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The human brain is active during rest and hierarchically organized into intrinsic functional networks. These
functional networks are largely established early in development, with reports of a shift from a local to more
distributed organization during childhood and adolescence. It remains unknown to what extent genetic and
environmental influences on functional connectivity change throughout adolescent development. We measured
functional connectivity within and between eight cortical networks in a longitudinal resting-state fMRI study of
adolescent twins and their older siblings on two occasions (mean ages 13 and 18 years). We modelled the reli-
ability for these inherently noisy and head-motion sensitive measurements by analyzing data from split-half
sessions. Functional connectivity between resting-state networks decreased with age whereas functional connec-
tivity within resting-state networks generally increased with age, independent of general cognitive functioning.
Sex effects were sparse, with stronger functional connectivity in the default mode network for girls compared to
boys, and stronger functional connectivity in the salience network for boys compared to girls. Heritability
explained up to 53% of the variation in functional connectivity within and between resting-state networks, and
common environment explained up to 33%. Genetic influences on functional connectivity remained stable during
adolescent development. In conclusion, longitudinal age-related changes in functional connectivity within and
between cortical resting-state networks are subtle but wide-spread throughout adolescence. Genes play a
considerable role in explaining individual variation in functional connectivity with mostly stable influences
throughout adolescence.
1. Introduction

The human brain is active during rest (Biswal et al., 1995, 1997).
Data-driven approaches have been applied to resting-state functional
MRI scans to obtain spatial patterns of temporally coherent signals that
divide the brain into distinct intrinsic functional networks (DeLuca et al.,
2005; Fox et al., 2005; Power et al., 2011; van den Heuvel and Hulshoff
Pol, 2010; Yeo et al., 2011). The hierarchical organization of these
functional networks is already present around birth. Primary functional
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networks, such as the sensorimotor, visual, and auditory networks are the
first to develop in utero (Gilmore et al., 2018; Keunen et al., 2017;
Thomason et al., 2015). After birth, the default mode network (DMN),
dorsal mode network (DAN), and salience network (SN) mature into
“adult-like” networks by the age of two years (Gao et al., 2011; Gilmore
et al., 2018; Keunen et al., 2017). The executive control network (ECN)
matures later on in life, in line with the protracted development of ex-
ecutive functions during childhood and adolescence (Gilmore et al.,
2018; Zhang et al., 2017). These functional networks can be reliably
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identified in children and adolescents aged 9–15 years for both
short-term (i.e. consecutive scan sessions) and long-term repeated mea-
sures at 2.5 years interval (Thomason et al., 2011). Thus, by adolescence,
these spatially distributed and functionally linked brain regions that
share information already closely resemble their adult state.

Cross-sectional studies have provided indications that functional
connectivity of the human brain is undergoing subtle alterations during
childhood and adolescence (for reviews see Cao et al., 2016; Ernst et al.,
2015; Grayson and Fair, 2017; Stevens, 2016). Based on these
cross-sectional studies, it is generally believed that the functional brain
shifts from a local to a more distributed organization (Cao et al., 2016;
Ernst et al., 2015; Fair et al., 2009; Menon, 2013). This is supported by
decreases in functional connectivity separating functionally distinct re-
gions (i.e. segregation), and increases in functional connectivity
improving communication between functionally related regions (i.e.
integration) (Cao et al., 2014; Dosenbach et al., 2010; Fair et al., 2009,
2008; 2007; Gu et al., 2015; Kelly et al., 2009; Marek et al., 2015; Sato
et al., 2014; Supekar et al., 2009; Uddin et al., 2011; Wig, 2017). The
processes of segregation and integration are reflected in graph theoretical
metrics by a decrease in local clustering coefficient, an increase in
modularity, and an increase in global efficiency, and are furthermore
accompanied by the emerging of hubs of increasing importance (i.e.
consolidation of the network into rich-club networks) that shift from
primary to higher order cortical regions (Cao et al., 2016, 2014; Grayson
et al., 2014; Hwang et al., 2013; Sato et al., 2014, 2015; Supekar et al.,
2009; Wu et al., 2013; Zuo et al., 2011). However, results are inconsistent
regarding the direction of change and affected regions (Stevens, 2016). In
part, this may be due to the limited ability of cross-sectional studies to
control for inter-individual variation (i.e. the “cohort effect”) and are
thereby restricted in their interpretation of “true” development (i.e.
within subject developmental trajectories). In contrast, longitudinal
studies acquire repeated measures of the same individuals and can utilize
these measures as control to measure development changes over time
within the individual (Crone and Elzinga, 2015; Mills and Tamnes, 2014;
Telzer et al., 2018). Longitudinal studies on resting-state or
task-regressed functional connectivity in typically developing children
and adolescents (aged 9–15 years) reveal high levels of consistency and
Table 1
Studies on longitudinal development of cortical resting-state or task-regressed funct
midrange age at baseline of each cohort.

Study Sample Longitudinal

Long et al. (2017) Nsubject¼ 44 (17F)
Agebaseline¼ 2–6 years

Nwaves¼ 5
Interval¼ 1 years

Xiao et al. (2016) Nsubject¼ 53 (26F)
Agebaseline¼ 5–6 years

Nwaves¼ 2
Interval¼ 1 year

Sherman et al. (2014) Nsubject¼ 45 (24F)
Agebaseline¼ 10 years

Nwaves¼ 2
Interval¼ 3 years

Sylvester et al. (2017) Nsubject¼ 147 (71F)
Agebaseline¼ 8–13 years

Nwaves¼ 3
Interval¼ 1 year

Wendelken et al. (2016) Nsubject¼ 132 (56F)
Agebaseline¼ 6–18 years

Nwaves¼ 2
Interval¼ 1.5 years

Wendelken et al. (2017) [1] Nsubject¼ 523 (254F)
Agebaseline¼ 6–22 years

Nwaves¼ 2, 3, and 2
Interval¼ 1.5, 1.3, and 4 years

Strikwerda-Brown et al. (2015) Nsubject¼ 56 (25F)
Agebaseline¼ 16 years

Nwaves¼ 2
Interval¼ 2 years

Bernard et al. (2016) Nsubject¼ 23 (13F)
Agebaseline¼ 12–21 years

Nwaves¼ 2
Interval¼ 1 year

Symbols: ↘ decreasing with age; ↗ increasing with age; ⥊ stable across ages.
DMN¼ default mode network; IFS¼ inferior frontal sulcus; AG¼ angular gyrus; FC
IPL¼ inferior parietal lobule; mPFC¼medial prefrontal cortex; PCC¼ precuneus; RLP
SN¼ salience network; SPL¼ superior parietal lobule; STG¼ superior temporal gyrus;
collaboration between three cohorts to replicate original findings from Wendelken et
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stability of functional connectivity estimates within and between several
cortical resting-state networks over a 2–3 years interval (Thomason et al.,
2011). There are reports of longitudinal age-related increases in func-
tional connectivity (or integration) within several networks (Bernard
et al., 2016; Long et al., 2017; Sherman et al., 2014; Sylvester et al., 2017;
Wendelken et al., 2017, 2016). However, age-related decrease in func-
tional connectivity (or segregation) within (Sylvester et al., 2017; Wen-
delken et al., 2016) and between networks have also been reported
(Sherman et al., 2014), as well as mixed results reported for
cortical-subcortical connectivity (Jalbrzikowski et al., 2017; Peters et al.,
2017; Strikwerda-Brown et al., 2015). Thus, although functional brain
connectivity during childhood and adolescence is largely stable and
adult-like, there are several indications from longitudinal studies of
reorganization of functional cortical networks during childhood and
adolescent development (Table 1).

Genes partly control individual differences in brain functioning, at
least in adults (Blokland et al., 2012; Douet et al., 2014; Jansen et al.,
2015; Thompson et al., 2010; Richmond et al., 2016; Thompson et al.,
2013). Heritability estimates for functional connectivity within the
default mode network range from 10% to 80%, depending on the pop-
ulation and methodology used, and typically identify connections
involving the posterior cingulate cortex (PCC) and bilateral parietal
cortices (LLP and RLP) as strongest heritable connections (Adhikari et al.,
2018a; Fu et al., 2015; Ge et al., 2017; Glahn et al., 2010; Korgaonkar
et al., 2014; Meda et al., 2014; Sudre et al., 2017; Yang et al., 2016,
Table 2). Findings in children and adolescents are still sparse. We were
among the first to report that genes explain up to 40% of individual
difference in brain activity during resting-state at the age of 12 years (van
den Heuvel et al., 2013). These findings were confirmed and extended for
cortical-subcortical connections in younger children, aged 7–9 years,
with heritability ranging from 32% to 67% (Achterberg et al., 2018). And
in 16-year-old adolescents reporting peaks of local clusters with herita-
bility ranging between 55% and 83% – but note that several cortical
resting-state networks revealed overall low heritability estimates <10%
(Fu et al., 2015). In the only longitudinal twin study on functional con-
nectivity to date, in infants from birth to 2 years, age-dependent genetic
effects on functional connectivity within cortical networks were found
ional connectivity in typically developing children and adolescents; ordered by

