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A 5-single nucleotide polymorphism (SNP) set has been associated with general cognitive ability in 5000
7-year-old children from the Twins Early Development Study (TEDS). Four of these SNPs were identified
through a 10 K microarray analysis and one was identified through a targeted analysis of brain-expressed
genes. The present study tested this association with general cognitive ability in six population samples of
varying size and age from Australia, the UK (Scotland and England) and the Netherlands. Results from the
largest sample (N¼1310) approached significance (P¼ 0.06) in the direction of the original finding, but
results from the other samples (N¼205–758) were mixed. A meta-analysis of the results – allowing for
effect size heterogeneity between samples – yielded a non-significant correlation (r¼�0.01, P¼0.57),
indicating that this SNP set was not associated with general cognitive ability in the populations studied.
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Introduction
Cognitive abilities are partly heritable and findings gen-

erally show an increase in the influence of genes on mental

abilities across the lifespan; heritability estimates of around

0.30 in childhood increase to 0.80 in old age.1,2 Molecular

genetic studies of cognitive abilities report genetic

associations with specific cognitive abilities3,4 and with

general cognitive ability.5,6 – 8 General cognitive ability

captures the covariation between diverse cognitive abil-

ities, and it has been proposed that this covariation reflects

underlying ‘generalist genes’, affecting many cognitive

abilities.9 Using an approach based on single nucleotide

polymorphism (SNP) microarrays (B11 000 SNPs) and DNA

pooling, Butcher et al,10 reported an association between

four SNPs and general cognitive ability (g) in 6154 children

aged 7 years. These associations were confirmed by

individual genotyping and explained 0.76% of variance

in g when they were scored in the direction of a positive

association with g and summed to form a composite score.

The minor allele of each SNP conferred the greater risk for

low g scores. Both dominance and epistasis effects were
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shown not to contribute considerably to the prediction of

g, and therefore the composite measure was formed

assuming an additive model (ie, using scores of 0, 1 and

2 for respective A1A1, A1A2 and A2A2 genotypes).

An SNP previously identified from a scan of 432 brain-

expressed polymorphisms6 was later added to this set to

form a 5-SNP set explaining 0.86% of variance in g in a

largely overlapping sample (Po0.001); this SNP set was

slightly more strongly correlated with verbal (r2¼0.097,

Po0.001) than non-verbal ability (r2¼0.048, P¼0.001).

Furthermore, there was evidence that the SNP set explained

17% of the stable genetic variation between g at age 2

(assessed by a parentally administered cognitive test) and 7

(measured by a telephone administered form of the WISC-

III-UK) years. So far, association of this SNP set has been

tested only in the Twins Early Development Study (TEDS)

sample, although longitudinally. Our aim therefore was to

replicate this SNP set association with cognitive ability in

six independent samples from Australia, the Netherlands,

Scotland and England. The samples were of varying age,

measured with diverse cognitive abilities tests and we have

focused on general cognitive ability to attain the most

similar and reliable cognitive index across cohorts. The

5-SNP set includes: rs1136141, located in heat-shock

cognate protein 8 gene (HSPA8) on 11q; rs991684 on

chromosome 2, near two known genes and perhaps is itself

in a gene; rs726523 (chromosome 18), rs4128492 (chromo-

some 6) and rs2382591 (chromosome 7), not located in

known genes.

Materials and methods
Samples
Australian cohort Twins and their non-twin siblings

were initially recruited as part of ongoing studies of

melanoma risk factors and cognition.11,12 The sample

included 1310 individuals (49.2% male) from 641 families

(248 monozygotic [MZ] families with an additional 64 non-

twin siblings, 393 dizygotic [DZ] with 111 non-twin

siblings). Participants ranged in age from 15 to 22 years

(mean age: 16.2±0.4 for twins; 17.4±1.13 for siblings),

with the majority of the sample being Caucasian, pre-

dominantly Anglo-Celtic. Written informed consent was

obtained from each participant and their parent/guardian

(if o18 years) before testing.

Dutch cohorts (children, adult) The Dutch children

cohort was part of an ongoing study on the genetics of

attention,2 who were born between 1990 and 1992 and

measured on IQ at ages 5 and 12 years. There were 379

individuals (179 males) from 166 families with phenotype

and genotype data. At 5 years, 85 MZ and 73 DZ twin pairs

participated (mean age of 5.8 years±0.1), while at 12 years

an additional 5 DZ twins pairs and 48 non-twin siblings of

twins participated. On second assessment twins were aged

12.4±0.16 years, with younger siblings being on an

average 9.6±0.71 and older siblings being 14.69±0.60.

