted a little to the 

healthy side, the so-called population strategy
75,76

. So, a relatively slight increase in the level 

of well-being of the majority of the population may have a larger preventive effect than 

targeting the much smaller group of people at high risk or in the early stages of mental illness. 

To this end, knowledge on the causes of individual differences in well-being and modifiable 

risk and protective factors is crucial.  

 

Support for the potential preventive role of well-being to prevent mental illness is provided in 

chapter 2, where I showed that the phenotypic relationship between well-being and 

depressive symptoms is largest in adolescence and young adults, with genetic effects 

explaining most of this correlation. In other words, a genetic predisposition for increased 

levels of well-being will probably have a protective effect in developing these depressive 

symptoms. In combination with the strong genetic correlations of well-being with depressive 

symptoms, neuroticism, loneliness, and self-rated health as reported in chapter 3,4, and 9, it 

might be worth to investigate the effects of positive psychology interventions for prevention 

of (mental) illness.  



 

To date, two meta-analyses that examined the overall effects of positive psychology 

interventions (PPI) have been published. The first meta-analysis
77

 included 51 controlled 

studies and found that PPI significantly enhance well-being (mean r = 0.29) and decrease 

depressive symptoms (r = 0.31). The second meta-analysis included 39 randomized controlled 

trial studies (N ~ 6,100)
78

, including PPIs such as self-help interventions, group training and 

individual therapy. They reported a standardized mean difference of 0.34 for subjective well-

being, 0.20 for psychological well-being and 0.23 for depressive symptoms. These effect sizes 

attenuated at follow up (3 to 6 months) but were still significant, indicating that effects are 

fairly sustainable. Together, these studies indicate that engaging in simple positive activities 

can reliably increase an individual’s level of well-being as well as decrease someone’s 

depressive symptoms. Given that there is some evidence that Positive Psychology 

interventions might be effective, it is essential to understand the causes of difference in 

intervention response. As a first step, Haworth and colleagues
79

 revealed minimal changes in 

the overall magnitude of genetic and environmental influence on individual differences during 

the intervention, despite significant improvements in overall well-being. They furthermore 

showed that the genetic factors important for intervention response were the same as those 

influencing baseline well-being scores. This indicates that the genetic findings in my thesis 

could be informative in the development of personalized positive prevention interventions. 

 

To conclude, during my PhD trajectory, I have witnessed the enormous progress the field of 

human genetics has made from the frontline. On this wave of progress, my work has 

contributed to a better understanding of the factors influencing phenotypic variation in well-

being, a phenotype that is affecting us all.  
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Nederlandse Samenvatting 



Dit proefschrift bestaat uit een aantal studies waarin onderzocht is waar individuele 

verschillen vandaan komen in welbevinden (WB) en gerelateerde menselijke eigenschappen, 

zoals depressieve symptomen (DS) en neuroticisme (NEU). Uit eerder onderzoek is gebleken 

dat WB erfelijk is, wat wil zeggen dat verschillen in WB voor een deel komen door 

verschillen in genetische aanleg. Echter, er is nog maar weinig bekend over de specifieke 

genetische factoren en biologische mechanismen die hier aan ten grondslag liggen. Daarom 

was het belangrijkste doel van mijn proefschrift om de genetische varianten, genen en 

biologische mechanismen te identificeren die geassocieerd zijn aan individuele verschillen in 

WB. Hoewel WB een verzamelterm is die ik in mijn proefschrift gebruik zijn er verschillende 

subtypen. Zodoende richt een deel van mijn onderzoek zich op tevredenheid van leven en 

kwaliteit van leven en je gelukkig voelen, terwijl een ander deel meer de nadruk legt op een 

betekenisvol leven.  

Tweelingstudies en de samenhang tussen welbevinden en depressieve symptomen 

In hoofdstuk 2 van mijn proefschrift laat ik aan de hand van een tweeling design zien dat 

genetische invloeden op WB (gemeten als kwaliteit van leven) even groot zijn op 

verschillende leeftijden. Zowel in kindertijd (7, 10 en 12 jaar), adolescentie (14, 16 jaar) en 

volwassenheid (18-27 en >27 jaar) verklaarden genetische factoren ongeveer 40 procent van 

de fenotypische variantie. Dit wil zeggen dat ongeveer 40% van de verschillen in WB tussen 

mensen verklaard worden door genetische verschillen. In dezelfde studie zagen we dat het 

genetisch effect op DS ook een stabiel karakter heeft. Ongeveer 55% van de fenotypische 

variantie in DS kan verklaard worden door genetische effecten. Als we kijken naar de relatie 

tussen WB en DS vonden we dat deze sterker werd in de adolescentie en jong volwassenheid 

ten opzichte van de kindertijd. Dit betekent dat individuen met een hoger WB lager scoorden 

op DS en vice versa. Daarnaast vonden we dat de relatie tussen WB en DS bij adolescenten en 

volwassenen voornamelijk verklaard wordt door genetische effecten. Tot slot onderzochten 

we of de set genen die een effect op WB hebben ook een effect op DS hebben, ook wel 

genetische correlatie genoemd. Hier vonden we wederom dat wanneer de leeftijd toenam, 

dezelfde genen een rol spelen bij zowel WB als DS.  