Age effects

↗ Regional Homogeneity;
↗ Eigenvector Centrality;
↗ FC within FPN;
✣ Local-to-global shift in FC for STG;
✣ Global-to-local shift in FC for SPL and FG
⥊ Degree Centrality within DMN;
↗Degree Centrality for left STG:↗ FC between left STG–left IFS and left STG–left AG
Integration within DMN: ↗ FC between mPFC–PCC;
↗ FC within FPN;
Segregation (i.e. ↘ FC) between FPN–DMN
⥊ FC within DMN;
⥊ FC within FPN;
⥊ FC within SN;
↘ FC within VAN
Integration within FPN: ↗ FC between RLPFC–IPL;
Segregation within FPN: ↘ FC within frontal regions, and within parietal regions
Integration within FPN: ↗ FC between RLPFC–IPL

↗ FC between sACC–VMPFC

↘ FC between lateral posterior cerebellum and DLPFC;
⥊ FC for anterior cerebellum

Abbreviations (in alphabetical order): DLPFC¼ dorsolateral prefrontal cortex;
¼ functional connectivity; FG¼ fusiform gyrus; FPN¼ frontoparietal network;
FC¼ rostrolateral prefrontal cortex; sACC¼ subgenual anterior cingulate cortex;
VAN¼ ventral attention network; VMPFC¼ ventral medial prefrontal cortex. [1]
al. (2016).



Table 2
Twin and family studies on heritability of functional connectivity; ordered by midrange age of each cohort.

Study Sample Age Phenotype Heritability estimates

Gao et al. (2014) N¼ 288 1, 12, and 24 months Longitudinal
FC

Significant regression coefficient for genetic effects throughout the
brain

Achterberg et al. (2018) N¼ 220 7–9 years FC VS–mPFC h2¼ 67%
VS–dACC h2¼ 46%
VS–AMY h2¼ 42%
VS–HPC h2¼ 32%

van den Heuvel et al.
(2013)

N¼ 86
(BrainSCALE)

12 years GT Global efficiency h2¼ 42%

Fu et al. (2015) N¼ 112 16� 1.5 years FC Voxel-wise cluster peaks h2¼ 55–83%, typically h2ffi 10%
Xu et al. (2016) N¼ 92 15–20 years Effective FC Within DMN h2¼ 54%
Sinclair et al. (2015) N¼ 592 (QTIM) 23� 2.5 years GT Mean clustering h2¼ 47%–59%;

Modularity h2¼ 38%–59%;
Rich-club h2¼ 0%–29% [n.s.];
Global efficiency h2¼ 52%–62%;
Small-worldness h2¼ 51%–59%

Yang et al. (2016) N¼ 272
N¼ 105 (QTIM)

18–28 years
19–29 years

FC Within RSNs h2¼ 23–65%;
Within SMN c2¼ 35%;
Between (8/21) RSNs h2¼ 26–42%;
Between (11/21) RSNs c2¼ 18–47%

Moodie et al. (2014) N¼ 42 (MZ only) 19–34 years FC Familiality in several BrainMap networks
Ge et al. (2017) N¼ 582 (HCP)

N¼ 809 (GSP)
22–36 years
18–35 years

FC Within RSNs h2¼ 45–80%

Colclough et al. (2017) N¼ 820 (HCP) 22–35 years FC Mean FC h2¼ 17–29% [n.s.]
Adhikari et al. (2018a) N¼ 518 (HCP)

N¼ 334 (GOBS)
29� 4 years
48� 13 years

FC Within RSN¼ h2¼ 9–36%

Meda et al. (2014) N¼ 1305 35� 14, 35� 12, 37� 13, 44� 16, 40� 16
years

FC Within DMN h2¼ 14–18%

Fornito et al. (2011) N¼ 58 38� 14 and 43� 10 years GT Global cost-efficiency h2¼ 60%
Korgaonkar et al. (2014) N¼ 250 (TWIN-E) 18–65 years FC Within DMN h2¼ 9–41%
Sudre et al. (2017) N¼ 305

N¼ 132
4–86 years
21� 15 years

FC Within DMN h2¼ 36–61%;
Within CCN h2¼ 35–58%;
Within VAN h2¼ 36–46%;

Glahn et al. (2010) N¼ 333 (GOBS) 26–86 years FC Within DMN h2¼ 42%

Abbreviations (in alphabetical order): AMY¼ amygdala; c2¼ percentage variance explained by common environmental influences; CCN¼ cognitive control network;
dACC¼ dorsal anterior cingulate cortex; DMN¼ default mode network; FC¼ functional connectivity; GOBS¼Genetics of Brain Structure cohort; GSP¼ Brain Genomics
Superstruct Project cohort; GT¼ graph theory; h2¼ heritability (percentage of phenotypic variance explained by additive genetic influences); HCP¼Human Con-
nectome Project cohort; HPC¼ hippocampus; MZ¼monozygotic twins; n.s.¼ not significant; QTIM¼Queensland Twin Imaging cohort; RSN¼resting-state network;
SMN¼ sensorimotor network; TWIN-E¼ Twin study of Wellbeing using Integrative Neuroscience of Emotion cohort; VAN¼ ventral attention network; VS¼ ventral
striatum.
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(Gao et al., 2014). It is unknown whether these age-dependent dynamic
influences of genes on functional connectivity extend into childhood and
adolescence in the absence of any longitudinal twin studies during this
developmental period.

Here we report on genetic and environmental influences on func-
tional connectivity within and between eight canonical cortical resting-
state networks in a longitudinal adolescent cohort of twins and their
older siblings measured on two occasions (mean ages of twins 12 and 17
years; mean ages of siblings 15 and 20 years; mean ages combined 13 and
18 years). We utilize a model that accounts for measurement imprecision
by analyzing data from split-half sessions to obtain a reliable component
of functional connectivity. This is the first longitudinal study on cortical
resting-state networks to estimate the importance of genetic factors for
functional connectivity within and between cortical resting-state net-
works during adolescence. The longitudinal data allowed us to investi-
gate possible dynamic influences of genetic factors throughout
adolescence (Teeuw et al., 2018; van Soelen et al., 2012b). We investi-
gated the effects of sex and age on functional connectivity while con-
trolling for measurement imprecision and residual head motion. Finally,
we investigated the relation between intelligence and functional devel-
opment of resting-state networks.

2. Methods

2.1. Participants

This project is part of the longitudinal BrainSCALE study on devel-
opment of brain and cognition in twins and their older sibling (van
3

Soelen et al., 2012a), a collaborative project between the Netherlands
Twin Register (NTR; Boomsma et al., 2006; van Beijsterveldt et al., 2013)
at the Vrije Universiteit (VU) Amsterdam and University Medical Center
Utrecht (UMCU). The BrainSCALE cohort is a representative sample of
typically-developing children from the Dutch population. A total of 112
families with twins and an older sibling participated in the study. The
twins and siblings were assessed with a battery of cognitive and behavior
tests and extensive neuroimaging protocol at baseline assessment when
the twins were 9 years old (Peper et al., 2009). Two follow-up assess-
ments were conducted when the twins were 12 and 17 years old (Koenis
et al., 2017; Teeuw et al., 2018; van Soelen et al., 2012b, 2013). Here, we
report results of the analysis of resting-state functional MRI scans that
were acquired during the second and third assessment of the BrainSCALE
study, when the twins and siblings were on average 13 and 18 years of
age, hereafter referred to as time point 1 (TP1) and time point 2 (TP2).
Intelligence was assessed using an abbreviated version of the Weschler
Intelligence Scale for Children – Third edition (WISC-III; Wechsler, 1991)
IQ test at age 13 years, and an abbreviated version of Weschler Adult
Intelligence Scale – Third edition (WAIS-III; Wechsler, 1997) IQ test at
age 18 years. The use of subtasks of the WISC-III as proxy for full WISC-III
IQ test has previously been established as a valid construct (Koenis et al.,
2015).

The BrainSCALE study was approved by the Central Committee on
Research Involving Human Subjects of The Netherlands (CCMO), and
studies were performed in accordance with the Declaration of Helsinki.
Children and their parents signed informed consent forms. Parents were
financially compensated for travel expenses, and children received a
present or gift voucher at the end of the testing days. In addition, a
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summary of cognition scores and a printed image of their T1 brain MRI
scan, when available, were provided afterwards.