Before the assessment, the parents provided signed in-

formed consent, including a voluntary agreement to

provide buccal swabs for DNA isolation and genotyping.

The Dutch adult cohort was part of an ongoing study on

the genetics of brain function13 and consisted of 361

subjects (168 males) from 174 families. There were 42 MZ

pairs, 61 DZ pairs, 1 DZ triplet and 152 siblings. Mean age

at the time of testing was 36.4±12.4 years. Participants

voluntarily agreed to donate blood for DNA study.

Scottish cohorts (Lothian, Aberdeen) Recruitment of

Lothian Birth Cohort 1921 (LBC1921) has been described

previously.14 Briefly, the LBC1921 consisted of 526 subjects

(219 males) with both phenotype and genotype data; they

had participated in the Scottish Mental Survey of 1932 at

the age of 11 years, and were retested between 1999 and

2001 at a mean age of 79. All participants lived indepen-

dently in the community. For this study, inclusion criteria

were no history of dementia and a Mini-Mental State

Examination (MMSE) score of 24 or greater. Recruitment of

the Aberdeen Birth Cohort 1936 (ABC1936) has been

described previously,14 genotype data were available for

205 subjects (109 males) who took the Scottish Mental

Survey of 1947 at the age of 11 years, and were retested at

age 64. All participants lived independently in the com-

munity. Inclusion criteria were the same as for LBC1921.

Ethics permission was granted from the Lothian and

Grampian Research Ethics Committees, respectively, for

the LBC1921 and the ABC1936 and all subjects gave

written, informed consent to the study.

English cohort The 758 Caucasian volunteers involved in

this study form part of the Dyne Steele DNA bank for

cognitive genetic studies and comprise 234 males and 524

females. On entry to the study, the age range was 50–85

years and the mean age was 63 years. Cognitive tests

were given at five yearly intervals up to 15 years later. At

the beginning of the study, all volunteers achieved the

maximum score on the MMSE, and at the time of

venesection (11–15 years later), cognitive tests indicated

no sign of dementia. Recruitment and sample composition

details are described elsewhere.15 Volunteers gave written

consent for the use of their DNA.

TEDS Caucasian participants without serious medical or

perinatal problems were drawn from a subsample of 7410

twins from the TEDS16 who took part in a study of pooled

DNA genotyped on microarrays.10 Of these, 6154 had

general cognitive ability data and 4836 of these had

complete genotyping data for the 5-SNPs. Of the 4836

individuals, 1516 were MZ pairs (421 girl pairs, 674 boy),

17 were unpaired MZ twins (7 girls, 10 boys), 1816 were

same-sex DZ pairs (470 girl pairs, 438 boy), 1144 were in
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opposite-sex DZ pairs and 343 were unpaired DZ twins (173

girls, 170 boys).

Measures
Australian cohort IQ data were collected in the labora-

tory using the shortened version of the Multidimensional

Aptitude Battery: three verbal subtests, (information,

arithmetic, vocabulary) and two performance subtests

(spatial, object assembly). Scaled scores for Full IQ were

calculated following the manual instructions.

Dutch cohorts For the Dutch children cohort at age 5,

IQ was assessed with a shortened version of the RAKIT, a

Dutch intelligence test:17 exclusion, discs, hidden figures,

verbal meaning, learning names and idea production. At

age 12, IQ was assessed with the Dutch adaptation of the

WISC-R18 using a shortened version (similarities, vocabu-

lary, arithmetic, digit span, block design and object

assembly). For the Dutch adult cohort, cognitive ability

was assessed with the Dutch adaptation of the WAIS-IIR.19

Scottish cohorts All LBC1921 and ABC1936 subjects

took a version of the Moray House Test, No. 2

(MHT20,21), a general mental ability test at 11 years, in

the Scottish Mental Surveys of 1932 and 1947, respectively.

The test was previously described in detail.14 LBC1921

repeated the same test at about 79 years, along with the

Raven’s Standard Progressive Matrices a measure of

non-verbal reasoning,22 the Wechsler logical memory test,

a test of verbal fluency and the National Adult Reading Test

(NART), which provides an estimate of prior IQ.23,24 The

ABC1936 was retested at about 64 years on the Raven and

the NART. The MHT scores were used to index g at age 11 in

both cohorts. In the LBC1921 at 79 years, regression factor

scores of the first unrotated principal component extracted

from the five tests were taken as the measure of g derived in

SPSS,25 while in the ABC1936 at 64 years, the two measures

were standardised and summed to attain a global cognitive

ability measure.