  



Genetische varianten voor welbevinden 

Van de resultaten beschreven in hoofdstuk 2 weten we dat genetische effecten een 

substantieel gedeelte van de fenotypische variantie in WB verklaren. In hoofdstuk 3 ga ik op 

zoek naar waar op het genoom de genetische varianten liggen die hier verantwoordelijk voor 

zijn. Dit heb ik, in een grootschalige internationale samenwerking, gedaan met een 

zogenaamde genoom-brede-associatie studie ook wel GWAS (Genome-wide Assocation 

Study) genoemd. Voor deze analyse hebben we gebruik gemaakt van een groep van ongeveer 

300,000 individuen waarbij DNA is afgenomen en hun WB is gemeten met verschillende 

vragenlijsten. Door het analyseren van miljoenen genetische varianten in deze grote groep, 

ook wel meta-analyse genoemd, konden we de eerste drie genetische varianten identificeren 

die robuust met WB geassocieerd zijn. Daarnaast vonden we in dezelfde studie de eerste twee 

genetische varianten geassocieerd met DS alsmede 11 genetische varianten geassocieerd met 

NEU. In vervolganalyses hebben we gekeken waar in het lichaam deze genetische varianten 

de meeste erfelijkheid verklaarden voor deze drie fenotypen. Voor zowel WB, DS als NEU 

vonden we dat de genetische varianten die tot expressie kwamen in het centrale zenuwstelsel 

meer van de erfelijkheid verklaarden dan genetische varianten die bijvoorbeeld tot expressie 

kwamen in andere delen van het lichaam zoals botten of spieren. Vervolgens hebben we 

gekeken naar de genetische overlap tussen de drie fenotypen. Een groot deel van de 

genetische varianten die een invloed hebben op WB hebben ook een effect op DS en NEU 

terwijl de genetische varianten die een effect hebben op DS ook een effect hebben op NEU. 

Dit betekent dat er vanuit een genetisch perspectief een sterke aanwijzing is dat er een 

gedeelde etiologie is voor de drie fenotypen.  

De laatste bevinding uit hoofdstuk 3 vormde het uitgangspunt van hoofdstuk 4 waar we twee 

nieuwe methoden ontwikkeld hebben die het mogelijk maken om fenotypen samen te 

analyseren. Dit levert een toename in statistische power op om genetische varianten te 

identificeren die geassocieerd zijn met hun gedeelde etiologie. Als we WB, DS en NEU 

afzonderlijk analyseerden, vonden we een totaal van 241 genetische varianten. Door het 

samen analyseren van deze drie fenotypen, het WB spectrum genoemd, vonden we 319 

genetische varianten, een toename van 32%. 

 

 



Daarnaast vonden we dat de genetische predictie, de voorspellende waarde van de gemeten 

genetische varianten om verschillen in bijvoorbeeld het WB spectrum te verklaren, met 38% 

toenam. In vervolg analyses hebben we bevestigd dat het centrale zenuwstelsel een rol speelt 

in de etiologie van het WB spectrum. Bovendien zijn we nu een stap verder gegaan door op 

zoek te gaan naar de locaties in de hersenen die daarbij betrokken zijn. Hier vonden we dat 

genen die tot uiting kwamen in de subiculum (behorend bij de hippocampale formatie) 

geassocieerd waren met het WB spectrum. De subiculum speelt een rol in onze reactie op 

stress. Als laatste hebben we gekeken welke cel typen in het brein betroken waren en vonden 

dat GABAergic interneuronen, betrokken bij informatieoverdracht, een mogelijke rol spelen. 

Samengenomen zijn zowel hoofdstuk 3 en 4 een goed voorbeeld van de enorme progressie 

die gemaakt is op het gebied van moleculaire genetica en de identificatie van genetische 

varianten geassocieerd met WB.  