2.2. MRI acquisition

Whole-brain magnetic resonance imaging (MRI) scans were acquired
on two identical 1.5 T Philips Achieva scanners (Philips, Best,
Netherlands) at the University Medical Center Utrecht (UMCU). Three-
dimensional T1-weighted structural scans (Spoiled Gradient Echo;
TE¼ 4.6ms; TR¼ 30ms; flip angle¼ 30�; 160 to 180 contiguous coronal
slices of 1.2mm; in-plane resolution of 1.0� 1.0mm2; acquisition matrix
of 256� 256 voxels; field-of-view of 256mm with 70% scan percentage
(Peper et al., 2009; Teeuw et al., 2018) and resting-state functional MRI
scans (PRESTO–SENSE; TE¼ 31.1ms; TR¼ 21.1ms; flip angle¼ 9�;
4.0 mm isotropic voxels; 900 vol over 540 s; effective TR¼ 600ms) of the
whole head were acquired (van den Heuvel et al., 2013). The same
scanners and scan sequence parameters were used to acquire MRI scans
at both ages to limit possible effects of differences in scan acquisition.
Subjects were instructed to lie still with theirs eyes closed and keep their
mind free from thoughts while preventing from falling asleep during
acquisition of the resting-state functional MRI scans. Invited participants
were excluded from the scanning protocol when contraindications for
MRI were present at the time of examination. In particular, the presence
of dental braces incompatible with the magnetic field of the MRI scanner
resulted in a decline of participants for the neuroimaging assessment,
specifically at age 13 years.

2.3. Processing of resting-state functional MRI scans

Processing of the MRI scans was performed using the CONN toolbox
version 18a (Whitfield-Gabrieli and Nieto-Castanon, 2012; https://we
b.conn-toolbox.org/) and SPM toolbox version 12 (http://www.fil
.ion.ucl.ac.uk/spm/) in MATLAB version 2015b (The MathWorks Inc.,
Massachusetts, United States). The CONN toolbox is an open-source
toolbox for processing and analysis of resting-state functional MRI
scans. The toolbox is based on the aCompCor method for artefact
correction that performs linear regression of undesired confounders, such
as head motion and signal from white matter and cerebrospinal fluids, to
recover the neuronal BOLD signal of interest (Behzadi et al., 2007). This
artifact correction method has shown to reduce motion-related artifacts
in resting-state fMRI in children (Muschelli et al., 2014).

To obtain the signal from white matter and cerebrospinal fluid (CSF),
brain tissue from the structural T1-weighted MRI scans was segmented
into CSF, gray matter (GM), and white matter (WM) tissue maps using a
partial volume segmentation algorithm that incorporates a non-uniform
partial volume distribution (Brouwer et al., 2010). The structural
T1-weighted MRI scans were registered to MNI-152 space using
non-linear transformation. The non-linear transformation was then
applied to the tissue maps to warp them to MNI-152 space and resampled
to 3.0mm isotropic voxels. The white matter and CSF tissue maps were
threshold at 50% (i.e. selecting only voxels with >50% of tissue pro-
portion attributed to white matter or CSF) and binarized to create masks.
The white matter tissue masks were eroded by two voxels to reduce the
number of voxels at the white-gray matter tissue interface. No erosion
was performed for the CSF tissue masks due to the occasional small
volume of the lateral ventricles in children at age 13 years (Giedd et al.,
1996; Lenroot and Giedd, 2006; Sowell et al., 2002). Instead, CSF tissue
masks were constrained to contain only voxels inside the lateral
ventricles.

The volumes within the resting-state functional MRI scans were first
realigned to the mean image of the volumes using a rigid-body realign-
ment procedure without reslicing the data. The rigid-body trans-
formation parameters were used to retrospectively estimate head
movement during scan acquisition using framewise displacement (Power
et al., 2012). Mapping between resting-state functional MRI scans and
structural MRI scans was determined by linear registration of the mean of
4

the realigned resting-state functional MRI scan to the structural
T1-weighted MRI scan. By concatenating all transformations (realign-
ment, functional-to-T1 and T1-to-MNI), the mapping between individual
functional space and MNI-152 space was obtained. The resulting trans-
formation was used to warp the resting-state functional MRI scans into
MNI space and resampled to 3.0 mm isotropic voxels. Global signal
fluctuations time series were extracted from the warped functional MRI
scans using the DVARS method (Power et al., 2012).

Correction of undesired confounders was performed using linear
regression of the top ten principal components from the BOLD signal of
white matter and (ventricular) cerebrospinal fluids (Behzadi et al., 2007;
Chai et al., 2012), 24 head motion parameters (Friston et al., 1996; Yan
et al., 2013), and scrubbing of subject-dependent number of high motion
frames (Power et al., 2012). Linear regression was performed on the
individual voxels of the brain after linear and quadratic detrending of the
BOLD time series to reduce effects of scanner drift. The six rigid-body
transformation parameters (R) derived during realignment of
resting-state volumes, its first-order temporal derivative (R0), and the
squared product of all terms (R2 and R02) were included as regressors to
control for head motion during scan acquisition (Friston et al., 1996; Yan
et al., 2013). In addition, scrubbing of frames with high motion
(FD> 0.30mm) or unusually large whole-brain BOLD signal changes
(DVARS Z-score> 3.0) was performed by including a regressor for each
of the flagged frames, the frame immediately preceding the flagged
frame, and the two frames following the flagged frame (Power et al.,
2012); see supplementary information for more details of head motion
and scrubbing. The average number of flagged frames is 79 (9%) out of
900 frames at age 13 years, and 57 (6%) out of 900 frames at age 18
years. By including frames surrounding the flagged frames the average
number of scrubbed frames is 214 (24%) out of 900 at age 13 years, and
154 (17%) out of 900 frames at age 18 years. The residuals of the linear
regression provided the voxel-wise denoised time series with a duration
of 900 frames regardless of the number of frames scrubbing used in the
regression. Temporal bandpass filtering was applied at the frequency
range of 0.008–0.080 Hz after linear regression was performed that
contained on average 39% of the total power spectral density after
denoising (Biswal et al., 1995; Ciric et al., 2017; Waheed et al., 2016).

All resting-state functional MRI scans were processed independently
from each other, including scans from subjects with longitudinal data.

2.4. Functional connectivity estimates

Functional connectivity matrices were obtained for the resting-state
networks atlas provided by the CONN toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012; https://web.conn-toolbox.org/). The atlas is
based on ICA analysis of resting-state scans of 497 unrelated young adults
from the Human Connectome Project and provides regions of interest
(ROI) for 7 canonical cortical resting-state networks and the cerebellum:
the core Default Mode network (4 components), Sensorimotor (3), Visual
(4), Salience (7), Dorsal Attention (4), Frontoparietal (4), Language (4),
and Cerebellar (2); see supplementary information for details on the
CONN atlas (Supplementary Fig. S1; Supplementary Table S1), and for
comparison, a group-ICA decomposition was performed on the Brain-
SCALE resting-state functional MRI scans used in this analysis (Supple-
mentary Fig. S2).

The CONN toolbox atlas is based on a data-driven decomposition of
resting-state functional data from the Human Connectome Project that
consists of most large-scale canonical networks covering a large area of
the cortical surface. Further decomposition of each network into separate
regions that include homologous contra-lateral regions allows for
studying global patterns of the developing functional brain within and
between resting-state networks. Its limited number of regions makes it
suitable for the computational complexity of twin modelling, and the
moderate size of the regions provide the benefit of increased signal-to-
noise ratio (SNR) through spatial averaging of the inherently noisy
BOLD signal from neighboring voxels.

https://web.conn-toolbox.org/
https://web.conn-toolbox.org/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://web.conn-toolbox.org/
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Full-score and half-score measures of functional connectivity were
obtained using full Pearson correlation between spatially averaged
denoised time series of two regions of interest (ROI). Full-score measures
were obtained by considering the entire denoised time series of the 900-
volume resting-state functional MRI scan. Half-score measures were ob-
tained by splitting the denoised time series into two independent halves
of equal length; the first half-score measure (H1) corresponding to the
first 450 volumes of the denoised time series, and the second half-score
measure (H2) consisting of the remaining 450 volumes. All functional
connectivity correlations were transformed using Fisher’s r-to-Z trans-
formation prior to any statistical analysis. Mean functional connectivity
for subsets of connections (e.g. mean functional connectivity between all
resting-state networks) was calculated as the average of the r-to-Z-
transformed correlations across the subset of connections.

2.5. Quality control

Incomplete resting-state fMRI scans and scans with discernable de-
fects related to scanner artefacts or receiver coil malfunction were dis-
carded beforehand, resulting in the exclusion of 18 of the 380 (5%) scans
from 17 subjects; 11 of the 152 (7%) scans at age 13 years, and 7 of 228
(3%) scans at age 18 years (Supplementary Table S2). In addition, indi-
vidual full-score and half–score measures were excluded when the cor-
responding mean FD of the time series exceeded 0.30 mm/volume head
motion or the number of scrubbed frames exceeded more than half the
number of frames in the time series (i.e. more than 450 scrubbed frames
for full-score measures, and more than 225 scrubbed frames for half-
score measures). After filtering, 97 full-score measures remain at TP1
(age 13 years), 108 half-score measures at TP1 H1, 88 half-score mea-
sures at TP1 H2, 202 full-score measures at TP2 (age 18 years), 203 half-
score measures at TP2 H1, and 200 half-score measures at TP2 H2
(Supplementary Table S2; Supplementary Fig. S4). See supplementary
information for more details on quality control procedure and analysis of
head motion.