English cohort Tests of fluid intelligence comprised the

Heim intelligence tests parts one and two.26 Processing

speed was assessed using the random letters test. A series of

memory tests measured semantic memory, immediate

verbal recall and delayed verbal recall. A general factor

was extracted from these tests and regression factor scores

used as a measure of g (as previously described). Measures

of full scale IQ and g have been shown to be strongly

correlated (B0.90) in previous research.27 As this was an

ageing sample, data at the first time point only were

investigated to avoid confounding of differential cognitive

decline due to dementia.

TEDS Two verbal subtests – Vocabulary, Similarities

WISC-III-UK,28 – and two non-verbal subtests – Picture

Completion (WISC-III-UK), Conceptual Grouping McCarthy

Scales of Children’s Abilities,29 were administered via

telephone.30 Subtest scores were standardised on the full

sample and summed to create g scale scores.

Genotyping
Australian cohort Assays for the five SNPs (rs4128492,

rs2382591, rs726523, rs1136141, rs991684) were designed

using MassARRAY Assay Design software (version 3.0;

Sequenom Inc., San Diego, CA) and typed using iPLEXt

chemistry on a Compact MALDI-TOF Mass Spectrometer

(Sequenom Inc., San Diego, CA). Forward and reverse PCR

primers and a primer extension probes were purchased

from Bioneer Corporation (Daejeon, Korea). The iPLEX

reaction products were desalted by diluting samples with

18 ml of water and 3ml of resin to optimise mass spectro-

metric analysis and then spotted on a SpectroChip

(Sequenom), processed and analysed by the MassARRAY

Workstation software (version 3.3; Sequenom). Assay

quality and genotype calls were assessed in the Spectro-

TYPER software (version 3.3; Sequenom). The genotypes

for one assay (rs4128492) could not be accurately user-

called and was excluded from analysis.

Dutch cohort Genotyping was performed blind to

familial status and phenotypic data. Both MZ twins of a

pair were included, serving as additional quality control on

genotyping. Genotyping was performed using fluorogenic

probes in the high-throughput 50-nuclease assay (TaqMan,

PE Applied Biosystems, Foster city, CA), which combines

polymerase chain reaction amplification and detection

into a single step. The assay requires two allele-specific

probes, which labelled two alleles with different fluores-

cent reporter dyes for discrimination. Following allele-

specific hybridisation, the detection probe is cleaved

during each amplification cycle by the 50-exonuclease

activity of Taq DNA polymerase if the probe’s target

sequence is present. No TaqMan assay for rs1136141 could

be designed due to the presence of a nearby SNP, and the

TaqMan assay for rs4128492 failed.

Scottish and English cohorts The Sequenom Mass

ArrayTM (Sequenom Inc., Germany) was used for genotyping

SNPs in all cohorts, with the exception of rs4128492 in

the Scottish cohorts. PCR iPLEX oligoprimers were de-

signed and optimised using MassARRAY Assay Design

software v.3.0. PCR reaction mix (5 ml) consisted of 2.92 ml

deionized water, 0.625 ml 10� HotStar Taq PCR Buffer

(15 mM MgCl2), 0.325ml 25 mM MgCl2, 0.1 ml dNTPs 25 mM

each, 0.03 ml HotStar Taq Polymerase (QIAgen) (5 U/ml),

1.0 ml Forward and Reverse Primer Mix (500 nm each) and

25 ng of genomic DNA. PCR cycles: 951C 15 min followed

by 951C 20 s, 561C 30 s, 721C 60 s (35 cycles) and finally

721C for 3 min. In the Scottish cohorts, rs4128492 was

genotyped at the Wellcome Trust Clinical Research Facility
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Genetics Core, Western General Hospital, Edinburgh

(http://www. wtcrf.ed.ac.uk/genetics/index.htm) using TaqMan

technology (Applied Biosystems).

TEDS Individual genotyping and allele calling for the

TEDS cohort was outsourced to Kbiosciences, UK, who use

a mixture of competitive allele specific PCR (KASPar) and

TaqMan genotyping assays (http://www.kbioscience.co. uk/).