Epi-genetica 

Naast genetische effecten spelen omgevingsfactoren ook een belangrijke rol bij het verklaren 

van verschillen in WB, zoals ook beschreven in hoofdstuk 2. Epigenetische regulatie van gen 

expressie door middel van DNA methylatie speelt mogelijkerwijs een mediërende rol tussen 

iemands genetische aanleg en de blootstelling aan omgevingsinvloeden. Met andere woorden, 

doordat iemand zich in een bepaalde omgeving bevindt (bijvoorbeeld chronische stress), kan 

er een methyl deeltje zich op het DNA bevestigen waardoor genen moeilijker worden 

afgelezen, wat kan leiden tot veranderingen in gevoelens en gedrag. In hoofdstuk 5 heb ik 

daarom de eerste epi-?genetische studie uitgevoerd in een groep van ongeveer 2,500 

tweelingen van het Nederlands Tweelingen Register. Bij deze mensen is bloed afgenomen 

waardoor we in staat waren om het epi-genetisch profiel in kaart te brengen op ongeveer 

450,000 locaties. Daarnaast is WB gemeten aan de hand van verschillende vragenlijsten. Deze 

studie, ook wel een epigenoom-brede associatie studie genoemd, werkt volgens hetzelfde 

principe als de studie beschreven in hoofdstuk 3. Echter, in plaats van dat we genetische 

varianten meten, kijken we naar methylatie-deeltjes op het genoom en proberen we die te 

linken aan verschillen in WB. Met deze methode konden we de eerste twee methylatie-

deeltjes identificeren die geassocieerd waren met WB. Hierbij moet wel in acht worden 

genomen dat deze studie in een relatief kleine groep (ongeveer 2,500 personen) is uitgevoerd, 

waardoor replicatie noodzakelijk is. Daarnaast is het belangrijk om te onderzoeken of 

methylatie, gemeten in bloed, relevant is voor fenotypen waar biologische processen 



voornamelijk in de hersenen afspelen, zoals we voor WB hebben aangetoond in hoofdstuk 3 

en hoofdstuk 4.  

In hoofdstuk 6 hebben we geprobeerd om op deze vragen antwoord te geven. Als eerste 

hebben we de onderzoeksgroep uit hoofdstuk 5 vergroot, door data van 12 verschillende 

onderzoeksgroepen samen te voegen. Hierdoor konden we het sample vergroten naar 

ongeveer 9,000 individuen waarvan het epi-genetisch profiel en WB is gemeten. Van al deze 

personen is het epigenetische profiel gemeten met behulp van een bloedsample. Vervolgens 

hebben we onderzocht of we de gemeten methyl-deeltjes konden linken aan WB. Echter, als 

we corrigeerden voor de gebruikelijke confounders zoals roken en BMI, konden we geen 

significante relatie vinden tussen methyl-deeltjes en WB. Op dit moment zijn we dus nog niet 

in staat om de resultaten van hoofdstuk 5 te repliceren. In het tweede deel van hoofdstuk 6 

hebben we onderzocht of methylatie gemeten in bloed ook informatief is voor fenotypen 

waarvan biologische processen voornamelijk in de hersenen afspelen. Hiervoor hebben we 

gebruik gemaakt van een dataset waarin methylatie gemeten is in het brein afkomstig van 

donoren. Door deze dataset te combineren met de resultaten van onze genoom-brede 

associatie studie van WB, vonden we op 1 locatie in de hersenen dat methylatie gelinkt kon 

worden aan WB. Vervolgens hebben we onderzocht of methylatie gemeten in bloed gelinkt 

kan worden aan methylatie gemeten in de hersenen. Als dit zo zou zijn zou je een positieve 

relatie verwachten. Met andere woorden, de effecten die gevonden zijn in bloed (uit het 

onderzoek met de 9000 mensen zoals hierboven beschreven) en uit de hersenen (uit het 

onderzoek met de breindonoren en de WB GWAS resultaten) komen overeen. Echter, deze 

relatie was niet significant. Dit geeft aan dat we op dit moment nog geen duidelijke conclusies 

kunnen trekken over mogelijke epigenetische processen voor WB. Het geeft tevens aan dat 

epigenetische processen in het bloed niet direct een afspiegeling zijn van epigenetische 

processen in de hersenen. Vervolgonderzoek is dan ook noodzakelijk om meer inzicht te 

krijgen in dit complexe samenspel tussen genetische aanleg, het tot uitkomen van genen, en 

invloeden uit de omgeving.  