2.6. Genetic modelling

Genetic modelling of twin and sibling data can provide information
on the extent that variation of a trait in the population is explained by
genetic factors (Boomsma et al., 2002; Posthuma et al., 2000). Mono-
zygotic (MZ) twins share 100% of their genetic material and dizygotic
twins and full siblings share on average 50% of their segregating genes.
Inclusion of these relatives into an extended twin design enables
decomposition of the phenotypic variance (VP) of a trait into three
variance components: additive genetic (VA), common environmental
(VC), and unique environmental (VE) components of variance. Additive
genetic influences represent effects of multiple alleles at different loci
across the genome that act upon the phenotypic trait. Common envi-
ronment represents influences that are shared between twins and siblings
from the same family and causes them to be more alike than children
grown up in different families. Unique environmental influences are not
shared between family members and may include measurement error
(Boomsma et al., 2002; Falconer and Mackay, 1996). If monozygotic
(MZ) twins resemble each other more than dizygotic (DZ) twins and
siblings for a trait, then the hypothesis that the trait is influenced by
genetic factors is supported. If both MZ and DZ twins are more alike in
resemblance than expected based on genetics alone, common environ-
mental influences are likely to play a role.

2.7. Structural equation modelling

Within genetic structural equation modelling (SEM), a phenotype can
be modelled as influenced by latent additive genetic factors, and common
and unique environmental factors. These factors are modelled as unob-
served or latent variables with unit variance where path coefficients
5

going from latent trait to phenotype and symbolized by a, c, and e
quantify their respective influence on the phenotype. The model is made
identifiable by putting constraints on the correlation ρA between the
latent variable A of family members; ρA ¼ 1:0 for monozygotic twins, and
ρA ¼ 0:5 for dizygotic twins and twin-sibling pairs. The correlation ρC
between latent variable C of family members is constrained to ρC ¼ 1:0
for all twins and siblings from the same family. The latent variable E is
uncorrelated between individuals. The sum of the squared path co-
efficients a2, c2, and e2, representing the variance components A, C, and
E, is equal to the phenotypic variance (V) of a trait; i.e. V ¼ Aþ Cþ E ¼
a2 þ c2 þ e2. Heritability (h2) of the trait is estimated as the proportion of
phenotypic variance (V) that is due to additive genetic variance (A); i.e.
h2 ¼ A =V ¼ a2=ða2 þ c2 þ e2Þ: Structural equation models were defined
using OpenMx version 2.8.3 (Neale et al., 2015; https://openmx.ssri
.psu.edu/), a package for structural equation modelling in R version
3.4.2 (R Core Team, 2017; https://www.r-project.org/). Model fitting
was performed using full-information maximum likelihood (FIML) to
take advantage of all available information in case of missing data.

2.8. Modelling of twin and sibling data

Longitudinal data from extended twin designs can be modelled by
Cholesky decomposition (Supplementary Fig. S3) to estimate the genetic
and environmental influences on repeated observations (Neale and
Cardon, 1992). A longitudinal Cholesky decomposition, with multiple
measurements of the same trait acquired at different ages within the
same individuals, allows for estimating the dynamics of genetic and
environmental influences traits over age. This model provides estimates
of heritability at the individual ages and of the genetic and environ-
mental correlations that explain the sources of stability across ages. Ge-
netic correlations represent the extent to which the same genes influence
a trait at multiple ages. A longitudinal Cholesky decomposition can also
provide indication of fluctuating influences of the same genes over time,
or the presence of novel genetic influences (i.e. innovation) unique to a
specific age (Teeuw et al., 2018; van Soelen et al., 2012b). Here, we
modelled the split-half phenotypic information as a common factor at
mean ages 13 and 18 years (van Baal et al., 1998; van Beijsterveldt et al.,
2001) such that a latent phenotypic factor represented the reliable
component of the two half-score measures at each age. Residual variance
of a measurement (Es) that is not attributed to a latent phenotypic factor
is considered to be measurement error due to imprecisions of the mea-
surement instrument. Estimation of genetic and environmental compo-
nents was carried out for two submodels: the model with two latent
phenotypic factors loading on the half-scores at each age, and a second
model with a single latent phenotypic factor loading on all four
half-scores (Fig. 1). Heritability of a latent phenotypic factor Fj (h2j ) is
estimated as the proportion of additive genetic variance of the latent
phenotypic factor (Aj) over the variance of the latent phenotypic factor

ðVj): h2j ¼ Aj
�
Vj
: The heritability estimate of a latent phenotypic factor

can be projected back to obtain heritability estimates for the individual
half-score measures. According to path tracing rules, heritability of an
individual measurement Mk (h

2
k) due to heritability of the latent pheno-

typic factor is the sum of the multiplication of the path coefficients along
all the paths that visit an additive genetic variance component; e.g. the
heritability of the first half-score at age 13 years (M1) is h21 ¼
f11 � a11 � a11 � f11, or simplified, h21 ¼ f 211 � a211, and the heritability of the
first half-score at age 18 years (M3) in the two-factor model is h23 ¼
ðf32 � a21 � a21 � f32Þþ ðf32 � a22 � a22 � f32Þ, or simplified, h23 ¼ f 232 �ða221 þa222Þ
(see Fig. 1). The genetic correlation (ra) between the latent phenotypic
factors in the two-factor model is defined as the additive genetic
covariance between the two factors over the square root product of the

additive genetic variances of the two factors: ra ¼ covðA1 ;A2Þffiffiffiffiffiffiffiffiffiffi
A1 �A2

p .

https://openmx.ssri.psu.edu/
https://openmx.ssri.psu.edu/
https://www.r-project.org/


Fig. 1. A common pathway reliability model with two
(left) and one (right) latent phenotypic factor. Mea-
surements are represented by rectangles for age 13 years
(TP1) and age 18 years (TP2) for the first (H1) and
second (H2) half-score measures. Latent variables are
represented by circles. The variance of latent common
factor Fj represent the reliable component of the mea-
surements and explains part of the variance of the
measurement variables proportional to the square of the
path coefficients on paths fkj. Latent factors representing
additive genetics (Ai), common environment (Ci), and
unique environment (Ei) together explain the variance of
the common factor Fj proportional to the square of their
respective paths aji, cji, and eji. Measurement-specific
variances (i.e. residual variances not attributed to the
common factor) are explained by the latent variables ESl
explaining the residual variances of measurements pro-
portional to the square of the loadings on paths eSkl.
Family members are linked through bidirectional paths
on their latent variance components with values con-
strained to 1.0 for the additive genetic factor(s) (Ai)
between monozygotic twins, 0.5 for the additive genetic
factor(s) (Ai) between dizygotic twins and siblings, 1.0
for common environmental factors (Ci) for all pairs
within one family, and 0.0 for unique environment (Ei).
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2.9. Associations between functional connectivity and intelligence

The phenotypic associations between full-score functional connec-
tivity (FC) estimates and intelligence (IQ) at each age, and the phenotypic
associations between change in full-score functional connectivity with
age (ΔFC) and change in IQ scores (ΔIQ) was assessed using a bivariate
Choleskymodel. Change scores were computed as the difference between
the two ages. The bivariate Cholesky model included sex and age as fixed
effects on each of the measures to account for possible mean differences
between sexes and ages.
2.10. Statistical testing

Significance of parameters was determined using the log-likelihood
ratio test by comparing the likelihood of the model with additional
constraints on the parameters to the likelihood of the less constrained
model. For bounded variance components (e.g. heritability estimates),
the difference in�2 times the log likelihood (–2LL) between models with
a single constraint follows a 50:50 mixture of χ2 distributions with zero
and one degree of freedom, and a 50:45:5 mixtures of χ2 distributions
with zero, one and two degrees of freedom for models with two con-
straints, etcetera; all effectively allow p-values to be cut in half (Domi-
nicus et al., 2006).

Correction for multiple comparison was performed using FDR
(Genovese et al., 2002) per condition (e.g. testing for effects of sex on
functional connectivity) for all between and within resting-state network
connections including mean functional connectivity estimates for a total
of 92 tests per condition.
2.11. Model selection

The log-likelihood ratio test was used to determine the most parsi-
monious model amongst the models with different configuration of
variance components on the latent phenotypic factors (i.e. ACE, AE, CE or
E). The optimal number of latent phenotypic factors was determined
using the log-likelihood ratio test on the models with ACE variance
components.

In advance of the results, note that in 24 of the 92 cases (26%) a
model with two factors was optimal (Supplementary Table S4; Supple-
mentary Table S5) and that about half of these two-factor models do not
have statistically significant heritability or common environmental
6

influences at both ages (i.e. either E-AE, E-CE, or E–E configuration;
Supplementary Table S6), and show mostly stable genetic influences
primarily driven by the increased power at age 18 years. Although the
presence of two factors might also be due to changes in unique envi-
ronmental influence, we cannot distinguish between true unique envi-
ronmental influences and age-specific measurement error in the common
pathway reliability model with two factors. We therefore present our
main analysis using the results of the common pathway reliability model
with a single factor first, followed by the results from two-factor model in
a post-hoc fashion.
2.12. Post-hoc analyses

We performed a post-hoc analysis to validate the main findings from
the CONN atlas when global signal regression (GSR) is applied during the
preprocessing stage. We performed a second post-hoc analysis to validate
the main findings using Yeo resting-state networks atlas (Yeo et al.,
2011). This atlas has a slightly different parcellation of the cortical sur-
face into networks, which includes an extended default mode network,
i.e. the parahippocampal and temporal regions in addition to the regions
of the core default mode network.