Kbioscience consider an assay successful if four quality

control criteria are met: (1) three distinct clusters, (2) water

controls must be negative, (3) number of genotypes callable

must be 490% and (4) minor allele frequency should be

greater than 2%.

Genotype error checking, including Mendelian incon-

sistencies, and tests of Hardy–Weinberg equilibrium were

performed in MERLIN (http://www.sph.umich.edu/csg/

abecasis/Merlin,31) and Sib-pair (http://www2.qimr.edu.au/

davidD/sib-pair.html,32).

Association analyses

To calculate the SNP set score, the genotypes for each of the

SNPs was recoded so that the decreaser allele homozygote

was assigned a value of 0, the heterozygote assumed a value

of 1 and the increaser allele homozygote was assigned a

value of 2. These values were then summed across SNPs

to derive an SNP set score. Association analyses were

performed in Mx,33 which uses a maximum likelihood

procedure to estimate parameters in a means model (to test

the association effect). The means model included the

fixed effects of relevant covariates in addition to a linear

regression term for the SNP set effect. As SNPs were scored

in the direction of the increaser allele, a positive correla-

tion between g and the SNP set was expected irrespective

of the differing number of SNPs contained in each set

between cohorts (this varied from three to five).

In the Australian, Dutch and TEDS cohorts, the twin

relationship was modelled in the covariance structure,

separately for MZ and DZ twins, to account for the non-

independence of siblings within a family. For the Dutch

child cohort, the covariance between time points was

further modelled to account for the longitudinal nature of

the data. Likewise, the covariance between time points was

modelled in the Scottish cohorts. To test the significance

of the SNP set effect, the linear regression term for this

measure was fixed to zero and the resulting model was

compared to the model in which the regression term was

estimated, using the likelihood ratio w2-test. The difference

in �2-log likelihood between these models is distributed as

a w2 with the degrees of freedom equal to the difference in

degrees of freedom between the two models (ie, 1 for the

SNP set effect). The power to detect an effect size of 0.8%

(given an average marker allele frequency of 0.35) was 88%

in the Australian sample, 70% in the English sample, 54%

in the LBC1921, 40% in the Dutch adults, 34% in the

Dutch children and 25% in the ABC1936. The power to

detect the smaller, individual SNP effects was much lower.

A meta-analysis of the results excluding the TEDS sample

was performed using the Comprehensive Meta-analysis

package.34 The correlation was used as the effect size

measure and a random effects model was specified to

account for systematic differences between the sampled

populations.

As the original finding was reported in children, we

analysed the SNP set effect separately for young (Dutch,

LBC1921, ABC1936 children, Australian adolescents) and

old (Dutch, LBC1921, ABC1936, English adults) cohorts.

We further estimated the SNP set association with g

separately for males and females because of a report that

the g SNP set association is significantly stronger in males

than females at age 10.35

Results
Genotype screening showed that the population was not in

Hardy–Weinberg equilibrium (P¼ 0.005) at SNP rs1136141

in the Australian sample, with heterozygote genotypes under-

represented. No other deviations from Hardy–Weinberg

(Po0.01) were observed in any of the other samples.

With such a large number of independent tests performed

(3–5 SNPs in six samples), it is probable that the deviation

in the Australian sample was a false positive, so this SNP

was retained for further analysis (note that analyses

excluding this SNP from the SNP set score produced

consistent results – data not shown). Allele frequencies

for the five SNPs were consistent with reported frequency

data in Caucasians, and did not differ between cohorts (see

Table 1). The frequency distribution of the SNP set score

Table 1 Minor allele frequencies for the 5 SNPs in each of the six replicate cohorts and in the original TEDS cohort

Ch Australian English Scottish ABC1936 Scottish LBC1921 Dutch children Dutch adults TEDS

rs991684 2 A*G 0.30 0.29 0.30 0.28 0.31 0.29 0.28
rs4128492 6 AG* F 0.24 0.22 0.24 F F 0.24
rs2382591 7 A*C 0.16 0.14 0.17 0.15 0.15 0.15 0.16
rs726523 18 GA* 0.23 0.24 0.24 0.24 0.22 0.22 0.23
rs1136141 11 GA* 0.14 0.13 0.14 0.15 F F 0.14

Note: *represents minor allele; F represents SNPs that failed genotyping procedures.
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was consistent with the distribution reported in the TEDS

sample, displaying a slight negative skew.