Het raamwerk van welbevinden  

Tot zover hebben we meerdere genetische varianten kunnen linken aan WB (hoofdstuk 3 en 

4) en hebben we aangetoond dat WB is gerelateerd aan een scala van gedragseigenschappen 

zoals DS en NEU (hoofdstuk 2, 3, 4). Wat deze studies allemaal met elkaar gemeen hebben is 

dat ze WB meten met vragenlijsten over tevredenheid met leven en hoe gelukkig je bent, vaak 



ook wel subjectief welbevinden of subjectief well-being (SWB) genoemd. Echter, vanuit een 

historisch perspectief kunnen we twee verschillende typen WB van elkaar onderscheiden: 

SWB en psychologisch WB (PWB). Deze zijn gebaseerd op de filosofische stromingen 

hedonisch WB en eudaimonisch WB. Hedonisch WB draait vooral om het hebben van zoveel 

mogelijk plezier, of hoe goed een persoon zich over zijn of haar leven voelt. Eudaimonisch 

WB gaat meer over deugdzaamheid of een goed leven leiden. Hoewel de termen hedonisch en 

eudaimonisch WB langzaam zijn overgegaan in respectievelijk SWB en PWB, is er nog 

steeds een discussie over hoe deze twee concepten zich tot elkaar verhouden. Om een beter 

beeld te krijgen van het WB raamwerk hebben we in hoofdstuk 7 een literatuurstudie 

uitgevoerd waarin we de huidige standpunten ten opzichte van de relatie tussen SWB en PWB 

hebben onderzocht. Hier vonden we ondanks dat beide constructen erg aan elkaar gerelateerd 

zijn, ze niet compleet inwisselbaar zijn en dus van elkaar onderscheiden kunnen worden.  

Om de conclusie uit hoofdstuk 7 empirisch te testen hebben we in hoofdstuk 8 met behulp 

van data van meer dan 220 duizend individuen GWAS studies voor (1) eudaimonisch WB en 

(2) hedonisch WB uitgevoerd. Hierdoor waren we in staat om de eerste twee genetische 

varianten voor eudaimonisch WB te identificeren en zes genetische varianten voor hedonisch 

WB. Daarnaast hebben we gekeken naar de genetische samenhang tussen beide vormen van 

WB door de genetische correlatie te berekenen. Oftewel, hebben de genetische varianten die 

een effect hebben op hedonisch WB ook een effect op eudaimonisch WB. Hier vonden we 

inderdaad een grote positieve genetische correlatie, wat er op duidt dat er een grote overlap is 

tussen beide vormen van WB. Deze resultaten ondersteunen de bevindingen van de 

literatuurstudie zoals beschreven in hoofdstuk 7.  

Wellbevinden Spectrum 

Naast het WB spectrum zoals beschreven in hoofdstuk 4 kunnen er waarschijnlijk nog meer 

fenotypen aan WB gelinkt worden. Om dit te onderzoeken hebben we in hoofdstuk 9 

gekeken of we het WB spectrum konden uitbreiden. Als eerste hebben we een poly-

genetische score berekend door het effect van alle genetische varianten geassocieerd met het 

WB spectrum bij elkaar op te tellen. Deze score hebben we vervolgens gebruikt om fenotypen 

te voorspellen die eerder gelinkt zijn aan WB. Hiervoor hebben we onder andere data gebruikt 

van eenzaamheid, verschillende vormen van persoonlijkheid en gezondheid (zelf beoordeeld). 

Daarnaast hebben we de genetische correlatie tussen het WB spectrum en deze fenotypen 

berekent. Van alle fenotypen vonden we dat vooral eenzaamheid en gezondheid (zelf 



beoordeeld) een sterke relatie met het WB spectrum hebben en mogelijk extra inzicht geven 

in de factoren die van invloed zijn op verschillen in WB tussen mensen. 

Conclusie 

Gelukkige mensen zijn gezonde mensen: ze leven langer, functioneren beter en zijn minder 

vatbaar voor mentale aandoeningen. Gegeven deze voordelen, is het enigszins 

verbazingwekkend dat er zo weinig onderzoek is gedaan naar de oorzaken van individuele 

verschillen in WB. Het werk in mijn proefschrift heeft bijgedragen aan een beter begrip van 

de verschillende factoren die van invloed zijn op WB. Voor de toekomst verwacht ik dat een 

focus op WB van groot nut kan zijn voor de samenleving. Verschillende studies hebben al 

aangetoond dat een kleine toename in WB bij de algemene populatie een groot preventief 

effect heeft op de ontwikkeling van mentale aandoeningen. Om dit te bewerkstellingen is 

kennis over de oorzaken van individuele verschillen in WB en het in kaart brengen van 

risicofactoren en beschermende factoren cruciaal. 

  

 