3. Results

3.1. Demographics

Data from 240 participants with either one or two resting-state
functional MRI scans that passed quality control were included in the
analysis, providing a total of 315 scans (Table 3). The twins were on
average 12.2� 0.23 and 17.2� 0.17 (mean� SD) years old at time point
1 (TP1) and time point 2 (TP2), with their older siblings on average
2.7� 1.2 (mean� SD) years older.
3.2. Stability and reliability of functional connectivity

Group-level mean full-score functional connectivity matrices between
and within resting-state networks reveal minor changes in functional
connectivity estimates between the two timepoints (Fig. 2). Mean func-
tional connectivity at group-level ranges from þ0.25 to þ0.71 at age 13
years and from þ0.17 to þ0.73 at age 18 years for connections between
resting-state networks, and ranges from þ0.32 to þ0.76 at age 13 years



Table 3
Demographics of participants in the BrainSCALE longitudinal study with resting-
state fMRI scans.

Measure Inclusion
TP1

Inclusion
TP2

Longitudinal
sample

Individuals (N) Total: 108 207 75
MZM: 17 31 13
MZF: 16 30 12
DZM: 8 32 7
DZF: 16 30 8
DZOS: 12 26 9
Siblings: 39 58 26

Age of twins
(years)

Range: 11.8–12.7 16.8–17.9 11.8–17.9
Mean� SD: 12.2� 0.23 17.2� 0.17 14.7� 2.53

Age of siblings
(years)

Range: 13.0–17.8 18.3–22.9 13.2–22.9
Mean� SD: 15.0� 1.20 19.8� 1.13 17.3� 2.70

Scan interval
(years)

Range: N/A N/A 4.1–5.7
Mean� SD: N/A N/A 5.0� 0.29

Sex Females: 62 (57%) 112 (54%) 42 (56%)
Males: 46 (43%) 95 (46%) 33 (44%)

IQ scores Range: 65–147 75–152 79–132.5
Mean� SD: 100.8� 14.7 104.2� 12.6 103.3� 11.4

Mean FD (mm/
volume)

Range: 0.09–0.28 0.09–0.27 0.11–0.24
Mean� SD: 0.18� 0.04 0.17� 0.03 0.17� 0.03

Flagged frames
(N)

Range: 3–234 0–183 N/A
Mean� SD: 79� 51 57� 42

Scrubbed
frames (N)

Range: 12–450 0–449 N/A
Mean� SD: 214� 121 154� 106

IQ scores and mean FD for full-scores measures of participants with longitudinal
data were averaged across both measurements in the longitudinal data column.
Flagged frames are the number of frames within the resting-state fMRI scan that
exceeded the threshold for head motion of FD> 0.30. Scrubbed frames are the
number of frames for which regressors were included in the preprocessing stage,
and is derived from expansion of the flagged frames by also included one frame
prior and the two frames following flagged frames (Power et al., 2012). Abbre-
viations (in alphabetical order): DZF¼ dizygotic females; DZM¼ dizygotic
males; DZOS¼ dizygotic opposite sex; FD¼ framewise displacement; IQ¼ in-
telligence quotient; MZF¼monozygotic females; MZM¼monozygotic males;
SD¼ standard deviation; TP1¼ time point 1; TP2¼ time point 2.
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and from þ0.33 to þ0.84 at age 18 years for connections within resting-
state networks (Fig. 2; Supplementary Table S11; Supplementary
Table S12). Despite the appearance of “stable” functional connectivity
with age, high individual variation exists with low to moderate short-
term (i.e. within age) test-retest reliability (rph between networks
range ¼ [þ0.13; þ0.62]; rph within networks range ¼ [þ0.20; þ0.66];
Supplementary Fig. S6; Supplementary Table S11; Supplementary
Table S12) and slightly lower long-term (i.e. between ages) test-retest
stability (rph between networks range ¼ [þ0.06; þ0.47]; rph within
networks range [þ0.06; þ0.55]; Supplementary Fig. S6; Supplementary
Table S11; Supplementary Table S12).

3.3. Longitudinal age effects on functional connectivity

Functional connectivity between resting-state networks decreases with
age (βage mean FC between RSNs¼�0.0060; p¼ 0.032; FDR-corrected
p¼ 0.054 [n.s.]; Fig. 3; Supplementary Table S9) whereas functional
connectivity within resting-state networks increases with age (βage mean
FC within RSNs ¼ þ0.0094; p < 0.001; FDR-corrected p < 0.001; Fig. 3;
Supplementary Table S9), except for several connections within the
salience network (SN) involving the anterior cingulate cortex (ACC), left
rostral prefrontal cortex (RPFC) and left supramarginal gyrus (SMG) that
decrease with age (Fig. 3; Supplementary Table S7; Supplementary
Table S9). The strongest increases in functional connectivity occur mostly
within the sensorimotor network (βage mean FC within SMN ¼ þ0.0256;
p< 0.001; FDR-corrected p< 0.001; Fig. 3; Supplementary Table S9) and
the visual network (βage mean FC within VN¼ þ0.0190; p< 0.001; FDR-
corrected p < 0.001; Fig. 3; Supplementary Table S9). In addition, most
contralateral connections between homotopic regions of the hemispheres
are amongst the strongest to increase with age (Fig. 3; Supplementary
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Table S9). Several ipsilateral connections within the frontoparietal,
salience, and language networks (e.g. the connection between lateral
prefrontal cortex (LPFC) and posterior parietal cortex (PPC) show in-
crease in functional connectivity (Fig. 3; Supplementary Table S9).
Including mean framewise displacement as an additional covariate in the
functional connectivity analysis does not alter the results. Moreover, the
same pattern of age-related effects is found in a post-hoc analysis when
global signal regression was included during the preprocessing stage, and
when repeating the analysis with Yeo’s resting-state networks atlas.

3.4. Sex and functional connectivity

Sex effects on functional connectivity are sparse, and after multiple
comparison correction found only for connections within the default
mode network (DMN) and salience network (SN) (Fig. 3; Supplementary
Table S7; Supplementary Table S9). Increased functional connectivity for
girls compared to boys is found within the default mode network (DMN)
(βsex¼�0.0748; p< 0.001; FDR-corrected p¼ 0.008; Fig. 3; Supple-
mentary Table S9), and is mostly due to the connections between the
medial prefrontal cortex (MPFC) and the PCC (βsex¼�0.0998; p< 0.001;
FDR-corrected p¼ 0.006; Fig. 3; Supplementary Table S9) and between
the left lateral parietal cortex (LLP) and the PCC (βsex¼�0.0934;
p¼ 0.001; FDR-corrected p¼ 0.025; Fig. 3; Supplementary Table S9). An
opposing sex effect, where functional connectivity for boys is greater
than for girls, is found for the connection between the left and right
anterior insula (aIns) within the salience network (SN) (βsex¼ 0.1018;
p¼ 0.001; FDR-corrected p¼ 0.025; Fig. 3; Supplementary Table S9).

3.5. IQ and functional connectivity

None of the associations between functional connectivity and IQ test
scores survived correction for multiple comparison (FDR-corrected
p� 0.3049 [n.s.]; Supplementary Table S11; Supplementary Table S12).

3.6. Genetic and environmental influences on functional connectivity

About half of the connections between and within resting-state net-
works show influences of either additive genetics or common environ-
mental influences on the reliable component of functional connectivity
(i.e. the common factor), with heritability estimates ranging between
40% and 100% and common environment estimates ranging between
30% and 60% (Fig. 4; Supplementary Table S8; Supplementary
Table S10). In particular, connections involving the frontoparietal
network, both within and between networks, show strong additive ge-
netic influences (mean FC of connections within the frontoparietal
network h2¼ 97%; p< 0.001; FDR-corrected p< 0.001). In addition, the
visual network (mean FC within visual network h2¼ 96%; p< 0.001;
FDR-corrected p¼ 0.002) the salience network (mean FC within salience
network h2¼ 59%; p< 0.001; FDR-corrected p¼ 0.008), and the mean
functional connectivity averaged over all within resting-state network
connections (h2¼ 73%; p< 0.001; FDR-corrected p¼ 0.001) show
strong additive genetic influences (Fig. 4; Supplementary Table S10).
Common environmental influences are found in particular within the
language (left pSTG–right IFG c2¼ 50%; p< 0.001; FDR-corrected
p¼ 0.001; and right pSTG–left IFG c2¼ 50%; p¼ 0.013; FDR-corrected
p¼ 0.072 [n.s. after FDR correction]; Fig. 4; Supplementary
Table S10), sensorimotor (superior–left later c2¼ 31%; p¼ 0.006; FDR-
corrected p¼ 0.047; Fig. 4; Supplementary Table S10), and cerebellar
network (anterior–posterior cerebellar c2¼ 45%; p< 0.001; FDR-
corrected p¼ 0.001; Fig. 4; Supplementary Table S10), and for several
between resting-state network connections (mean functional connectiv-
ity averaged over all between resting-state network connections
c2¼ 39%; p¼ 0.001; FDR-corrected p¼ 0.013; Fig. 4; Supplementary
Table S8).