Significant mean effects were shown for sex, months of

schooling, and sibling status (twin versus non-twin sibling)

in the Australian cohort, with males scoring higher than

females, a greater amount of schooling relating to better

test performance and non-twin siblings scoring higher

than twins. In the Dutch child cohort, there were no sex

differences at age 5, although boys scored higher than girls

at age 12. In the Dutch adult cohort, men scored higher

than women and age was negatively correlated with g. In

the Scottish cohorts, age in days was positively associated

with g at 11 years in the ABC1936 and negatively

associated with g at 79 years in the LBC1921. Age and

socio-economic status (SES) were significant in the English

cohort, with younger participants performing better and

higher SES relating to increased cognitive test performance.

The tests of association were modelled with inclusion of

the relevant covariates or performed using covariate-

adjusted scores (standardised residuals).

The SNP set correlations and their 95% confidence

intervals are shown in Table 2, separately for each cohort,

and for the meta-analysis excluding TEDS. The largest

sample (Australian) showed a marginally significant

(P¼0.06) effect in the expected direction; however, the

results for the other studies were mixed – half showed

positive results and the other half showed negative results.

A significant association in the same direction as the initial

TEDS finding was observed in the ABC1936 at 64 years

(r¼0.10, P¼ 0.02); while in the LBC1921 at 11 years a

significant association (r¼�0.11, P¼0.01) in the reverse

direction was found. Positive and negative correlations

between g and SNP set score occurred with roughly equal

frequency. A homogeneity test (using the w2- statistic) of

the effect size between samples was significant (Po0.001)

indicating that the effect size differed between cohorts. The

meta-analysis of the results that allowed for systematic and

unsystematic differences in effect size between cohorts

showed a non-significant correlation of �0.01 (P¼0.57).

Despite reduced power, the effect of individual SNPs was

tested within each cohort. No significant association was

found for markers rs726523 and rs1136141 in any of the

cohorts. For rs991684, a significant association (r¼0.13,

P¼0.007) in the hypothesised direction was found in the

ABC1936 cohort at 64 years. For rs4128492 and rs2382591,

respective correlations of �0.10 (P¼0.007) and �0.09

(P¼0.16) were found in the English cohort, with the

direction of the effect being inconsistent with the original

finding in the TEDS sample.

Age effects were estimated by fixing the SNP set

regression coefficient equal within young replicate cohorts

(Australian, Dutch children, LBC1921 and ABC1936 at 11

Table 2 SNP set associations with g in TEDS, the six replicate cohorts, and the meta-analysis of all cohorts excluding TEDS

Cohort Na SNP correlation 95% CI P-value SNP correlation and 95% CIs

TEDS 4836 0.08 (0.05, 0.11) 0.000

0.0 0.5 1.0-0.5-1.0

Dutch 5 years 369 0.05 (�0.07, 0.17) 0.389

Dutch 12 years 379 �0.04 (�0.14, 0.05) 0.141

Australian 1310 0.06 (0.00, 0.12) 0.063

LBC1921 11 years 526 �0.11 (�0.02, �0.20) 0.009

LBC1921 79 years 526 �0.07 (�0.16, 0.02) 0.074

ABC1936 11 years 205 0.05 (�0.05, 0.14) 0.330

ABC1936 64 years 205 0.10 (0.01, 0.20) 0.022

English 758 �0.07 (�0.15, 0.00) 0.053

Dutch adult 361 �0.07 (�0.19, 0.05) 0.225

Meta-analysis 3539 �0.01 (�0.06, 0.03) 0.570

aN contains MZ pairs for TEDS, Dutch and Australian cohorts.
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years) and old replicate cohorts (English, Dutch adults,

LBC1921 and ABC1936 adults). The test of the homo-

geneity of the SNP set effect within young and old cohorts

was significant (Po0.01). Nevertheless, the test of associa-

tion in both young and old cohorts was not significant

(P¼1). The sex analyses of the SNP set showed negative

association (r¼�0.03) for males in the ABC1936 (P¼0.01)

at 11 years and positive association (r¼ 0.04) for females in

the Dutch children at age 5 (P¼0.04). Positive correlations

were found in the ABC1936 (P¼0.04) at 64 years in females

(r¼0.13) and males (r¼0.07).

Discussion
This is the first study to attempt replication of a 5-SNP set

influencing general cognitive ability.36 These SNPs were

originally identified through DNA pooling comparing low

and high groups in microarray analysis selected from a

large sample of children and confirmed using individual

genotyping in the entire sample. Our study showed that in

six population-based samples, the SNP set effect (in the

expected direction) was replicated in one cohort. In a

further cohort significant association was observed, but the

SNP set effect was in the reverse direction to that expected.