Within the core default mode network, connections involving the
precuneus (PCC) show additive genetic influences (MPFC–PCC



Fig. 2. Group level mean functional connectivity for
connections between (left) and within canonical
resting-state networks (right) at age 13 years (lower
triangles; TP1) and 5 years later at age 18 years
(upper triangles; TP2). For the order of regions
within resting-state networks, see Supplementary
Table S1. Abbreviations (in alphabetical order):
CBN¼ cerebellar network; DAN¼ dorsal attention
network; DMN¼ default mode network; FPN¼ fron-
toparietal network; LN¼ language network;
SMN¼ sensorimotor network; SN¼ salience
network; TP1¼ time point 1; TP2¼ time point 2;
VN¼ visual network.

Fig. 3. Sex and longitudinal age effects on functional connectivity between and within canonical resting-state networks. Thick lines represent effects significant after
FDR correction for multiple comparison. Gray lines represent the absence of any significant effect for that particular connection. The salience network has been
enlarged to accommodate the high number of connections within the network. Abbreviations (in alphabetical order): ACC¼ anterior cingulate cortex; FC¼ functional
connectivity; FEF¼ frontal eye fields; IFG¼ inferior frontal gyrus; IPS¼ intraparietal sulcus; LP¼ lateral parietal; LPFC¼ lateral prefrontal cortex; MPFC¼medial
prefrontal cortex; PCC¼ posterior cingulate cortex; PPC¼ posterior parietal cortex; pSTG¼ posterior superior temporal gyrus; RPFC¼ rostral prefrontal cortex;
RSN¼ resting-state network; SMG¼ supramarginal gyrus.
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h2¼ 79%; p¼ 0.002; FDR-corrected p¼ 0.012; and PCC–LLP h2¼ 55%;
p¼ 0.011; FDR-corrected p¼ 0.031; and PCC–RLP h2¼ 48%; p¼ 0.015;
FDR-corrected p¼ 0.041; Fig. 4; Supplementary Table S10), whereas
8

connections between the medial prefrontal cortex (MPFC) right lateral
parietal (RLP) are under common environmental influences (MPFC–RLP
c2¼ 38%; p¼ 0.002; FDR-corrected p¼ 0.026; Fig. 4; Supplementary



Fig. 4. Genetic and environmental influences on the reliable component of functional connectivity between and within canonical resting-state networks. Thick lines
represent effects significant after FDR correction for multiple comparison. Gray lines represent the absence of any significant effect for that particular connection. The
salience network has been enlarged to accommodate the high number of connections within the network. Abbreviations (in alphabetical order): ACC¼ anterior
cingulate cortex; FC¼ functional connectivity; FEF¼ frontal eye fields; IFG¼ inferior frontal gyrus; IPS¼ intraparietal sulcus; LP¼ lateral parietal; LPFC¼ lateral
prefrontal cortex; MPFC¼medial prefrontal cortex; PCC¼ posterior cingulate cortex; PPC¼ posterior parietal cortex; pSTG¼ posterior superior temporal gyrus;
RPFC¼ rostral prefrontal cortex; RSN¼ resting-state network; SMG¼ supramarginal gyrus.
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Table S10). Mean functional connectivity averaged over all six connec-
tions within the default mode networks show significant influences of
common environment (c2¼ 37%; p¼ 0.003; FDR-corrected p¼ 0.031;
Fig. 4; Supplementary Table S10).

By definition of the common factor model, heritability at the indi-
vidual half-score measures depends on the proportion of variance
explained by the common factor and the heritability of the reliable factor.
Averaged standardized factor loading across the four half-scores of the
individual connections ranged from 18% to 46% (mean standardized
factor loadings 33%), with higher loadings on measurements at age 18
years (mean standardized factor loadings: 41%) than at age 13 years
(mean standardized factor loadings: 24%) (Supplementary Fig. S7; Sup-
plementary Fig. S8). Heritability estimates at individual half-score mea-
surements ranged from 5% to 53% and from 5% to 33% for common
environment estimates (Supplementary Fig. S7; Supplementary Fig. S8;
Supplementary Table S8; Supplementary Table S10).

We find a similar pattern of additive genetic and common environ-
mental influences on the reliable components of functional connectivity
in a post-hoc analysis when using Yeo’s resting-state networks atlas.
However, when applying global signal regression during the pre-
processing stage, common environment estimates on the reliable
component of functional connectivity, which no longer contains the
global signal, is drastically reduced, and the reliable component of
9

functional connectivity for connections previously influenced by com-
mon environment is now primarily influenced by additive genetics
instead.

3.7. Dynamic genetic and environmental influences on functional
connectivity throughout adolescence

A two-factor common pathway reliability model was a better fit to the
data than a single factor for 24 of the 92 connections (26%) (Supple-
mentary Table S4; Supplementary Table S5). However, only half of these
connections have statistically significant heritability or common envi-
ronment estimates at both ages to warrant longitudinal investigation into
dynamics of genetic and common environmental influences. For seven
connections there is indication of possible dynamics in additive genetic
or common environmental influences with age (Supplementary
Table S6). Two connections within the default mode network (DMN)
show common environmental influences on changes in age-related
functional connectivity, between the medial prefrontal cortex (MPFC)
and right lateral parietal (RLP) with distinct genetic influences at each
age due to innovation (c2ðΔFCÞ ¼ 99% [61%; 100%]; p¼ 0.003; inno-
vation p¼ 0.006; Supplementary Table S6) and between the MPFC and
posterior cingulate cortex (PCC) (c2ðΔFCÞ ¼ 98% [1%; 100%];
p¼ 0.037; Supplementary Table S6). The connection between medial
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and occipital regions within the visual network (VN) shows additive
genetic influences on changes in functional connectivity due to
increasing heritability originating from the same set of genes with age
(a2ðΔFCÞ ¼ 29% [2%; 96%]; p¼ 0.015; fluctuating influences p¼ 0.028;
Supplementary Table S6). The connection between occipital and left
lateral regions of the visual network (VN) shows common environmental
influences on change in functional connectivity with innovation in
environment factors over time (c2ðΔFCÞ ¼ 41% [17%; 93%]; p¼ 0.012;
innovation p¼ 0.019; Supplementary Table S6). Three connections
within the frontoparietal network (FPN) show with additive genetic in-
fluences on changes in functional connectivity due to fluctuating in-
fluences from the same genes: between the left lateral prefrontal cortex
(LPFC) and left posterior parietal cortex (PPC) (a2ðΔFCÞ ¼ 58% [17%;
91%]; p¼ 0.002; fluctuating influences p¼ 0.003; Supplementary
Table S6), between the left LPFC and right PCC (a2ðΔFCÞ ¼ 22% [5%;
51%]; p¼ 0.003; fluctuating influences p¼ 0.006; Supplementary
Table S6), and between the left PCC and right PCC (a2ðΔFCÞ ¼ 48% [4%;
100%]; p¼ 0.015; fluctuating influences p¼ 0.029; Supplementary
Table S6). The remaining connections with genetic of common envi-
ronmental influences at both ages do not reveal any significant dynamics
in heritability or common environment (Supplementary Table S6).
However, these results should be interpreted with caution due to limited
power to detect significant genetic or environmental estimates at age 13
years, in part due to the reduced sample size at age 13 years.

4. Discussion

With this longitudinal resting-state fMRI study, we measured the
heritability of functional connectivity throughout adolescent develop-
ment for the first time. Approximately half of the functional connections
within and between canonical cortical resting-state networks are influ-
enced by either additive genetic (h2 up to 53%) or common environ-
mental influences (c2 up to 33%) during adolescence. During
adolescence, functional connectivity between resting-state networks de-
creases with age, whereas functional connectivity within cortical resting-
state networks increases with age, except for several connections within
the salience network that decrease with age. There is limited evidence for
dynamics in genetic or common environmental influences, suggesting
mostly stable influences across adolescence. Girls had significantly
stronger functional connectivity than boys within the default mode
network between the precuneus and medial prefrontal cortex and be-
tween the precuneus and left lateral parietal cortex. Boys had signifi-
cantly stronger functional connectivity than girls within the salience
network for the connection between the bilateral insula. Associations
between functional connectivity and intelligence did not survive multiple
comparison correction. Head motion is heritable across the ages and
shows a small but statistically significant decline with age (Supplemen-
tary Table S3; Supplementary Fig. S5). The aCompCor method used by
CONN is effective at removing head motion effect cross-sectionally,
however, longitudinal changes in functional connectivity estimates be-
tween the canonical resting-state networks remain associated with the
longitudinal changes in degree of head motion of individuals (Supple-
mentary Table S13; Supplementary Table S14). The results remained
consistent after including mean framewise displacement as an additional
covariate in the functional connectivity analysis and after including
global signal regression during the preprocessing stage.

We find significant heritability on functional connectivity in adoles-
cence, h2 ranging from 6% to 53% for 23 out of 55 (42%) connections
within resting-state networks, and common environment estimates c2

ranging from 5% to 33% for 8 out of 55 (15%) connections. Previous
studies found heritability estimates ranging from 10% to 40%, and oc-
casionally up to 60% or 80% (Adhikari et al., 2018a; Colclough et al.,
2017; Fu et al., 2015; Ge et al., 2017; Glahn et al., 2010; Korgaonkar
et al., 2014; Meda et al., 2014; Sudre et al., 2017; Yang et al., 2016,
Table 2), thus overall these findings are within the same range across the
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ages. The notable exception is the default mode network. In our cohort
the default mode network is partially influenced by common environ-
mental instead of additive genetics (mean FC within DMN c2¼ 37%).
Previous studies have established the default mode network being
influenced by additive genetics (Adhikari et al., 2018a; Fu et al., 2015; Ge
et al., 2017; Glahn et al., 2010; Korgaonkar et al., 2014; Meda et al.,
2014; Sudre et al., 2017; Xu et al., 2016; Yang et al., 2016). The
discrepancy with previous studies may be due to increased sensitivity in
finding common environmental effects in the current study because of
three reasons. One, the extended twin design (i.e. including twin pairs
and one of their singleton siblings) used in this study provides additional
power to detect significant common environment estimates (Posthuma
and Boomsma, 2000) allowing detection of statistically significant
common environmental estimate at individual measures as low as 5%
when separating measurement error from the common factor. However,
most likely functional connections in the brain are influenced by both
additive genetics and common environment. Two, since previous studies
were conducted mostly in adults, it may be possible that heritability es-
timates on functional connectivity increase with age, as is the case with
heritability of cognitive performance (Briley and Tucker-Drob, 2013).
Indeed, the cohorts closest to our age range find similarly low estimates
for heritability of functional connectivity within the default mode
network (Fu et al., 2015; Yang et al., 2016). Finally, atlas choice and
preprocessing strategies, including global mean signal regression, all
varied between these studies, which could have introduced differences in
heritability estimates. Although we were able to replicate our results
using Yeo’s resting-state atlas (Yeo et al., 2011), including global signal
regression during the preprocessing stage substantially decreased the
common environment estimates in favor of additive genetics for some
connections.

Few other studies have investigated heritability of functional con-
nectivity with resting-state networks beyond the default mode network
(Adhikari et al., 2018a; Ge et al., 2017; Sudre et al., 2017; Yang et al.,
2016). Our heritability estimates for functional connectivity within the
frontoparietal network of h2ffi 14% at around age 13 years and
h2ffi 40% at around age 18 years are slightly lower than the estimates of
h2¼ 32%–58% found across lifespan in families with ADHD family
members (Sudre et al., 2017), and substantially less than the estimate of
h2¼ 65% reported in a sample of healthy young adults (Yang et al.,
2016), but more in line with results from the Genetics of Brain Structure
(GOBS) and the Human Connectome Project (HCP) studies (Adhikari
et al., 2018a). The sensorimotor network in our cohort is influenced by a
mixture of additive genetics h2¼ 18%–20% and common environment
c2¼ 5%–16%, with influences of common environment previously re-
ported in young adults (Yang et al., 2016), and low to no heritability in
the GOBS and HCP cohort, although they did not test for common
environmental influences (Adhikari et al., 2018a). This is in stark
contrast to the study performed on the Brain Genomics Superstruct
Project (GSP) cohort and alternative analysis of the HCP cohort where
they found high heritability estimates of h2¼ 60%–70% (Ge et al., 2017).

We find significant heritability of functional connectivity between
resting-state networks in adolescence, with 8 out of 28 (29%) connec-
tions influenced by additive genetics with h2¼ 5%–50%, and 6 out of 28
(21%) connections influenced by common environment with c2¼ 6%–

25%. In particular, connections between the frontoparietal, dorsal
attention, and salience networks, all involved in higher order cognitive
control, were influenced primarily by additive genetics. Common envi-
ronment played a considerable role for most sensory networks, including
the language network and cerebellum. So far, the only other study that
investigated heritability of functional connectivity between resting-state
networks was performed in young adults aged 18–29 years (Yang
et al., 2016), where 8 out of 21 (38%) connections between resting-state
networks were influenced by additive genetics with h2¼ 26%–42%, and
11 out of 21 (52%) were influenced by common environment with
c2¼ 18%–47%, showing overall similar connectivity profiles. Interest-
ingly, synchronous resting-state activity in the brain has been associated
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with gene expression levels, where distal functionally connected regions
show similar gene expression profiles (Hawrylycz et al., 2015), and the
strength in functional connectivity was influenced by polymorphisms of a
set of genes enriched for ion channels in healthy adolescents (Richiardi
et al., 2015). Here, our study adds that functional connectivity within and
between cortical resting-state networks is strongly influenced by genes
and common environment throughout adolescent development.
Including global signal regression during the preprocessing stage resulted
in decreased estimates for common environment and increased herita-
bility estimates on the reliable component of functional connectivity for
some of the connections. This insight will have potential consequences
for genetic studies that aim to find genetic variants implicated in func-
tional connectivity.

Varying estimates of heritability or common environment between
half-score measures of different sessions (i.e. between the two ages) may
be an indication of dynamics in genes or common environment that was
tested with a two-factor common pathway model; e.g. the change in
heritability estimates for functional connectivity within the frontopar-
ietal network increased significantly from h2ffi 14% at age 13 years to
h2ffi 40% at age 18 years. However, the lower heritability estimates at
age 13 years are likely due to the reduced sample size as a result of
motion scrubbing and exclusion due to presence of dental braces
incompatible with high magnetic fields or increased residual noise rather
than represent “true” changes in additive genetic or common environ-
mental variances. This effect is reflected in the two-factor common
pathway model as “increasing” influences of the same additive genetic or
common environmental factor over time, and is consequently found in
the single factor common pathway model as varying estimates of heri-
tability due to differences in factor loadings on the individual half-score
measures. Therefore, the results from the two-factor model on dynamics
of genetic and environmental influences are suggestive at best and
generally demonstrate stable additive genetic or common environmental
influences from a single source (Supplementary Table S6). Varying esti-
mates for half-score of a single session (i.e. within the same age) are very
unlikely to represent short-term fluctuating genetic or environmental
influences, but can most likely be attributed to fluctuating noise (e.g.
slight increase in head motion or restlessness during second half of scan).

The longitudinal age effects that we found are subtle but wide-spread
throughout the brain despite most resting-state networks already
appearing “adult-like” by age 2 years (Gao et al., 2015; Gilmore et al.,
2018). We found age-related decreases in functional connectivity for
about half of the connections between cortical resting-state networks,
which likely reflect segregation between functionally distinct modules of
the brain. A previous longitudinal study during early adolescence re-
ported segregation between the frontoparietal (FPN) and default mode
network (DMN) (Sherman et al., 2014). Although our results are not
statistically significant, it suggests a possible decrease between the FPN
and DMN (βage¼�0.0076; p¼ 0.061 [n.s.]; FDR-corrected p¼ 0.089
[n.s.]) that is consistent with prior reports. Previously, a decrease in
functional connectivity between the dorsolateral prefrontal cortex and
posterior cerebellum, but not anterior cerebellum, was reported (Bernard
et al., 2016). We do not find age-related changes in functional connec-
tivity between the frontoparietal and cerebellar networks. However, we
do not distinguish between sub-regions of the network for between
network connectivity. Nearly two-thirds of the connections within
resting-state networks show age-related increase in functional connec-
tivity that likely reflect integration within functional modules of the
brain. Previously longitudinal studies have reported on integration
within the default mode (DMN), frontoparietal (FPN), and language
network (LN) during childhood and adolescence (Long et al., 2017;
Sherman et al., 2014; Wendelken et al., 2017, 2016; Xiao et al., 2016).
However, age-related changes in functional connectivity within the
DMN, FPN, and salience network (SN) are not always consistently found
during early adolescence (Sylvester et al., 2017). Similar to previous
reports, we find integration within the frontoparietal network (FPN) for
the ipsilateral connections between the frontal and posterior regions of
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the FPN (Wendelken et al., 2017, 2016), and integration within the
language network between the inferior frontal gyrus (IFG) and posterior
superior temporal gyrus (pSTG) (Xiao et al., 2016). Better integration
between frontal and parietal regions has been proposed to support better
cognitive performance in the Parieto-Frontal Integration Theory (P-FIT;
Deary et al., 2010; Jung and Haier, 2007). A notable exception to inte-
gration within resting-state networks is the age-related decrease in
functional connectivity within the salience network for connections
involving the anterior cingulate cortex (ACC), left rostral prefrontal
cortex (RPFC) and left supramarginal gyrus (SMG). The only other lon-
gitudinal study that investigated the salience network in children and
adolescents was between 8 and 13 years, preceding our age range,
reporting absence of significant age-related effects (Sylvester et al.,
2017). The anterior cingulate cortex plays an important role in motor
control and cognition, in particular reward-based decision making and
response inhibition (Bush et al., 2002; Stevens et al., 2011). A decreasing
connectivity between the anterior cingulate cortex and insula could
possibly reflect a decoupling between the integration of external sensory
information and internal emotional and bodily state signals (Uddin et al.,
2017) or indicate segregation of bottom-up stimuli processing and
top-down cognitive control processing in the salience network that may
coincide with improved self-control during adolescence (Casey, 2013).
The decreasing connectivity strength between networks and increasing
connectivity strength within networks that we find in this longitudinal
study is the opposite pattern of what is typically reported in
cross-sectional literature, where there is a shift from a local oriented (i.e.
stronger functional connectivity between proximal regions) to a more
distributed organization (i.e. stronger functional connectivity between
distal regions) during childhood and adolescence (Cao et al., 2016; Ernst
et al., 2015; Grayson and Fair, 2017; Stevens, 2016). This discrepancy
could be due to residual head motion effects on changes in functional
connectivity with age that are not always properly accounted for in
studies predating 2012 (Power et al., 2012), although despite our strin-
gent control for head motion there are still residual effects present.
Secondly, cross-sectional studies do not always show consensus on the
direction of change and affected regions (Stevens, 2016), which may be
due to the cohort effect. Few longitudinal studies have been conducted to
date (see Table 1), with even fewer conducting brain-wide analysis.
Several longitudinal studies show increasing functional connectivity
within functional networks or decreasing functional connectivity be-
tween functional networks with age consistent with our results (Bernard
et al., 2016; Long et al., 2017; Sherman et al., 2014; Wendelken et al.,
2017, 2016).