A meta-analysis of these results did not support an

association between the SNP set and g.

Empirical tests of the equality of the SNP set b-coefficient

showed significant heterogeneity in the effect size between

the cohorts. Our more focussed analyses showed that

neither sex nor age could explain these differences in effect

size as heterogeneity was also observed within samples of

the same sex and of similar age. The SNP set was not related

to g in either young or old pooled samples nor was an

enhanced effect of the SNP set effect observed in males

(positive correlations were found in female and male

groups or in females only). The original SNP set effect

was shown in the TEDS cohort at ages 2, 4 and 7. In the

cohort most comparable to the TEDS sample, the Dutch

cohort measured at age 5, the correlation was positive

(r¼0.05), though not significant. Given the low power of

this sample, it remains possible that the SNP set effect is

important in early childhood. There is some evidence for

different genes affecting IQ in the TEDS sample during

childhood although most genetic effects are stable from

year to year;37,38 research in Dutch samples supports a

largely stable influence of genes on IQ at ages 5 and

12 (with amplification of genetic effects during

development).2,39

Other explanations for the variation in the size of the

SNP set effect between the cohorts were sought. The use of

diverse cognitive measures might have been a factor,

especially if the SNP set influences variation on some

measures more than others. The original finding in TEDS

reported a stronger relationship with verbal than non-

verbal ability. In our cohorts, the g factor was extracted

using different test batteries with some g factors therefore

tapping more verbal ability variance than others; it is

unclear to what extent the g factor between studies is

measuring the same underlying processes. Another factor

contributing to variability of the effect might be differences

in the SNP set size tested (due to failed genotyping) across

samples, with restriction in range of the SNP set size

leading to attenuated correlations in the samples with

missing genotype data.

While the finding of negative associations was unex-

pected, this ‘flip-flop’ association is not uncommon in

replication studies of SNPs40 and may stem from epistatic

effects in which other interacting alleles at unobserved loci

have different frequencies across the different populations.

It must be noted that a higher number of tests were

significant (9) than expected by chance (4), with five of

these in the predicted direction; furthermore, 5 out of 9

tests for the SNP set analyses showed a P-value less than

0.10. It is possible then that the SNP set has predictive

validity when coupled with other unidentified SNPs

contributing to g.

The SNP set approach appears as a reasonable method to

test for the association of multiple gene effects on a trait,

reducing problems associated with multiple testing of

individual genes and with detecting very small effect sizes

of individual SNPs. However, the approach assumes that

individual SNPs in a set contribute equal amounts of

variance to a trait. When allele frequencies differ between

SNPs, those SNPs with greater heterozygosity will carry a

larger influence on the SNP set score. In this study, allele

frequencies of the SNPs were similar, with little expected

bias in the results. For future analyses of SNP set scores, it

may be useful to weigh the SNPs by their effect size.

The present study highlights the importance of replica-

tion studies, and what will be an increasing need for them

in light of the burgeoning era of genome-wide association

(GWA) studies. This is especially so for two reasons. First,

given that GWA studies now incorporate hundreds of

thousands of SNPs rather than the 10 000 used in the

original TEDS study; while these studies will have more

success in finding true genetic variants they will also detect

a larger number of associations due to chance. Second,

although GWA studies can reliably detect large effect sizes

as in the early exciting report for age-related macular

degeneration,41 the largest effects in recent GWA studies

such as the Wellcome Trust Case Control Consortium42 are

very small, which will be difficult to replicate. Although

the TEDS two-stage design had considerable power to

detect small effects, the effect sizes of the associations that

were detected were smaller than warranted by the power of

the design. In other words, although GWA studies will

easily detect any large effects, identifying the ‘best of the

rest’ will be challenging. Demands for power will be just as

daunting for replication studies. An innovation of the
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TEDS study was to aggregate candidate SNPs of small effect

size together in an additive SNP set which can be tested for

replication with greater power; however, the SNP set is only

as good as its constituent SNPs.

In our meta-analysis, which allowed heterogeneity of the

SNP set effect between samples, the SNP set was not

correlated with g. While the SNP set is not related to

general cognitive ability in the cohorts we tested, the ideal

replication study would be the one conducted in a large

sample of children more closely matched in age to that of

the TEDS and using the same cognitive measures.
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