We find significant sex effects within the default mode (girls showing
stronger functional connectivity) and salience network (boys showing
stronger functional connectivity). Sex effects in functional connectivity
analyses are typically discarded as covariate of no interest, despite
extensive support for sex effects in behavior (Gur et al., 2012; Gur and
Gur, 2016), brain gray matter (Giedd et al., 2012; Ruigrok et al., 2014)
and white matter structure (Herting et al., 2012; Ingalhalikar et al.,
2014), and function (Sacher et al., 2013; Stevens and Hamann, 2012). A
few studies have reported sex effects for functional connectivity within
the default mode network (stronger functional connectivity in females
compared to males) and salience network (stronger functional connec-
tivity in males compared to females) in adults (Biswal et al., 2010) and
across the lifespan (Zuo et al., 2010). These previous reports are
consistent with our findings, and corroborate that sex differences in brain
functioning are already present during adolescence (Gur and Gur, 2016),
although sex effects are not always found in these networks during
development (Sol�e-Padull�es et al., 2016; Sylvester et al., 2017). The
default mode network plays an important role in auto-biographymemory
and emotion regulation (Mak et al., 2017; Raichle, 2015; Zhou et al.,
2018). The increased functional connectivity within the default mode
network for girls may therefore explain their better performance at
memory and emotive tasks (Gur et al., 2012; Gur and Gur, 2016). In
contrast, the salience network plays an important role in overt
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attention/stimuli processing, integration of multimodal sensory infor-
mation, and switching between passive and active tasks (Marek et al.,
2015; Seeley et al., 2007; Uddin, 2014; Zhou et al., 2018). The increased
functional connectivity within the salience network for boys may
therefore explain their better performance at visuospatial and motor
tasks (Gur et al., 2012; Gur and Gur, 2016).

We do not find any association between functional connectivity and
IQ scores that remain significant after multiple comparison correction.
One of the leading theories on cognitive development postulates that
better integration between frontal and parietal areas supports better
cognitive performance (Deary et al., 2010; Jung and Haier, 2007). Pre-
vious studies on resting-state functional connectivity have provided
support for this theory in both children and adults (Dubois et al., 2018;
Langeslag et al., 2013; Santarnecchi et al., 2017; Song et al., 2008;
Vakhtin et al., 2014). However, despite better integration in the fronto-
parietal network (FPN) with age, we found no association with IQ test
scores that survived multiple comparison correction (Supplementary
Table S11; Supplementary Table S12).

Head motion is a major point of concern in resting-state fMRI mea-
surements when studying functional connectivity during childhood and
adolescent development (Power et al., 2012; van Dijk et al., 2012; Sat-
terthwaite et al., 2013). Heritability of head motion during childhood,
adolescence, and young adulthood was previously established (Achter-
berg et al., 2018; Couvy-Duchesne et al., 2014, 2016; Engelhardt et al.,
2017; Zhou et al., 2016), and is consistent with our findings during
adolescence (h2¼ 86% at age 13 years; p< 0.0001; and h2¼ 43% at age
18 years; p¼ 0.0003). Preprocessing the resting-state data with linear
regression of white matter and cerebrospinal fluid signal components and
derivatives of re-alignment parameters using CONN toolbox appears to
be mostly effective to control for head motion at individual ages (i.e.
cross-sectionally; Supplementary Table S13; Supplementary Table S14).
However, in a longitudinal setting, change in the degree of head motion
was still associated with changes in functional connectivity for more than
half of the generally long-distance connections between resting-state
networks, all with positive association (i.e. reduction in head motion
results in smaller change in functional connectivity; Supplementary
Table S13; Supplementary Table S14), with only the association between
head motion and the connection between the sensorimotor and salience
network surviving multiple comparison correction. Including global
signal regression during the preprocessing stage - despite its controversy
to introduce artificial negative correlations considered to be most effec-
tive at reducing head motion effects - did not substantially change the
results in addition to the aCompCor method, as previously found (Ciric
et al., 2017). This suggests that despite stringent control of head motion
during preprocessing of the resting-state fMRI scans, not all variance due
to head motion is accounted for, possible due to complex non-linear
interaction of head motion with the BOLD signal (Satterthwaite et al.,
2013). However, most connections within resting-state network,
including long-distance connections between frontal and parietal re-
gions, and cross-hemisphere connections, showed few associations with
head motion. Moreover, age-related changes in functional connectivity
were unaffected whether or not head motion was included as covariate.
All scans, including longitudinal scans, were processed independently
due to lack of publicly available tools that support longitudinal pipelines
such as used for structural imaging (Reuter et al., 2012), although lon-
gitudinal methods for preprocessing of resting-state fMRI are becoming
available (Hart et al., 2018).

A number of other limitations should be taken into consideration
when interpreting these results. First, resting-state fMRI scans were ac-
quired at 1.5T MRI scanner, using an at the time state-of-the-art fast
repetition time (TR) T2-weighted PRESTO-SENSE acquisition protocol.
The field strength was intentionally not upgraded to higher field
strengths to minimize effects of scanner differences for longitudinal data
acquisition. Although the fast TR aims to minimize head motion between
acquired volumes, the 3D acquisition makes it more sensitive to abrupt
motion resulting in ghosting and blurring of the BOLD signal that may
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require a different approach to denoising than traditional 2D single-shot
EPI acquisition protocol (van Gelderen et al., 2012). In addition, effort
was taken to reduce in-scanner head motion using mock-scanner session
before actual acquisition to acclimate the children during previous visi-
tation at age 9 years when the children also experienced an MRI scan but
no resting-state fMRI scan was acquired (Durston et al., 2009; van Soelen
et al., 2012a). Secondly, although sample size is large for neuroimaging
standard (i.e. N¼ 108 at age 13 years and N¼ 207 at age 18 years), it is
modest in size for twin studies. In particular, the reduced sample size at
age 13 years due to exclusion of high motion subjects has limited the
number of subjects with longitudinal scans and will have an impact on
the power of this study to detect age-related effects. Combining the data
across the ages using common factor analysis with a single factor had the
benefit to mitigate this reduction in power for detecting statistically
significant heritability or common environment estimates under the
assumption that these estimates remain stable across ages, which is the
case for most connections. Thirdly, resting-state fMRI is inherently noisy
with no optimal strategy to remove non-neuronal signal (e.g. due to head
motion or vascular system) (Ciric et al., 2017; Parkes et al., 2018).
Alternative approaches or more advanced methods, such as improving
temporal signal-to-noise ratio using machine learning (Adhikari et al.,
2018a) or the use of a longitudinal preprocessing pipeline (Hart et al.,
2018) may proof beneficial for future studies. Finally, choice of atlas may
influence the results as both the CONN and Yeo atlas consist of pre-
defined regions that do not allow for individual variation in localization
of brain function and the moderate size of the regions prevent analysis of
possible localized effects with behavioral measures such as cognitive
performance on IQ tests. In addition, both atlases do not include
subcortical structures for which both longitudinal development and
heritability has been reported. Unfortunately, we could not use more
fine-grained atlases due to computational complexity of twin modelling
and the limited spatial resolution of our scans. However, the comparable
results for both the CONN toolbox atlas and Yeo’s resting-state network
atlas suggests at least reasonable robustness of findings independent of
atlas choice.

In conclusion, there are wide-spread influences of additive genetics
and common environment on the functioning of cortical resting-state
networks during adolescent development that generally remain stable
over time. Wide-spread subtle age-related changes in functional con-
nectivity occur in the presence of sizable individual variation, with
presence of sex effects to be taken into consideration in developmental
studies on functional connectivity.
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